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Multiplicative Autoregressive Random Field (MAR) based texture models 
have been identified as one of the most appropriate models for SAR 
intensity images to capture the stochastic spatial interaction among 
neighboring pixels. But very few studies have tested their viability 
particularly in disaster applications. In this paper, we analyse the MAR 
texture models for their advantageous in land cover change detection 
compared to the changes resulting from logarithm of SAR image intensity 
and speckle filtered SAR imagery. The paper shows that lognormal random 
fields with multiplicative spatial interactions in the form of MAR models can 
be an effective alternative to suppress speckle noise and model SAR image 
intensity in time series data analysis. The pre and post disaster 
observational data of the Tohoku earthquake, in the east coast of Japan, 
acquired by the Advanced Land Observation Satellite (ALOS)/phased array 
type L-band synthetic aperture radar (PALSAR) were synthesized using 
MAR model based texture measures. Two of the main texture descriptors of 
the MAR model were considered primarily in this study. Those are the 
neighborhood weighting and the noise variance parameters. A 2nd order 
neighborhood configuration was used to estimate them. We present a 
variogram based analysis, structural similarity index measure (SSIM), and 
the mean ratio detector (MRD) as three different approaches to analyse the 
changes in land cover using radar texture. The change detection results of 
the MRD were further tested using area error proportion (AEP), root mean 
square error (RMSE) and correlation coefficient (CC), keeping normalized 
ratio, principle component analysis (PCA) and adaptive Lee filtered 
polarimetric intensity based change as the references.  
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1 Introduction  

Monitoring structural changes of land cover due to 
different magnitudes of disasters is an important usage of 
the earth orbiting SAR imagery. This advantage of the SAR 
over its optical counterpart is made possible by the 
capabilities of acquiring all weather, cloud insensitive 
multi-date digital imagery at a global scale. Backscatter 
intensity, texture descriptors and interferometric 
coherence are the primary image features embedded in 
both amplitude and phase of the recorded scattered wave 
of the SAR sensor available for change analysis (Del Frate et 

al., 2008). Due to the coherent nature of the illumination, 
radar image pixels are subjected to the effect of speckle 
noise. Attempts to reduce speckle by coherent spatial 
averaging, which reduces both fading and spatial 
resolution, have met with limited success in feature 
extraction (Ulaby et al., 1986). Speckle as a random effect 
minimizes the optimal use of SAR pixels for the pre and 
post disaster comparison in the case of change detection. 
As a result, SAR image pixel values become unreliable in 
the interpretation of spatial patterns. Hence it is useful and 
appealing to investigate the possibilities of extracting the 
spatial patterns of backscatters using textural operators 
(Del Frate et al., 2008). Texture features reflect the 
structural arrangement of the ground objects, with strong 
relationship to their changes. Temporal changes to the 
state of land cover can happen due to natural and 
manmade effects. Two kinds of changes can be considered 
primarily, abrupt changes corresponding to strong 
modifications to the state of land cover and the smooth 
transitions corresponding to slow evolutions (Bujor et al., 
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2004). Due to earthquakes and tsunami effects, changes to 
the state of stable land cover can occur mainly in the form 
of building collapses and debris in urban and barren 
landscapes, as well as inundations in agricultural lands and 
areas surrounding lagoons. 

Spatial configuration in a coastal urban area is a 
combination of heterogeneous land cover components such 
as vegetation, impervious surface and soil. The inherent 
nature of the spatial discontinuity of these features makes 
it difficult to detect them from a single SAR image due to 
the effect of speckle noise. Hence multitemporal SAR data 
can be useful to minimize the speckle and extract the 
variations. Modelling spatial correlation in radar images, 
using independent and identically distributed models can 
be considered as an over simplification of a complex 
process. Transforming the data to Gaussian statistics and 
modelling them with linear spatial interactions can be 
more effective in such instances. Lognormal random field 
models with multiplicative spatial interactions are a special 
case of a transformed Gaussian random field for SAR 
images. Multiplicative autoregressive random fields (MAR), 
which is a 2-D lognormal random field, is employed in this 
study to synthesize the radar images into textures. The 
parameters of a MAR model are highly correlated with 
spatial distribution corresponding to the intrinsic 
variability of the backscattering coefficients (Dierking and 
Skriver, 2002). Furthermore MAR model based texture for 
radar images become more appealing due to the ability to 
model both the spatial correlation structure and the 
distribution of the grey-levels (Dierking and Skriver, 2002).  

