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With increasing urbanization, new technology is required to fulfil both 
human and environmental needs. At present, low-cost UAVs are used in 
surveying and mapping, and during the past few years, they have reached a 
level of practical requirements to allow the use of these systems as mapping 
platforms. Moreover, UAV based mapping provides required accuracy in 
line with cadastral laws and policies. Extraction of urban objects is a pre-
requisite in various applications. In general, detection of buildings plays a 
major role in the field of remote sensing image processing, and also in 
urban planning and management. However, there is no ‘proper’ method 
developed to detect building features automatically from UAV images 
because there are usually too many details and distortions on the images. 
This paper presents an effective approach for extracting buildings from 
UAV images through the incorporation of orthophotographs and dense 
point clouds, rather than the traditional pixel based classification. In this 
method, different feature-based conditions are introduced with the help of 
a grid-based data structure for more accurate and quick extraction of 
building features. To verify the generality and advantage of the proposed 
method, the procedure is evaluated by performing experiments with a 
dataset acquired over the study area, which has a variety of building 
patterns and styles. The experimental results show an excellent 
performance in the detection of buildings, with an average overall accuracy 
greater than 80%. The final overall correctness and quality of building 
extraction are more than 80% and 65%, respectively. Therefore, there is a 
need to focus on more advanced conditions for building detection, to obtain 
optimum results. 
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1 Introduction  

In photogrammetry, it is considered to be quite accurate if 
the consumer meets the exact requirements for preparing 
the 3D model. It is quite easy to use photogrammetry in 
those places where an object is to be measured, and to see 
how much dirt need to be cleared, particularly if it is all 
bare soil. When compared to the information coming from 
a human, the former is quite accurate. Budget constraints 
are, as ever, what they are and if the limits are too high, a 
project may not even come into being. That can force 
people, regardless of the other specifics, to choose the most 
economically viable alternative. Many people have to 
choose that, but, pursuing a low-cost approach will involve 
risks as to the nature of the specific production or 
deliverable. Participants must be aware of the risks, and it 
is important to properly assess how the technologies that 

you use can influence a project's possible success.  

The most recent photogrammetric technique,  
i.e. Unmanned Aerial Vehicle (UAV), has more advantages 
due to the low time and cost consumption for both the 
smaller and large scale studies (Nex and Remondino, 2014; 
Ramon Soria et al., 2016). Further, the acquired images are 
mostly of high resolution, with the accuracy ranging from a 
sub meter level to centimeter level (Gerke and Przybilla, 
2016; Harwin and Lucieer, 2012). Moreover, using a drone 
containing multiple GCPs, absolute precision in 5-10 cm can 
be easily achieved for smaller survey areas, which is good 
enough in most cases (Yao et al., 2019). Therefore, it has 
been a most prominent data acquisition platform which 
benefits a wide range of applications such as urban 
monitoring, land use analysis, building reconstruction, 3D 
city modeling, disaster and real estate management. These 
high resolution UAV images can be used to extract urban 
features effectively (He et al., 2019). Thus, the rapid 
development in most UAV techniques has fostered wide 
attention in the object detection domain.  

When focusing on the most common features of an urban 
environment, buildings constitute the main component of 
urban areas (Lai et al., 2019). Thus, detection of building 
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objects from image data is a vital step in most urban related 
applications. However, objects in UAV images are 
distributed with great heterogeneity and varying size, and 
they create great difficulty for extracting buildings using 
existing methods, which mostly used traditional 2D pixel-
based analysis (Zhang et al., 2020). Thus, detection of 
buildings accurately and automatically has become a hot 
research topic. To address the aforementioned challenges, 
this paper presents a new technique which is based on the 
fusion of point cloud analysis and texture feature analysis, 
for building detection from UAV images. The texture 
features can be extracted by using elevation information of 
each point. 

The paper is structured as follows. Section 2 discusses the 
recent technologies with their significances and limitations. 
In Section 3, the core method and basic principles of this 
paper are elaborated in detail. Further, all steps of the 
method are described. Section 4 describes the experiments 
that were carried out according to the method, the 
experimental data, the final results, and the evaluation of 
the accuracy. Section 5 summarizes the work of this paper 
and research prospects. 

