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Abstract— The most crucial factor in apparel manufacturing 

is catering for due dates. The unoptimized, ad-hoc scheduling 

and static routing of Production Orders (POs) result in late 

deliveries of orders. The inability to analyze the available pre-

sewing capacity against the demand results in last moment 

revelation of resource over utilization. This study proposes a 

systematic approach in analyzing pre-sewing capacity against 

the demand. A mathematical model in estimating pre-sewing job 

completion times for six chosen pre-sewing departments is 

proposed. Operation Flexibility and Routing Flexibility in pre-

sewing section are analyzed and integrated in scheduling 

through Precedence Diagramming Method (PDM) and priority 

scheduling algorithm. An optimized scheduling approach with a 

simulation model to facilitate the visibility of resource utilization 

and PO completion times is adopted. The simulation model 

provides approximated PO completion time with optimized 

criterion, provides measures on resource utilization and queue 

wait times, thus facilitating proactive measures for the 

management at an early stage of the production. 

Keywords— Routing Flexibility, Operation Flexibility, PDM, 

Optimization, Simulation 

I. INTRODUCTION  

Apparel industry is a giant industry in Sri Lankan 
economy, contributing 44% to the national export. Having a 
$5.3 Bn export revenue earned in year 2019, the industry is 
rapidly growing becoming the regional apparel hub [1]. Given 
the gravity of economic contribution of the apparel industry, 
the sustainability of regional industry leadership is of utmost 
importance. This is a challenging mission with new market 
trends which has made the industry a very competitive place. 
The competitiveness of apparel manufacturing industry is 
caused due to the highly fluctuating and diversified market 
demands. The apparel manufacturers are compelled to adjust 
the manufacturing processes to produce Production Orders 
(PO) with shorter life cycles with uncompromised standards 
of garments. Under these circumstances garment 
manufacturers are becoming more focused on shrinking the 
lead times of manufacturing processes optimizing the 
available resources and the capacity. 

The lack of proper scheduling and the neglected 
opportunity of routing flexibility and operation flexibility in 
optimizing resources within pre-sewing sections have resulted 
in extended production lead times, ultimately resulting in late 
order deliveries. 

Routing flexibility and operation flexibility are two 
characteristics existent within an apparel manufacturing pre- 
sewing section. Routing flexibility of a manufacturing system 
is its ability to produce a part by alternate routes through the 
system. Alternative routes may use different machines, 

different operations, or different sequences of operations. 
Typically, these different machines are those capable of 
essentially the same processes. Operation flexibility, also 
known as sequence flexibility refers to a parts’ ability to be 
produced in different ways. Operation flexibility is a property 
of the part, and means that the part can be produced with 
alternate process plans, where a process plan means a 
sequence of operations required to produce the part [2]. 

In garment manufacturing there are multiple operations 
that one product should undergo from raw material receipt to 
needle point or the sewing start, which is varied from one 
product to the other based on the style. Each of these styles 
has a pre-determined set of operations from a set of pre-
sewing operations that can be carried out within the plant. Not 
every style has the same set of operations or the operation 
sequence (routes). Thus, the chain of pre-sewing operations to 
be carried out vary from style to style and there’s a possibility 
for a style to have multiple possible routes to be taken. This 
proves the existence of operation flexibility within pre-sewing 
section. 

Further, a client order is converted to a Sales Order (SO) 
within the manufacturing plant for further proceedings. One 
Sales Order is broken down to Sales Order line Items (SO/LI) 
and one SO/LI is broken down to Production Orders (PO). The 
manufacturing processes are carried out in PO level within the 
plant. It is these POs which will be scheduled for jobs to be 
carried out by machines or laborers within each department 
responsible for carrying out each pre-sewing operation. Since 
there exist multiple identical machines within a department, 
there exist multiple routes a single PO can take in machine 
level, which gives the existence of routing flexibility within 
the pre-sewing chain of operations. 

These two types of flexibilities: routing and operation 
flexibilities are opportunities which can be exploited in better 
resource utilization if analyzed at an early stage of production 
and made use of in job shop scheduling in the pre-sewing 
chain of operations. 