Different SAR image change detection algorithms were 
developed and tested for many years (Bruzzone and Prieto, 
2000; Chellappa and Chatterjee, 1985; Cross and Jain, 
1983; Del Frate et al., 2008; Ehrlich et al., 2009; Gamba et 
al., 2006; Solberg and Jain, 1997). Among them, the 
methods based on texture feature have received more 
attention, mainly because they can suppress the effect of 
SAR image speckle noise (Bujor et al., 2004; Dekker, 2003; 
Gamba and Aldrighi, 2012; Stasolla and Gamba, 2008). It 
was also observed that radar speckle has a standard 
deviation linearly related to the pixel mean values and are 
often modelled as a multiplicative process (Qiu et al., 
2004). On the context of texture, the first order statistics of 
the fading random variables describe their probability 
density functions while the second order fading texture 
statistics, such as the auto correlation function, describe 
the relationship between pixels and its neighbors (Ulaby et 
al., 1986). A comprehensive discussion of the properties of 
second order statistics, which describes how often one gray 
tone will appear in a specific spatial relationship to another 
gray tone, can be found in (Haralick et al., 1973; Ulaby et al., 
1986). Lognormal Random field based radar image 
synthesis was first proposed by Franknote and Chellappa 
(1987) in detail. MAR model based texture parameters 
using RADARSAT data were employed in one of the studies 
to detect forest fires, as a major application (Park et al., 
2001). Here it was summarized that the fusion of textural 
information with the information such as changes in 
backscatter can improve the results. As a whole, very few 

efforts were carried out to use the MAR based texture for 
spatiotemporal changes.   

In this study, an investigation is made to analyse the 
feasibility of MAR based texture parameters to extract 
temporal changes in an earthquake and tsunami context. 
These findings are reported as an alternative means to 
extract changes independent of the polarimetric techniques 
tested extensively for such purposes.  

2 Data Description and Pre-Processing 

The region of focus for the study covers the heavily 
damaged Ishinomaki and Onagawa areas from the 2011 
Thohoku Earthquake and Tsunami. Ishinomaki city and the 
areas north to the city are located in a flat basin. Two main 
rivers flow through the area, where one runs to the south 
through Ishinomaki city (Old-Kitakami river), while the 
other runs eastward through Ogatsu area (Kitakami river). 
Many of the primary land covers of the area belong to 
cultivated paddy lands while impervious, soil and 
vegetation dominate the rest. A post disaster Advanced 
Visible and Near-Infrared Radiometer-2 (AVNIR-2) 
acquired on 10th April 2011 and Google earth pre and post 
disaster images of 25th June 2011 and 12th March 2011 
were also employed for the results validation. A 
combination of pre and post disaster Advance Land 
Observation Satellite (ALOS) phased array type L-band 
synthetic aperture radar (PALSAR) data set was used in 
this study. This is a dataset resulted from an urgent data 
acquisition after the earthquake on 11th March 2011. Full 
polarimetric observation conducted on 8th April 2011 was 
taken as the post-disaster data set, while the observation 
made on 21st November 2010 was the pre-disaster input. 
Observation mode was an off-nadir angle of 21.5° in the 
ascending orbit. A single look PolSAR image carries a 
resolution of 4.45m in azimuth and 23.14m in ground 
range direction. The revisit cycle for ALOS is 46 days. The 
temporal base line is 138 days and the perpendicular base 
line is about 2km. Such a large temporal and spatial 
baseline can induce significant decorrelation effects and 
produce poor interferometric coherence. The PALSAR 
images were geocoded using UTM projection (zone 54N) 
and WGS84 Datum. Multilooking (5-look) processing in 
azimuth direction was performed to adjust the azimuth and 
range pixel size to be comparable, with a resulting spatial 
resolution of 25m. No speckle filters were applied initially 
on the data in the case of MAR based texture generation. At 
the same time, we used an adoptive Lee filter to suppress 
the speckle effects using the SAR intensity and performed a 
log transformation to compare the texture based changes 
and the changes resulting from despeckling. Adaptive Lee 
filter assumes that mean and the variance of a pixel in focus 
are equal to the local mean and the variance of all pixels 
within the user defined moving window. A     pixel 
moving window was used for the filtering process. From 
among the most commonly used adaptive filters, the choice 
of the Lee filter in the study is because of its superiority to 
preserve prominent edges, linear features, point targets, 
and texture information (Qiu et al., 2004).  
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Fig. 1: Study area map with earthquake epicentre (source-USGS) and the pre disaster AVNIR-2 false colour composite, AVNIR ALOS 
PALSAR 5-look complex images with HH, VH and VV polarization components in RGB, respectively, for the post disaster scene on 
8th April 2011. 

 

The study area map and the 5-look intensity post disaster 
PALSAR image is shown in Fig.1. 

3 MAR based texture and change detection 
methods 

In this section, we discuss the MAR based texture synthesis 
and change detection methods. Firstly, Semivariograms, 
which represent the spatial dependence of each pixel to its 
neighbors, were used to identify the changes in the pre and 
post disaster texture components. Secondly, we test the 
structural similarity index (SSIM), which is a very recent 
measure of the structural similarity between time series 
images. Finally, we use the mean ratio detector (MRD) 
measure, which is a standard change detection approach 
operating in a given spatial neighborhood, to find the 
contextual dissimilarities using the ratio of the local means.  