2 Related Work 

Building objects are widely used in various applications, 
including urban planning, cartographic mapping, and land 
use analysis. Thus, building extraction based image data or 
laser scanning data is an active research area, and it has 
been extensively studied for decades in the fields of 
photogrammetry (Gilani et al., 2016). The developed 
methods can be broadly classified into three groups based 
on to data source: (1) 2D image-based methods,  
(2) 3D point cloud-based methods, and (3) hybrid methods 
(He et al., 2019). 

In recent years, several methods have been developed to 
extract buildings through 2D imagery. (Ahmadi et al., 2010) 
proposed an active contour model-based method, while a 
method based on region growing has been introduced by 
Ghanea et al. (2014). Further, multiscale morphological 
index-based method (Huang and Zhang, 2011), object-
based method (Chen et al., 2018), and different network-
based method (Yang et al., 2018) are most popular 
methods in the area of building extraction from high 
resolution image data. Even though these methods have 
achieved good results, they fail to extract buildings under 
complex backgrounds of images such as different 
illumination, occlusion, shadow effect, and geometric 
deformation. Furthermore, it was difficult to discriminate 
building from other non-building objects which have 
similar radiometric signatures. Thus it is concluded that 
building extraction is difficult by analyzing only spectral 
information. Therefore, further improvement in building 
extraction is vital to satisfy various other applications.   

Unlike 2D imagery, LiDAR data are more suited for 
distinguishing building and non-building objects via height 
variation (Du et al., 2017). Yet, the use of elevation data 
alone is problematic when separating building and non-
building objects with similar heights, for example buildings 
with trees/smooth canopies surrounding them. Moreover, 

automatic building extraction is challenging in the contexts 
of complex shape, occlusion, and size. Therefore, building 
extraction using a single data type, either 2D images or 3D 
LiDAR point clouds, remains inadequate (Pirasteh et al., 
2019). This problem can be overcome by combining 2D and 
3D data (Maltezos and Ioannidis, 2015). Some approaches 
have been developed to delineate the boundaries of 
buildings by integrating LiDAR point clouds and 
orthoimage/image data (Gilani et al., 2016). In general, 
LiDAR point cloud data are challenging to acquire due to 
the high cost that is involved. Thus, 2D images and Digital 
Surface Model (DSM) have been utilized by Tian et al. 
(2013) for extracting building features.  

In recent years, UAV image data have been used widely for 
various applications as its cost is relatively low with higher 
flexibility compared with LiDAR (Rosnell and Honkavaara, 
2012). Therefore, it is vital to present a method to extract 
buildings from UAV Image data and image-based derived 
3D point clouds. This problem has been solved by Dai et al. 
(2017) by presenting a method based on RGB- MFV and 
Support Vector Machine (SVM) classifiers. In this method, 
buildings were extracted by eliminating vegetation using a 
certain height threshold. It has shown successful results 
with simple buildings having linear and perpendicular 
edges. Unfortunately, this technique was unable to extract 
buildings when irregular shaped objects exist. Therefore, 
we present a new method to extract buildings by 
combining UAV ortho-images, image-derived point clouds, 
and texture features i.e. elevation map information 
generated based on the height of each point.  

3 Materials and Methodology 

3.1 Study Area 

The area selected for implementing and checking the 
accuracy of the proposed method is located in the premises 
of Sabaragamuwa University of Sri Lanka, approximately at 
80.7862⁰ N and 6.7157⁰ E. Though the selected area does 
not have the consistency of a very dense urban area, it is a 
significant built-up area with vegetated areas. Most of the 
buildings included in this area have simple roofs, and many 
are restricted to a single floor only, especially the 
residential buildings. In addition to these, there are faculty 
buildings, administration offices, quarters, pavilion, and so 
on and so forth. The total area covered by this test site is 
around 40 hectares, and consists of more than 100 
buildings. The entire working area was divided into six 
segments, and they were used as the test areas of this 
research.  

3.2 Drone Image Data  

The data in this research work were collected on February 
14, 2020, from Sabaragamuwa University of Sri Lanka 
premises in Belihuloya. The Bhoomi Tech (Pvt) Ltd 
supported the work by acquiring UAV image data. 
Photographs covering the study area were taken using the 
phantom 4-DJI UAV, where the on-board camera is 
equipped with a 1-inch 20-megapixel sensor. A mechanical 
shutter was used to eliminate the rolling shutter distortion, 
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which can occur when taking images of fast-moving objects 
or when flying at high speeds. As a result, it can be 
considered as powerful as many professional cameras. An 
area of 40 hectares can be covered with approximately 375 
images. 