II. LITERATURE REVIEW 

Optimizing pre-sewing resources against the demand is 
inevitably bound with the Job Shop Scheduling Problem 
(JSSP) which is a complex combinatorial optimization 
problem [10]. The conventional scheduling problem can 
become Flexible Job Shop Scheduling Problem (FSSP) if 
there are a set of machines available and each operation is 
allowed to be processed on any one of the available ones. A 
FJSSP is more troublesome than the established JSP, because 
it adds a level of decision yet beside that sequencing i.e. job 
routes [3]. 
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 Job shop Scheduling problem is an optimization problem 
where jobs are assigned to resources in such a way that one or 
many of the objectives are satisfied. These objectives can be 
minimizing the total make span, maximizing the resource 
utilization or reducing the Work in Progress (WIP). At a given 
context a combination of the above objectives might need to 
be achieved. 

Although research focusing specifically  on apparel 
manufacturing pre-sewing section FJSSP are scarce, there is  
an extensive body of literature on FJSSP underlying the same 
fundamental flow [3,4,6,8,10]. These researches belong to 
multiple approaches like heuristic approaches, meta-heuristic 
approaches, mathematical models and simulation-based 
optimization approaches. 

One study proposed a branch and bound algorithm for 
fixed pre-assembly scheduling on multiple fabrication 
machines. Minimizing the total weighted completion time of 
a finite number of products is considered as the scheduling 
measure. Two lower bounds are derived and tested in a 
branch-and-bound algorithm. Also, an efficient greedy-type 
heuristic algorithm is developed to generate near-optimal 
schedules [4]. 

FJSSP has been mainly approached for solving in meta 
heuristic approaches due to its NP-Hardness. Among these 
meta heuristic algorithms are: simulated annealing, tabu 
search and genetic algorithms [5,6,7,8,9,10]. 

Feldmann and Biskup in 2003, considered the problem of 
scheduling a number of jobs on a single machine against a 
restrictive common due date. A new problem representation 
has been developed and meta-heuristics, namely evolutionary 
strategies, simulated annealing and threshold accepting have 
been applied in solving the above. The study demonstrates that 
the application of above meta-heuristics is efficient in 
obtaining near-optimal solutions by solving 140 benchmark 
problems with up to 1000 jobs [11]. 

In 2014, a survey on multi objective evolutionary 
algorithm for manufacturing scheduling problems was 
conducted. focus is on the design of multi objective 
evolutionary algorithms (MOEAs) to solve a variety of 
scheduling problems. Firstly, a fitness assignment mechanism 
and performance measures for solving multi-objective 
optimization problems are introduced along with evolutionary 
representations and hybrid evolutionary operations especially 
for the scheduling problems. Then these EAs are applied to 
the different types of scheduling problems, including job shop 
scheduling problem (JSP), flexible JSP, Automatic Guided 
Vehicle (AGV) dispatching in flexible manufacturing system 
(FMS), and integrated process planning and scheduling 
(IPPS). Through a variety of numerical experiments, the study 
demonstrates the effectiveness of these Hybrid EAs (HEAs) 
in a wide range of applications of manufacturing scheduling 
problems [12]. 

In 2018, Salma and Eltawil proposes a decision support 
system based on simulation metamodeling optimization 
approach to assist in making timely and informed decisions, 
using emerging technologies like industry 4.0 and cyber-
physical system concepts. The DSS is comprised of a 
simulation model with a simulation metamodel combining the 
merits of simulation modelling and design of experiments by 
providing optimal solutions [13]. 

In a study conducted in 2011, Joseph and Sridharan 
proposes a simulation-based metamodels for the analysis of 
routing flexibility, sequencing flexibility and scheduling 
decision rules on the performance of an FMS. Three routing 
flexibility levels, five sequencing flexibility levels and four 
scheduling rules for part sequencing decision are considered. 
The performance of the FMS is evaluated using measures 
related to flow time and tardiness of parts. Multiple 
regression-based metamodels have been developed using the 
simulation results. The results show that deterioration in 
system performance can be minimized substantially by 
incorporating either routing flexibility or sequencing 
flexibility or both. However, the benefits of either of these 
flexibilities diminish at higher flexibility levels. When 
flexibility exists, PSRs, such as earliest due date and earliest 
operation due date, provide better performance for all the 
measures [14]. 