3.1 MAR model based texture  

Let an image y(i,j) be represented as a random disturbance 
(noise) driven multiplicative system as in Eq.1: 

 

                                                 (1) 

 

where N is the neighborhood set defining the model 
support, v(i,j) is the log normal white noise process which 
is also referred to as the driving process, and    is the 
exponent weighting factor for a neighborhood r. In the case 
of first-order neighborhood (Mather and Tso, 2016), four 
particular neighbors contribute to the centre pixel (i,j). 
Then the centre pixel y(i,j) can be modelled as: 

 

                                   
                                                                         (2) 

 

Eq.2 was extended for a second order neighborhood 
configuration in this study. The random field y(i,j) is said to 
obey a log-normal MAR model if                   with 
                  obeys a Gaussian autoregressive 
random field model represented by a difference equation in 
the form of: 

 

                                                         (3) 

 

where   is called the neighborhood weighting parameter 
and u(i,j) is the zero mean white Gaussian noise, with the 
covariance given by: 
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Fig. 2: Noise Variance ( 2

u
 ) parameter based texture images generated (a), (b), (c) pre disaster (d) ,(e), (f) post-disaster log estimates 

of HH,HV,VV polarization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3: Neighborhood Weight (mean of the parameter θ for 2nd order neighborhood) parameter based texture images generated  
(a), (b), (c) pre disaster (d), (e), (f) post-disaster log estimates of HH,HV,VV polarization. 

 

         
  
         
         

                                            (4) 

where    is the variance of u. Three main parameters of the 
MAR model can be used as texture descriptors. They are; 
the weighting parameter  , the noise variance   

 , and the 
mean value    of the stationary random process x. The 
neighborhood weighting parameter and the noise variance 
fit the logarithm of the observed data into a Gaussian 
random field model. The weighting parameter is 

nonnegative and explains the degree of possible interaction 
of the neighborhood pixel values to the pixel in concern 
(Ord, 1975). The random noise term as explained earlier is 
uncorrelated, and is normally distributed with zero means 
and equal variance. These parameters which characterize 
the image are estimated using the least square estimation 
with a given image y(i,j) of size M M and its log 
transform                  . They are shown as below: 

 

(a) (b) (c) 

(d) (e) (f) 

(a) (b) (c) 

(d) (e) (f) 
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In the above equations, T denotes the transpose of the 
matrix. Depending on the land surface structure 
represented in different images, texture parameters will 
have different values. Hence the images with pixel values 
defined by each of these parameters can be considered as 
the synthetic representation of their original images.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: log transformed filtered intensity images (using an adaptive Lee filter) showing the speckle suppression for (a), (b), (c)  
pre disaster and (d) ,(e), (f) post-disaster, HH, HV, VV polarization, respectively. 

 

Theoretically, any image processing operation that works 
on the original image can be performed using these texture 
parameters. In the current study, we employed two of these 
three parameters, the neighborhood weighting parameter 
  and the noise variance   

 . The MAR texture image 
subsets generated using the above equations are shown for 
the pre and the post disaster scenes in Fig. 2 and Fig. 3 
respectively. In second order statistics resulting from MAR 
models, the gray tones close to the white represent pixels 
with strong relation to each other while black gray tones 
shows regions with isolated entities. The log transformed 
adaptive Lee filtered pre and post disaster images are 
shown in Fig. 4, with reduced granular appearance. The log 
transformation was performed to convert the Gamma 
distributed pixel intensity into Gaussian distribution for the 
effective use of the change detection techniques employed 
in the study. These are the main data inputs for the change 
detection presented in the study. For impervious surface, 
paddy and vegetation class samples, Fig. 4 shows 
Neighborhood Weight (θ) parameter based radar texture 
difference in pre and post disaster HH and HV 
polarizations. The approximations of the histograms using 
a Gaussian fit for each of these samples are shown in the 
Fig. 5 and Fig. 6. As illustrated by the histograms, the 
distribution of the texture measures for the SAR intensity 
can be modelled by Gaussian distribution. A shift in the 
mean values and the changes in the variance from the pre 
to the post disaster land cover can be observed from the 

histograms. This is mainly due to the changes in the 
geometric nature and the moisture content (due to sea 
water of the tsunami) of the disaster affected urban area 
(Richards, 2009). This also provides the possibility of using 
MRD conveniently as the changes can be captured by the 
local mean values of the MAR based texture in a Gaussian 
framework. 