3.3 Methodology 

The proposed method for building extraction consists of 
four main stages; (1) Pre-proposing (Point cloud 
generation), (2) Grid generation, (3) Analysis of height 
variation and Object point detection, and (4) Building 
segmentation. The workflow is demonstrated in Fig. 1. 

 

 
 

Fig. 1: The utilized framework for building extraction. 

 

3.3.1 Generating point cloud 

Generating the point clouds is a pre-processing step of the 
proposed method. We applied the photogrammetric 
process to generate a dense point cloud and orthomosaic 
image from the captured UAV images. For generating the 
point clouds from UAV images, 
Agisoft_metashape_professional software was used with 
high-level setting parameters for each step to preserve the 
original size of the raw images and also to obtain a more 
detailed output. At the stage of dense point cloud 
generation, depth maps were calculated for each image. 
However, there can be some outliers among the generated 
points because of noise or badly focused images. In order to 
solve the problem, a filtering technique can be used. Here, 
the aggressive depth filtering technique with ‘high quality’ 
reconstruction parameter was used for generating dense 
clouds using the Agisoft software as there were no 
meaningful small details to be reconstructed. This depth 
filtering method was reasonable to sort out most of the 
outliers, and also to generate the most accurate geometry. 
During the photogrammetric process, bundle block 
adjustment, and dense image matching techniques were 
used for generating a photogrammetric point cloud. Bundle 
adjustment is a photogrammetric technique to combine 

multiple images of the same scenario into an accurate and 
efficient 3D reconstruction. It estimates the 3D location of 
features in the scene, while estimating the camera 
locations. Dense image matching technique is used for 
calculating the depth of each pixel. By using these 
techniques, the software generates the dense point cloud 
relevant to the UAV images. These generated points have X, 
Y and Z coordinates relevant to the arbitrary coordinate 
system. These points also have RGB values. However, the X, 
Y, and Z coordinates were used in this research. 

3.3.2 2D Grid Structure 

The irregularly distributed point cloud data which are 
spread all over the area have three dimensional properties. 
This point cloud was then converted into a grid structure in 
order to enhance the speed of data processing for feature 
extraction. This process was based on the elevation 
distribution of the point cloud and is easy to operate. First, 
the grid size was set, based on the average point density of 
the data set. According to the X and Y coordinates, a grid 
structure was created for the entire area. This was done by 
first identifying the maximum and minimum X, Y 
coordinates in the study area. After that, the grid was 
divided into segments based on the grid interval that was 
chosen as a parameter in the proposed methodology. To 
plot the points into the grid structure, the ”mesh’ command 
was used in matlab, and unique “Cell IDs” were created for 
each grid, based on the position of the grid within the 
structure. Once the grid structure was created, the 
generated points were assigned to the respective grid, in 
accordance with the X, Y coordinates of each point as 
shown in Fig. 2. 

 

 
Fig. 2: Analysis of height variation and building point detection 

Grid structure - (left) Original point cloud in 2D, (middle) 
2D grid structure, (right) Grid structure in 3D. 

 

Building points and other points differed from their 
elevation. Therefore, this height variation was the most 
useful component in building extraction. With their regular 
or irregular height variations, building points can be 
extracted. The process of identifying building areas (point 
clusters) is performed on grid domain based on this height 
variation. The presented method is based on the principle 
that buildings have various properties, for example shape, 
elevation, unique boundaries, and so on. 

The created grids have a different number of points. 
According to the elevations of the points in a grid, the 
maximum and the minimum heights were calculated. 
Further, the point density of each grid was computed. 
Based on these heights of the grid and point density, each 
grid was separated as an object or ground grid. Most 
ground points had approximately similar elevations 
compared to non-ground points, especially for the local 
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neighborhood. The ground points were also the points with 
lowest elevation when compared to other points. Similarly, 
ground has a higher reflection than non-ground points. 
When a unique area of ground and non-ground is 
compared, the point density of ground area is much higher 
than non-ground area. After assigning grids into object and 
non-objects groups, the grids assigned as objects were 
clustered based on the connected component analysis. 
These clusters, called the “grid group”, were used to further 
analyze grids. Each grid group was composed of several 
grids that were adjacent to each other, and that had the 
same geometric properties. Before clustering the objects, 
certain grids which disagreed with the threshold of height 
variation were removed. For that, a 3*3 moving window 
was used. Then the rest of the grids were clustered in 
accordance to their geometric properties. 