In another study conducted in 2014, an estimation of 
distribution algorithm-based approach coupled with a 
simulation model is developed to solve the FJSSP and 
implement the solution. The focus of the study is to employ 
simulation with estimation of distribution algorithm where 
three probabilistic models are utilized. The first one generates 
the processing sequence of operations on the machines; the 
second produces the assignment of operations on machines, 
and the third obtains the start time for each work shift. The 
objective is to generate schedules that can obtain a small 
amount of WIP as a performance measure. Using the proposed 
approach, the shop performance could be noticeably improved 
when different machines are assigned to different schedules 
[15]. 

Given that the research question is bound with the 
visibility available for management at an early stage of 
production, an optimization model concerning routing and 
operation flexibilities, integrated with a simulation model for 
performance measure analysis is proposed in this study. 

The study site is an apparel manufacturing plant which 
produces garments for orders. The information of the pre-
sewing section of the plant is mainly handled by ERP system. 
The plant produces embellishment orders, normal orders and 
sub-contracting orders. Since the internal capacity of the plant 
is concerned in this study, sub-contracting orders are not taken 
in to consideration. The production planning is carried out 
based on the technical details of the POs and data available in 
ERP system. 

III. DATA COLLECTION 

This study makes use of five main documents as data 

sources. Those are: 

• Style Spec/Style Sheet – A document prepared by 
plant technical team, comprising of set of due pre-
sewing operations for one style and their technical 
dependencies. A style can run in multiple POs. 

• Resource Pool – A database comprising of per-sewing 
resource details and technical constraints. 

• Production Plan – The document comprising of list of 
POs to be processed and the Production Start Date and 
Time (PSD/PST) which is deemed as the due date of 
PO for pre-sewing section.  

• BOM Details – Bill of Materials for each finished good 
extracted from ERP system. 
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• Master data – Technical and other detail maintained by 
Production Planning and Controlling Unit (PCU). 

These data are acquired from the pilot plant from which the 
experimental scenario is adopted. 

IV. METHODOLOGY 

This study proposes a separate mathematical model to 
estimate job completion time in each pre-sewing department. 
This model integrates operation flexibility into scheduling 
through PDM (Precedence Diagramming Method), resulting a 
job list with latest finish time for each job, for each pre-sewing 
department. Studies [14, 17] have adopted similar approaches 
to PDM in analyzing part paths with critical path method and 
operation graphs. 

Precedence Diagramming Method (PDM) maps the 
sequences and dependencies of pre-sewing operations for POs 
in the PO list which is provided to be processed by the PCU 
of the apparel manufacturing plant. Fig. 1 shows the 
precedence diagram formed based on the Table 1 for a sample 
PO. Through this approach, the operation flexibility is 
analyzed and integrated. 

A. Mathematical Model for Job Completion Time 

Estimation 

The model is built for a scenario of a PO list consisting 
styles comprised of following 6 pre-sewing operations: 

Fabric Picking, Fabric Spreading, Fabric Cutting, Trims 
Picking, Molding and Strap Making. 

Assumptions 

In this study, the proposed model is built upon the 
following assumptions: 

(A1): SMV values for all pre-sewing operations are 
maintained and pre-given. 

(A2): All master data are maintained within ERP system 
and pre-given. 

(A3): All Strap jobs are plastic material. 

 (A4): Cut SMV does not vary on size. 

 

Following is the operation process time (Ti) formula 
development. 

The following notation (Table 2) is utilized in analyzing 
the routing flexibility and formulating calculations for process 
time estimation in this study: 

Table 2- Nomenclature 

POi  ith Production Order (PO) which will be 

produced 

Qtyi Quantity of POi 

SZil lth size of POi 

SZQtyil Quantity of SZil 

Sti  Style of POi 

Dcil   lth docket of order POi 

DcQtyil  Docket ratio quantity of lth docket of order 

POi 

PPDcil Plies per docket Dcil 

MQtyil Pieces per marker of Dcil 

Panelil Panel l of POi 

FbQty Fabric quantity per one panel, one piece of 

POi (Extracted for BOM) 

UPPil Units per piece of unit l of order POi 

(Extracted for BOM) 

TrmCatil Trim category l of POi 

TrmQty  Trim quantity per one unit of POi (Extracted 

for BOM) 

MatQty Roll/Box quantity for material type 

(Extracted form master data) 

Trm (1 to n) Trim categories for POi (Extracted for BOM 

and master data) 

PE Picking Efficiency for material category 

(Extracted form master data) 