3.2 Semivariogram calculation 

Both the log transformed radar image pixel values and their 
texture descriptors are associated with ground locations. 
Hence, these random variables can be considered as 
regionalized variables with their known position in space. 
Thus, it is possible to use variograms to investigate the 
spatial structure of the urban landscape represented by 
both the log normal and the MAR model based texture 
variables of the SAR images. Variograms measure the 
spatial variation in these regionalized variables (Curran, 
1988; Woodcock et al., 1988). Semivariogram function 
relates semivariance to spatial separation and provides a 
concise and unbiased description of the scale and pattern of 
the spatial variability. Therefore, variograms estimate the 
average value of the pixels belonging to a particular land 
cover class within a specific region. Both remotely sensed 
and ground data can be used as samples to construct 
semivariograms. 

 

(a) (b) (c) 

(d) (e) (f) 
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Fig. 5: Difference in Neighborhood Weight (θ) parameter based radar texture from pre to post disaster situations in HH and HV 
polarization, for Impervious surface, Paddy and Vegetation class samples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6: Pixel distribution and Gaussian fit for the class samples shown in Fig. 2 for Neighborhood Weight  
(θ for 2nd order neighborhood) parameter based texture image, showing the shift in mean before and after the disaster. 

 

The sensitivity of variograms to multiple scales of variation 
in images is an important feature for them to be used in 
disaster change analysis studies. According to Woodcock 
(Woodcock et al., 1988) the height, also known as sill of the 
variogram, is related to the density or proportion of the 
area covered by objects such as buildings or roads. The 

distance to sill, or the range of influence, is related to the 
size of these objects. The shape of the variogram and the 
range are more sensitive to the area of objects. 
Furthermore, the shape is also related to the variance of the 
size of the objects. Hence a change in the objects in a case of 
a disaster can have significant influence to the shape and 
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height of the variograms. If the texture based approach is to 
provide better estimation of the damage from the images, it 
is necessary that the synthesis preserves the original 
spatial structure at both pre and post stages of the disaster. 
We implemented the variograms to investigate further in to 
the spatial configuration of the image pixel values for the 
built up area. The calculation of the semivariogram is 
presented as below: 

If a transect of pixels M, on top of a particular land cover 
class of interest, is selected from the log transformed, 
speckle filtered SAR images or the texture image, given its 
digital number x at pixel position i (i=1,2,….M), the 
relationship between a pair of pixels at a lag distance h can 
be defined using the average variances of the differences 
between all such pairs. With the single pixel variance being 
half of all such combinations, semivariance    for a lag 
distance of   can be given by: 

 

     
 

 
                                                      (9) 

 

For a transect or a subset of M pixels in a particular land 
cover class with a predefined lag distance, an unbiased 
estimation of the average semivariance in m pairs can be 
defined as follows: 

 

   
 

  
                 
                                   (10) 

 

Effects of natural disasters are directional independent in 
many of the instances. However, it is useful to model the 
variograms to suit the presence or absence of the isotropy. 
In this paper we compute the variograms along a transect, 
taking into account different directions using a radius 
defined by N number of pixels. For i=1,2,….M and j=1,2,….N 
on a regular lattice (   ), the sample semi-variogram at 
lag       then becomes: 

 

       
 

           
                      

 
 
 

 )] 2}                                                                                          (11) 

 

3.3 Structural Similarity Index Measure (SSIM) 

SSIM is a very recent objective image quality measure used 
for image quality evaluation. The application of these 
measures to extract the temporal changes from SAR texture 
images is very recent and new. The general formula for the 
SSIM in the case of pre and post disaster MAR weighting 
parameter based texture is as follows: 

 

                    
 
                

 
                

 
  

                                                                                                           (12) 

 

where,  

 

              
            

   

      
        

    
 

              
            

   

     
        

    
                                          (13) 

              
           

   

           
   

 

 

           are the weighting texture measures generated 

using MAR models for the pre and post disaster log 
transformed images (      ) respectively. The first term in 
Eq.13 is the luminance comparison function, which 
measures the closeness of the mean luminance of the pre 
and the post textural images. The second term, which is the 
contrast comparison function, measures the closeness of 
the contrast between the two images. Contrast is defined as 
the standard deviation of the two images (            ). The 

third is the structure comparison function, where 
          is the covariance between the images. This third 

element relates to the correlation coefficient between the 
resulting image and the reference. The positive constants 
             avoid the null denominator. A simplified 
version of the SSIM results as below (Wang et al., 2004): 

 

                 
             

             
 

      
         

           
        

     
         

                                                                                                           (14) 

 

The    and    parameters were set to take two small 
contestant values of 0.01 and 0.03 respectively, for more 
stability in the measurement (Wang et al., 2004). A value 0 
for SSIM shows no correlation among the images, while a 
value 1 suggests that the images are almost similar. Hence 
the resulting SSIM maps will correspond to dark tones in 
the areas where spatial changes result. The use of SSIM 
index with texture for the temporal changes is a novel 
approach proposed and tested in this study.  