The next step of the methodology was to classify grids 
belongs to building points. For this, different building 
detection criteria were introduced to separate building 
clusters from other object clusters, based on the geometric 
properties and grid adjacency. These criteria definitions 
were based on the assumption that the adjacent grids with 
small elevation differences are more likely belong to the 

same object. This assumption is derived from the fact that 
the object has continuity in horizontal direction. These 
criteria are mostly based on the area, perimeter/perimeter 
length, height and so on. The complete workflow of this 
part is shown in Fig. 3. It consists of several steps which 
improve the quality of the outputs. 

 

 
Fig. 3: Workflow of non-ground classification. 

 

 

Table 1: Building detection criteria 

 

Criteria Function Outputs 

1. Area analysis 1. Area > T1 Identify initial building clusters 

2. Height & Area 
analysis 

1. No. of grids (hmax > 2m) >T1 
Remove connected non-building grids 
and non-building clusters 

3. Shape-based 
analysis 

1. LW-min < length - width ratio < LW-max 

2. circularity (Circularity = (4 * pi * Area) / 
Perimeter^2) >1 (Takashimizu and Iiyoshi, 2016) 

Remove the irregular or linear shaped 
objects such as trees, flower fences & etc.  

4. Geometric 
properties and grid 
adjacency analysis 

1. Height variation  

                   

       

   

   

        

 

   

      

2. Plane surface 

                 
   
           

 
        )] > Tmin 

          

 

   

      

3. Direction (slope) of orientation is unique (compute 
gradient – check first order derivatives) 

4. Point density variation is unique  

Remove tree clusters and correctly 
identify Building clusters 

Where; 

T1 – minimum building size; Bh – building height ; LW-min = minimum building length-width ratio; LW-max = maximum 
building length-width ratio; T2 = no of grids of smallest plane surface.  
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As the first step, according to the cluster ID, the area was 
calculated. This first criterion helps to identify initial 
building clusters. However, the clusters belonging to 
vegetation can be mis-classified as building clusters due to 
their larger size. Thus, the challenge was to separate the 
building points from other non-ground points, for example 
tree points. Those clusters were removed by introducing a 
shape-based analysis method. Under this step, two main 
criteria were defined: (1) length - width ratio and (2) 
circularity. Shape of each cluster was identified, and 
clusters were divided into three main groups as linear, 
planar and spherical. This shape analysis method isolated 
the building clusters successful by removing most of the 
irregular or linear shaped objects such as trees, flower 
beds, fences and so on, successfully. However, all points 
related to the trees were difficult to identify when the size 
and shape of clusters are almost similar to the buildings 
criteria. Furthermore, vegetation surrounding the buildings 
with similar heights was recognized as parts of buildings.  

In order to improve the correctness of the selected building 
from the above conditions, geometric properties of 
buildings were further included to this process. Here, it was 
assumed that most buildings have planar surfaces. Not only 
that, but their height variation and the direction (slope) of 
orientation are also unique. In tree clusters, the maximum 
height can be seen in the middle of the cluster, and their 
point density is also higher than the outside pixels. 
Therefore, the next criteria were defined based on these 
geometric properties of buildings in order to demarcate 
buildings accurately from other objects. All criteria are 
listed in the Table 1. 

Based on these conditions, the clusters which satisfied the 
above conditions were selected as building clusters. Then 
the grids that were within those clusters were selected, and 
the points in those grids were selected as building points. 
Using selected building points, building boundaries were 
detected based on the canny filtering technique. The canny 
filtering for edge detection is one standard technique 
mostly used to identify edges/boundaries of objects from 
2D images due to its better localization and good recall. 
Since the outcome of the building point extraction was 
converted to raster data, canny filtering was applied 
straightaway. Therefore, in the first phase, grid data was 
converted into 2D image and edges were extracted using 
the Canny edge detector technique. Then, 2D edge pixels 
were converted into 3D point cloud in order to identify 3D 
edges. 