PTT (1 to n) Fabric picking travelling time for 

geographical zone (Extracted form master 

data) 

SprdSMV Material wise SMV (Standard Minute 

Value) for spreading per one lay (Extracted 

form master data) 

CutSMV Panel wise SMV for cutting (Extracted form 

master data) 

BnSMV  Binding SMV (Length per minute - 

Extracted form master data) 

StrpInsSMV Strap Insertion SMV (Extracted form master 

data) 

StrpComSMV Strap Completion SMV (Extracted form 

master data) 

MoldDT Molding Dwell Time (Style Wise 

Maintained) 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 - Precedence Diagram for POi 

Table 1- Operation Sequence & Dependencies of POi 

Process No. Sub Process Dependent Next 

1 Fabric Picking 0 2 

2 Spreading 1 3,4 

3 Cutting  2 5 

4 Trims Picking 2 6,7 

5 Molding 3 7 

6 Strap Making 4 7 

7 Line In 4 0 
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MoldHT Molding Handling Time (Style Wise 

Maintained) 

Oil   lth operation of order POi 

Ai  Arrival time of ith PO 

CPi  Actual completion time of POi 

PTil  Processing time of operation Oil 

FTil   Actual finish time of Oil (Through 

simulation model) 

LFTil  Latest finish time of Oil (Estimated) 

PSTi  Due date and time of POi 

TDi  Tardiness of POi (CPi - PSTi) 

PT Process Time 

 

Fabric Picking Process Time Estimation: 

 PT = ∑Panel(1-l) [(FbQty * Qtyi* UPPi / MatQty) * PE + PTT] () 

Fabric Spreading Process Time Estimation: 

 PT = ∑ Dc (1-l) (SprdSMV * PPDcil) (2) 

Fabric Cutting Process Time Estimation: 

 PT = ∑ Dc (1-l) (CutSMV * MQtyil) (3) 

Trims Picking Process Time Estimation: 

PT = ∑ TrmCat(1-l) [(TrmQty * Qtyi * UPPi / MatQty) * PE + PTT] (4) 

Molding Process Time Estimation: 

PT = ∑ SZ(1-l) [(SZQtyi * MoldDT) + (SZQtyi * MoldHT)] (5) 

Strap Making Process Time Estimation: 

PT = Qtyi [(TrmQty * StrpInsSMV) + (TrmQtyn * StrpComSMV)] (6)

   

Based on Standard Minute Values (SMV) of pre-sewing 
operations and PO quantities, the time durations for each pre-
sewing operation of a given PO are estimated (Ti). Starting 
form PSD/PST (Due date and time for a given PO) a back 
calculation is carried out by using the estimated time durations 
above, the latest finish date & time (LFTil) for each job, for 
each pre-sewing department is calculated (Fig. 1). 

Once the above analysis is carried out for all POs in the 
list, each pre-sewing department gets a job list with a time 
value (LFTil) for each job. These jobs for each pre-sewing 

department is scheduled, using priority scheduling algorithm. 
This algorithm will assign the job having the earliest date and 
time value for LFTil calculated above, to the firstly available 
resource out of multiple identical resources in the department 
in scenario 1. For the priority scheduling algorithm and chosen 
dispatching rules to be implemented and to analyze the 
performance of the manufacturing system, the study 
implements a simulation model of the pre-sewing 
manufacturing system of an apparel manufacturing plant. 

B. Simulation Model Development 

A simulation model is built to test the experimental 
scenario, Table 3. Six pre-sewing operations are simulated 
along with the resources as shown in Fig 2. Five main input 
sources have been integrated. The dynamic routing of a PO is 
enabled based on the style through the simulated pre-sewing 
model. The simulation model is tested under three different 
dispatching rules. 

Scenario 1:  

• Tested scheduling algorithm: Priority scheduling 
algorithm (Non-preemptive) * 

*Given that the jobs for each pre-sewing department (Oil), 
are non-related. 