3.4 Mean Ratio Detector 

MRD assumes the changes to occur as a modification of the 
local mean values in a particular spatial neighborhood of 
the two images (Inglada and Mercier, 2007). Eq. (15) 
defines the MRD. The spatial neighborhood considered for 
this measure was tested from a pixel combination of 3×3, 
5×5 to 7×7. The effect of these neighborhood 
configurations for the results were found to be very close; 
hence the results reported in this study are from a 
neighborhood size of 3×3. 

 

           
       

       
 
       

       
                                           (15) 

 

where    is the mean value determined for an     order 
spatial neighborhood of the log transformed image x. MRD 
based changes were determined for the log estimation as 
well as the MAR based texture. 
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3.5 Error measure  

In addition to the three main approaches for the temporal 
changes we implemented two fundamental and well known 
change detection methods to extract the damage areas as 
our references. They are the image ratio and the principal 
component transformation (PCA). A normalized ratio 
measure is attained as shown in Eq. (16) by using the two 
log transformed images: 

 

     
           

           
                                                      (16) 

 

where R(T) is the ratio of the log transformed images 

      pixel ,i j  at time   . If the log estimation for a pixel of 

the two images is nearly the same, then R(T) will take a 
value close to zero indicating no change, while for a change 
this will be a larger value (Singh, 1990). In the case of 
principal component (PC) transformation, the original data 
are mapped to a new set where the covariance matrix is 
diagonal so that the data can be represented without 
correlation. This analysis is made possible because the 
unchanged areas have high correlation between the pre 
and post disaster images with common variance for the 
two days. Further, this can be explained using the first PC 
that accounts for the maximum possible variance in time 
series images. Contrarily, changed areas which occupy a 
small region in the two images would be present in the 
second principle component. For this purpose, the pre and 
post disaster images are stacked to perform as a single 
image, and this combined image is transformed to its PC’s. 
If the stacked image is    with a dimension of l =1,..,L 
mathematically as a set    

                , with the 

covariance matrix being ∑, the principle component s   of 
the set can be expressed by the Eq. (17): 

 

                                                     (17) 

 

  
              is the eigenvectors of the covariance 

matrix  . There will be high correlation between the two 
images for the unchanged area while in the case of changes, 
it will be low (Liu et al., 2004)(Liu et al., 2004)(Liu et al., 
2004)(Liu et al., 2004)(Liu et al., 2004)(Liu et al., 2004)(Liu 
et al., 2004). In this work, we used the log transformed 
polarimetric components as the input for the PCA based 
change analysis. 

The comparison of the change detection results is a difficult 
task when considering the problems of the co-registration 
between the data sets as well as the lack of reliable ground 
truth information. We compare the change and the no 
change class area proportions for fixed neighborhood in 
each of the method using three error measures, root mean 
square error (RMSE), correlation coefficient (CC) and the 
area error proportion (AEP) as mentioned in Eq. (18), (19) 
and (20). After carefully reviewing the damaged area using 
the available Google historical images and the post disaster 
AVNIR-2 image, we tried to compare the damages within a 
100m×100m area. 
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Here    
     

  are the fractional estimations of the damaged 
class α within a user determined neighborhood of an M×N, 
in the pre and post disaster change images respectively. 

  
        are the mean and the standard deviation of class α in 

the pre-disaster change image respectively. Prior to the 
validation of the results, thresholds were applied to change 
maps in order to segment the pixels into the changed and 
the unchanged classes. The thresholds were determined by 
investigating the pixel distribution in the regions under 
change. Resulting threshold values for each filtered and 
texture images are reported in Table 1. Finally these 
segmented maps were converted to fractional maps with 
respect to the changed (damaged area) pixels. This 
fractional estimation was carried out using a 5×5 pixel 
window. 

 

Table 1: Threshold values to extract the damage and non-damage 
classes. 

 

Image Polarization 
Threshold 

Value 

Noise variance   

( 2

u
 ) 

HH 0.102 

HV 0.075 

VH 0.081 

VV 0.104 

Weight  (θ) 

HH 0.302 

HV 0.246 

VH 0.247 

VV 0.287 

Normalized Ratio 

HH 1.100 

HV 1.067 

VH 1.069 

VV 1.103 

PCA  2.202 

Adaptive Lee filter 

HH 0.064 

HV 0.070 

VH 0.071 

VV 0.068 
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4 Experimental Results 