4 Results and Discussion 

The study area was divided into six test sites, to cover all 
the buildings. Given that the total area was quite large, the 
number of points was massive. In general, LiDAR points 
create only roofs of buildings and vegetation as a canopy 
type, but the points generated under this method were 
different from LiDAR points. Building’s façade was also 
generated as points in the overlapped area. Furthermore, 
under-the-trees points were generated through the 
vegetation. A dense point cloud, having 53,958,325 points, 
was generated covering the entire research area of 

725,058.6 m2. The point density of the generated point 
cloud was 75 points per m2. The orthomosaic was also 
generated according to the work flow of Agisoft software 
using the generated dense point cloud (see Fig. 4). The 
pixel size of the orthophoto was 3.97 cm per pixel. 

 

 
 

Fig. 4: Generated orthomosaic image 

 

The full area was first divided into small grids, and a 2D 
grid structure was developed in order to divide points 
obtained from the thick point generation process into 
different categories. A 2D grid network was used for 
analyzing the denser point cloud data as a data structure 
for the identification of objects, especially buildings. The 
results, however, depend on the size of the grid. Usually by 
adding points of neighboring objects, a large size may be 
misclassified. Therefore, it is possible to pick small size 
gaps with grids without any lines. As such, by looking at the 
thick point clouds and its estimated resolution, the grid 
interval was chosen. Using the created 2D grid structure, 
points were classified into two major groups as ground and 
non-ground. Based on their height differences, the selected 
non-ground pixels (points) were grouped into clusters.  

According to the given parameters, buildings were 
categorized in 2D grids. The extracted buildings from each 
area are visualized in Fig. 5. Blue, orange and white colour 
represent obtained building points, non-building points, 
and areas where the number of points is zero, respectively. 
In order to obtain best results, the parameter tuning 
process was adopted. 

4.1 Building Extraction Performance 

In order to prove the effectiveness of the proposed method, 
the experimental results were compared with reference 
data. The reference data was generated using the manual 
extraction process with visual interpretation of 
orthophotos. Based on the study area, different parameters 
were used for each step (Table 2).  

 

 



R.R. Gamage et al.                                                                 Journal of Geospatial Surveying (2021) 1:1 

 

28 
 

  

  

 
 

  

  

  

  

 

Fig. 5: Extracted buildings: Orthomosaic images (1st column) and resulted building points (2nd column) on SA 1, SA 2, SA 3, SA 4, SA 5, & 
SA 6 (from top to bottom respectively) 
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Table 2: Parameter setting for each study area 

 

                                                Study                                                                                                                        
                                                         area 
Parameters 

 
SA 01 

 
SA 02 

 
SA 03 

 
SA 04 

 
SA 05 

 
SA 06 

Grid Interval 0.5 0.5 0.5 0.5 0.5 0.5 

Average Ground Height 10 15 18 18 2 15 

No. of points in a cell 20 20 20 20 20 20 

Slope Height Range (Ground) 0.45 0.4 0.4 0.4 0.37 0.4 

Minimum Area of Building 42.136 100 40.658 100 62.755 100 

Maximum Area of Building 3635 968.219 583.598 3196 4256.7 1500 

Slope Height Range (Building) 0.25 0.2 0.25 0.25 0.19 0.17 

 

There was a deviation in the number of included buildings 
and the number of extracted buildings. Extracted buildings 
were accurately extracted, but due to the dense vegetation 
and undulation of the surface, some buildings were not 
extracted. The number of the un-extracted building 
increased, especially when the area was highly undulated 
with sudden changes in elevations. The performance 
analysis of the building extraction is presented in Fig. 6.  

 

 

Fig. 6: Quantitative results of the extracted buildings of each test 
area. 

 

The results of building extraction using the proposed 
method were evaluated by overlapping the results with the 
orthophotos. The most popular metrics to assess the 
results of building detection are Completeness (COMP), 
Correctness (CORR), and Quality (QUAL). Four indicators 
were used to evaluate the performance of extracted 
buildings based on the above three matrices. They are  
(1) the number of buildings correctly classified as buildings 
(TP), (2) the number of non-buildings incorrectly classified 

as buildings (FP), (3) the number of non-buildings correctly 
classified as non-buildings (TN), and (4) the number of 
buildings incorrectly classified as non-buildings (FN).  