• Tested dispatching rule: Lowest Attribute Value 
(Attribute = LFTil) / Latest Finish Time First 

Scenario 2: 

• Tested scheduling algorithm: Priority scheduling 
algorithm (Non-preemptive) 

• Tested dispatching rule: Lowest Attribute Value 
(Attribute = PTil) / Shortest Process Time First 

Scenario 3: 

• Tested scheduling algorithm: Priority scheduling 
algorithm (Non-preemptive) 

• Tested dispatching rule: First in First Out (FIFO) 

Scheduling algorithms and dispatching rules are adopted with 
the following objectives: 

1. Minimizing Tardiness (TDi) / Due date delivery 

2. Minimizing Queue Wait Times / WIP Reduction 

3. Maximizing Resource Utilization 

V. EXPERIMENTAL RESULTS AND DISCUSSIONS 

The simulation model was run under three experimental 
scenarios mentioned under Simulation Model Development. 
The simulation environment used is Arena discrete event 

Table 3 – Experimental Scenarios 

Scenario Number 

Description 

Scheduling Algorithm Dispatching Rule Attribute 

Scenario 1 Priority Scheduling Algorithm 
Lowest Attribute 

Value* 
*Latest Finish Time 

Scenario 2 Priority Scheduling Algorithm 
Lowest Attribute 

Value* 
*Shortest Process Time 

Scenario 3 Priority Scheduling Algorithm Frist in First Out  
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simulation software. Resource capacities and all other 
attributes of the simulated manufacturing model were kept 
equal over all three experimental scenarios initially. The 
earliness and tardiness of each PO under different 
experimental scenarios is depicted in Fig. 3.  

Earliness/Tardiness = Available Days for Completion - 
Simulation Completion Days (Positive values represent 
earliness while negative values represent tardiness.) 

Fig. 3 depicts that scenario 2 and 3 has performed alike 
while scenario 1 has performed with less deviation from due 
dates. Both earliness and tardiness have negative impacts on 
the manufacturing process. Earliness means increased WIP 
while tardiness means inability to achieve due dates. Out of 
earliness and tardiness, it is best to eliminate tardiness first and 
then trying to achieve as less as possible of WIP by reducing 
the earliness. Given the above, it is best if POs can be 
completed on time. Under this criterion, when compared, 
experimental scenario 1 has performed better than other two 
scenarios in terms of due date delivery as well as in WIP 
reduction.  

 In relation with utilization performance measure, three 
instances of scenario 1 with different resource capacities were 

tested. Table 4 depicts instance wise capacity combinations 
against utilization percentages. 

Analyzed with earliness and tardiness of PO completion with 
Fig. 4 along with capacity combinations and utilization 
percentages of Table 4, it is apparent that Instance 3 has 
outperformed instance 1 and 2 with higher resource utilization 
percentage not compromising on catering on due dates. 

VI. CONCLUSION AND FUTURE WORK 

 Based on the above analysis, it is concluded that 
experimental scenario 1 outperforms other two experimental 
scenarios in terms of due date delivery and WIP reduction. 
Further, the simulation model provides the ability to test the 
manufacturing system with varied capacity combinations. It 
was deemed that instance 3 provides comparatively the best 
utilization along with due date delivery. 

 This study takes an effective approach of optimizing pre-
sewing resources in scheduling through manufacturing 
flexibility. The simulation model facilitates the ability to 
process the PO list through existing resources prior to actual 
production starts, under different dispatching rules. The 
results of the simulation model provide management with 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 – Simulation Model Structure with Input Output Data 
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insights as to the ability or inability to cater for the due dates, 
resource over or under utilization and WIP. This ultimately 
facilitates insights in making pro-active decisions. This study 
has tested the simulation model on three dispatching rules and 
one scheduling algorithm. The model can further be tested 
against other dispatching rules and scheduling algorithms as 
future work. 
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Table 4 – Instances Comparison 

Resource  
Instance 1 - 

Capacities 

Utilization 

Percentage 

Instance 2 - 

Capacities 

Utilization 

Percentage 

Instance 3 - 

Capacities 

Utilization 

Percentage 

Fab Picker 4 0.14% 1 0.55% 1 3.76% 

SPRD MC 3 0.32% 1 0.96% 1 1.60% 

Fab Cutter 2 1.13% 1 2.26% 1 3.76% 

Trims Picker 2 0.81% 1 1.63% 1 2.71% 

KEKI MC 1 99.60% 1 99.66% 2 82.91% 

HAMS MC 5 19.92% 1 99.66% 2 82.91% 

Molding MC 4 21.08% 1 84.39% 3 46.80% 

 

 

Figure 4 – Earliness & Tardiness of POi 
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