Generation of MAR texture images, as well as the 
variograms, SSIM and MRD analysis were carried out using 
R programming environment, version 3.0.1  
(R 3.0.1). The influence of the disaster on the urban spatial 
structure represented in both adaptive Lee filtered and the 
MAR based texture images were examined using the 
variograms. Interestingly, they show important differences 
in both these cases. A 50×200 pixel transect in the urban 
region running from west to east for both lag distance and 
radius of 10 pixels, was used to generate the variograms. 
Variogram matrices and the Variogram plots for Lee 
filtered HH and HV, log HH and HV with their texture 

components, θ and 2

u
  are shown in Fig. 7. Transect 

generated over the urban area consists of well-developed 
city features, including planned housing networks, roads, 
railways and canals. It was also observed using the Google 
earth pre and post disaster images that the tsunami 
damages are significant along the coast. This balanced city 
structure was heavily influenced by the tsunami and earth 
quake. In the case of variograms generated for the filtered 
images (Fig.7 top 4 plots), the heights of the variograms 
stayed close to each other. It can be seen from the results 
that the variograms begin with relatively low values but did 
not level within the considered lag distance of 10 pixels. 
Furthermore, in all these cases, the variogram shape was 
similar to a spherical mode. The gradual slope common to 
the filtered variograms shows a higher variance in the size 
of the objects. Hence the variograms generated for the 
filtered images failed to convey any significant changes in 
the density of objects such as buildings, size of objects in 
the scene or the variance in the size of the objects. The 
main difference of the pre and post disaster variograms for 
the MAR based texture is that in the pre disaster situation, 
the shape of the variograms is close to a spherical model, 
while in the case of the post disaster it is almost an 
exponential model. The exponential model never reaches 
the sill but asymptotically approaches it. The sharp rise to 
the sill represents a considerable variance in the size of the 
urban features due to the effect of the disaster. The 
anisotropic variance shown by the variogram matrices for 
the lognormal images, as well as the MAR based texture 
images (θ,  ), further justifies the change in variance of the 
objects after the disaster. This could happen due to the 
rubble and the significant destruction to the planned 
arrangement of urban objects caused by the tsunami effect. 
Additionally, the change in the sill relates to the change in 
object density due to the impact of the disaster along the 
area of transect. Variograms calculated using MAR based 
texture values shows the regions undergoing spatial 
variations due to the disaster. While in the filter based 
approaches, the higher variance in the object sizes stays 
same for both the pre and post disaster SAR images, 
making it difficult to identify important changes.   

The SSIM maps generated from the pre and post disaster 
speckle filtered and texture images are shown in Fig.8. The 
use of SSIM to study the structural similarity between 
images is not feasible without the speckle filtering, because 
any random noise can significantly change the mean 
luminance and the contrast. However, with MAR models, 

the multiplicative effect of the speckle is subtracted in a 
local neighborhood. With the treatment of noise in this 
respect, it is possible to use image quality measure, such as 
SSIM, for the temporal change determination. The local 
statistics µ,   for the SSIM index in Eq. 14 were calculated 
using a 3×3 local window to generate the SSIM index maps. 
Visually the images show that the SSIM on filtered images 
(Fig. 8 (a), (b), (c), (d)) were not fully capable to 
discriminate the changes, but low SSIM values resulted in 
the regions subjected to changes. On the contrary, SSIM 
perform well to discriminate changes and non-changes 
using MAR based texture images.  

Visually the SSIM maps suggest that the coastal area has 
been affected with significant structural changes, with 
darker shades in the MAR based texture. Further, the 
significant damages surrounding the Kitakami River due to 
inland tsunami effects along the river basin are well 
represented. The cross polarized texture measures  
(Fig 8 (f), (g), (j), (k)) show low sensitivity to the changes, 
with respect to the co-polarized texture.  

 

Table 2: SSIM measures for the change images. 

 

Pre and post disaster images Average SSIM 

Adaptive Lee filtered intensity HH 0.5136 

Adaptive Lee filtered intensity HV 0.5160 

Adaptive Lee filtered intensity VH 0.5179 

Adaptive Lee filtered intensity VV 0.5112 

MAR based Weight HH 0.9854 

MAR based Weight HV 0.9845 

MAR based Weight VH 0.9849 

MAR based Weight VV 0.9852 

MAR based Variance HH 0.9998 

MAR based Variance HV 1.0000 

MAR based Variance VH 1.0000 

MAR based Variance VV 0.9988 

 

The reported SSIM values for the pre and post disaster 
despeckeled and texture images are shown in Table 2. SSIM 
values stayed in the range 0.98 to 1.0 for the MAR based 
texture. It drops to the range of 0.5 for the filtered images. 
This suggests the average performance in discriminating 
changes using the adaptive filters. It also means that the 
SSIM encountered significant random noise, even after 
filter operations, while determining the structural 
similarity between the pre and post disaster pixels. 
Modelling the spatial correlation before the change analysis 
using MAR models can be effective to reduce this random 
noise, especially for the SAR data.  
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Fig. 7: Variogram matrices and the Variogram plots for log HH, HV components and their texture components, θ and 2