Three metrics: (1) completeness, (2) correctness, and  
(3) quality, were computed to evaluate the results of the 
proposed method using the following equations (1), (2), 
and (3), respectively (Awrangjeb and Fraser, 2014); 

 

Completeness (COMP) = TP / (TP +FN)                                  (1) 

Correctness (CORR) = TP / (TP +FP)                                       (2) 

Quality (QUAL) = TP / (TP +FN+ FP)                                       (3) 

 

The evaluation results based on the above three indices are 
shown in Table 3. It shows that the proposed method has 
been able to achieve state-of-the –art results in most of the 
test areas, except for test area SA4. According to Table 3, it 
can be concluded that the SA3 has the best results 
compared to the other areas. This can be clarified by the 
lower occlusion effect/data gaps in this area. However, SA1, 
SA2, SA5 and SA6 are also showing good results, by having 
more than 60 % of quality. It also shows that the proposed 
method is rather reliable for detecting buildings, with less 
than 10 FP value for each dataset. The main reason is the 
largest tree clusters that can be seen in the study area and 
the complexity. However, it does not influence for the 
overall figure of correctness (see Table 3). These quality 
values disclose the robustness of the shape and height 
analysis criteria. 

In contrast, less than 20% of the buildings were not 
detected, except for the study area SA4 which has a 30% FN 
value. One reason for this FN error is gaps in the point 
clouds, i.e., an incomplete building area.  
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Table 3: Overall statistics of extracted buildings in test areas SA1 – SA 6 

 

Study 
Area 

Number of 
total 

buildings 
TP FP FN COMP CORR QUAL 

SA1 27 21 4 6 77.78% 80.76% 67.74% 

SA2 39 30 6 9 76.92% 83.33% 66.66% 

SA3 35 30 7 5 85.71% 81.08% 71.42% 

SA4 19 13 5 6 68.42% 72.22% 54.16% 

SA5 4 4 2 0 100% 66.66% 66.66% 

SA6 26 21 6 5 80.76% 77.77% 65.66% 

Where: TP – number of buildings correctly classified as buildings, FP – number of non-buildings incorrectly classified as 
buildings, FN – number of buildings incorrectly classified as non-buildings, COMP – Completeness, CORR – Correctness, 
and QUAL – Quality. 

 

Differences between the obtained results and the actual 
ground were observed (see Fig. 7). In most cases, points 
belonging to natural features, in particular points on trees 
and flat surfaces of the land, were correctly identified. 
Many tree canopies tend to be like a building's roof, 
especially tree canopies on a hill, with variations in height 
in the landscape. Tree canopies parallel to the roof were 
often interpreted as a building level. Trees that were 
mostly higher than buildings and situated close to the 
building, were attached to the building roof. Some flat 
ground zones were also categorized as smooth and less 
undulating building points. 

 

 
 

Fig. 7: Deviations of obtained result (Black-Points on trees, 
Yellow-Points on a road, Green-Points on a flat surface) 

 

To remove these types of errors, the conditions used to 
remove buildings in the point cloud must be improved. 
Additionally, other criteria can be added to eliminate trees, 
so that the misclassification of canopies as building points 
is easier to reduce. The average elevation of the area of 
study was about 50 m. As the used classification criteria 

depend on the elevation, this flat surface is mainly 
classified as building points. 

In less undulated areas, it is possible to achieve more 
precise results based on the proposed method. As the field 
site included a highly undulating low jungle, advanced 
conditions are needed to obtain more detailed results 
during building extraction. 

According to the conditions used, the algorithm was able to 
extract a higher number of buildings. Each study area was 
stored as a .txt file, and the size of a file was about 300MB. 
As a consequence, the algorithm took 13-15 hours to 
complete the process. Because of that, six machines were 
used to process one round of samples for each study area. 
Hence, identifying changes in the images when the 
parameters were changed, consumed a significant time. 

5 Conclusion 

Extracting building points from low-cost UAV imageries is a 
revolutionary idea for most. This is because the present 
society wastes a lot of money to detect features and acquire 
their boundaries in a legal background. UAV based 
mapping is developing fast to assist resolve these 
problems. Not only that, UAV is the cheapest and fastest 
way of mapping in the world.  

Using low-cost UAV imageries and generating dense cloud 
is a cheaper way for feature extraction, boundary detection, 
as well as in many other applications. Using the LiDAR 
point cloud is more costly when compared to using UAVs, 
and the latter can do the job in a different way. As a 
developing country, this method is more suitable to be used 
for surveying purposes. 
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