u
  respectively, 

along a transect over the urban area before the disaster and after, showing the change of the variograms shape from spherical to 
exponential. And the matrices show the isotropic variance with respect to lag distance corresponding to the variogram.  
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Fig. 8: SSIM maps with brightness indicating the magnitude of the local structural similarity, the darker areas clearly relates to the 
changes (a), (b), (c), (d) SSIM between pre and post disaster log transformed filtered intensity images (e), (f), (g), (h) SSIM 

between pre and post disaster  2

u
 (i) ,(j), (k) ,(l) SSIM between pre and post disaster θ  of HH,HV,VH,VV polarization 

respectively. SSIM shows improved discrimination between change and no change areas using the texture measure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 9: Change maps using MRD for log transformed filtered intensity images (a) (b) (c), HH, HV, VV polarization, respectively. 
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Fig. 10: Change maps using MRD for MAR model based  texture formed by using θ vector for HH, HV,,VV (a) (b) (c), MAR model texture 

formed by using 2

u
  for HH, HV and VV polarization, (d), (e), (f), Mean ratio based change estimate using log estimates of SAR 

intensity for HH, HV and VV, using the second PCA component of the pre and post disaster log estimates of HH, HV, VH and VV 
components, (g, h, i, j) and the post disaster AVNIR-2 image showing the major land cover components for the same study region  
(k), High level of damages are shown in red colour. 
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Finally in the case of MRD, we analysed the results with 
respect to the PCA and ratio based temporal changes as 
well as the adaptive filter based changes. The change 
results based on MRD are shown in Fig. 9 and Fig.10. 

Ground truth information for the samples was obtained by 
interpreting a post disaster advanced AVNIR-2 and Google 
earth pre and post disaster images. Visual interpretation of 
the results for each technique suggests that the MAR based 
texture parameters extracted the coastal area damages, 
flooded paddy lands and the damages along the river 
borders with better contextual smoothing. According to  
Fig. 10, all the three techniques resulted in a common 
disaster signature along the coastal impervious land cover, 
paddy lands, along the river and to the north part of the 
river due to tsunami flooding and earthquake. The right 
part of the town was not exposed to the tsunami as much as 
the left part. This is mainly because (full SAR image Fig.1) 
the right part is protected by the expanding bay area and 
the higher elevation forest area. Hence the inundations in 
the left part and the middle of the town are not common to 
the right part. The MRD results using the filtered images as 
a whole show change closely and in-line with the texture 
based results. Nevertheless, despekeled image changes can 
be seen as a mixture of change pixels and the pixels 
representing noise. Earlier, the noise effect with the filter 
images was also experienced in the variogram and the SSIM 
based change results. This is clearly evident along the coast 
as well as along the river basins (Fig. 9 left bottom and 
right upper regions). Context based change detection 
results using MAR model parameters, have managed to 
accounted for small scale variations of damages by 

separating them from noise, with significantly low salt and 
pepper effects. 

According to the error measures (Table 3 and 4), structural 
changes estimated using MAR texture measures based on 
the neighborhood weighting parameter vector and the 
noise variance have very high correlation in the range of 
0.8, with least AEP and RMSE in the range of 0.004 and 0.06 
for the co-polarized SAR images. Higher correlation 

between the textures (θ,
2

u
 ) based change results can be 

seen for all the polarization components. The comparison 
also suggests that the MAR texture based changes for the 
co-polarized components have considerably better 
agreement with PCA based approach than the normalized 
log ratio based approach with better average AEP of 0.003, 
RMSE 0.06 and CC of 0.74. The same results have been 
followed by the cross polarized components, but with 
lower accuracy levels. The CC measures between the MAR 
and adaptive filter based changes show significantly high 
correlation in the range of 0.97 to 0.99 for both cross and 
co-polarized SAR images. Yet, significant differences 
between them were suggested by the higher AEP and RMSE 
values in the range of 0.01 to 0.3 and 0.1 to 0.3 for co and 
cross polarized results, respectively. It is difficult to say 
from this which result is superior. Yet it shows that the 
changes resulting from MAR based texture are different to 
the changes coming out from ordinary noise filtered 
images. The results in total show that the MRD based MAR 
texture approach for temporal changes produce more 
generalized and smoother outputs, while having better 
fractional agreement with PCA based approaches.  

 

Table 3: Error measures between co-polarized components. 

 

Cross comparison combinations (co-polarized input) change 
images 

AEP RMSE CC 

MAR based Variance (HH) vs. Lee filtered  (HH) 0.029 0.081 0.997 

MAR based Variance (VV) vs. Lee filtered  (VV) 0.026 0.080 0.997 

MAR based Weight (HH) vs. Lee filtered  (HH) 0.207 0.300 0.977 

MAR based Variance (VV) vs. Lee filtered  (VV) 0.210 0.305 0.976 

MAR based Variance (HH) vs. MAR based Weight (HH) 0.004 0.059 0.865 

MAR based Variance (VV) vs. MAR based Weight (VV) 0.005 0.068 0.824 

MAR based Variance (HH) vs. PCA2  0.002 0.074 0.778 

MAR based Variance (VV) vs. PCA2  0.001 0.076 0.780 

MAR based Weight (HH) vs. PCA2  0.006 0.063 0.717 

MAR based Weight (VV) vs. PCA2  0.005 0.062 0.710 

MAR based Variance (HH) vs. Log Ratio (HH) 0.017 0.076 0.769 

MAR based Variance (VV) vs. Log Ratio (HH) 0.015 0.080 0.758 

MAR based Variance (HH) vs. Log Ratio (VV) 0.016 0.080 0.737 

MAR based Variance (VV) vs. Log Ratio (VV) 0.014 0.077 0.765 

MAR based Weight (HH) vs. Log Ratio (HH) 0.022 0.075 0.682 

MAR based Weight (VV) vs. Log Ratio (HH) 0.021 0.077 0.645 

MAR based Weight (HH) vs. Log Ratio (VV) 0.021 0.078 0.656 
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MAR based Weight (VV) vs. Log Ratio (VV) 0.019 0.076 0.654 

Log Ratio (HH) vs. PCA2 0.014 0.046 0.881 

Log Ratio (VV) vs. PCA2 0.013 0.045 0.885 

 

Table 4: Error measures between cross-polarized components. 

 

Cross comparison combinations  
(cross-polarized input) change images 

AEP RMSE CC 

MAR based Variance (HV) vs. Lee filtered  (HV) 0.018 0.064 0.997 

MAR based Variance (VH) vs. Lee filtered  (VH) 0.021 0.069 0.998 

MAR based Weight (HV) vs. Lee filtered  (HV) 0.032 0.106 0.994 

MAR based Weight (VH) vs. Lee filtered  (VH) 0.016 0.058 0.996 

MAR based Variance (HV) vs. Mar Based Weight  (HV) 0.009 0.062 0.865 

MAR based Variance  (VH) vs. MAR based Weight (VH) 0.018 0.071 0.800 

MAR based Variance (HV) vs. PCA2  0.008 0.102 0.520 

MAR based Variance (VH) vs. PCA2  0.001 0.090 0.485 

MAR based Weight (HV) vs. PCA2  0.017 0.106 0.466 

MAR based Weight (VH) vs. PCA2  0.016 0.107 0.434 

MAR based Variance (HV) vs. Log Ratio (HV) 0.014 0.104 0.517 

MAR based Variance (VH) vs. Log Ratio (VH) 0.022 0.092 0.497 

MAR based Weight (HV) vs. Log Ratio (HV) 0.023 0.105 0.494 

MAR based Weight (VH) vs. Log Ratio (VH) 0.023 0.107 0.416 

Log Ratio (HV) vs. PCA2 0.006 0.058 0.654 

Log Ratio (VH) vs. PCA2 0.021 0.064 0.681 

 

 

5 Conclusion and Discussion 

MAR model parameters, since their introduction, have been 
used successfully with Markov Random Field base 
classification mechanisms for better contextual smooth 
classification outputs from multisource data. Yet their 
capabilities in time series data analysis, especially to detect 
contextual changes in land cover, have not been 
investigated fully. In this regard, the main goal of this work 
was to investigate the performance of MAR texture 
measures of SAR data, to extract contextual changes 
resulting from disasters. The study proposed the use of 
MAR based texture for time series SAR data change analysis 
independent of polarimetric approaches. Affected area of 
the Tohoku, earthquake and tsunami in the year 2011 off 
the pacific coast of Japan, was chosen as the study site. 
Three different techniques to detect the structural changes 
using MAR based texture measure were presented in this 
study. A significant finding of the study was the changes in 
the shape and height of the variograms from spherical to 
exponential, depending on the damages to the structure. 
Hence, the extensive use of variograms with MAR base 
texture at different transects over the study region can 
predict the areas exposed to major changes. The noise free 

setup of the MAR based texture provides the feasibility to 
use the SSIM for the study. The change areas always 
represented the dissimilarity between the pre and the post 
disaster scenes. The temporal changes extracted from the 
SSIM based analysis corresponds similarly to the change 
detection results of the MRD. Finally, MRD extracts the 
change pixels from the non-change one. The visual 
inspection showed that the MAR texture parameters were 
more sensitive to the small scale variations of the change. 
Noise free results with better smoothing can be observed in 
the MAR texture, comparative to the PCA and normalized 
ratio based approaches. It can be useful to apply the 
technique for different disaster situations with proper 
ground truth information for further evaluation. MAR 
based SAR texture preserves the original SAR information 
and provides a better discrimination for the changed and 
no changes classes.   
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