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Mapping the Climate Suitability Using MaxEnt Modeling Approach for Ceylon 
Spinach (Basella alba L.) Cultivation in India
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ABSTRACT

Ceylon spinach (Basella alba L.) is a traditional leafy vegetable of multiple virtues largely 
underutilized and underexploited in India. Currently, it is of increasing value and utilization 
necessitating extending its cultivation for increased production by identifying potential areas 
through crop modeling. Mapping the potential pockets is an iterative process and this study is 
the first attempt to model state-wise climate suitability for Ceylon spinach cultivation in India. 
Geographical information on the current cultivation sites of Ceylon spinach together with 
bioclimatic variables, the maximum entropy (MaxEnt) model were used to analyze and predict its 
distribution and to develop preliminary habitat suitability map for Ceylon spinach in India. The 
results show that the MaxEnt model can be used to study the climatic suitability for Ceylon spinach 
cultivation. The most suitable  area identified in this study is slightly southward which  includes  
parts of Tamilnadu, Pondicherry, Maharashtra, Orissa, West Bengal, Bihar, Madhya Pradesh, 
Uttar Pradesh, Rajasthan and Gujarat. The MaxEnt model performed better than random with 
an average training and test AUC values of 0.953 and 0.994, respectively. The constructed model 
had excellent goodness-of-fit and excellent predictive accuracy and therefore it is suitable and/or 
applicable for predicting the geographic distribution of Ceylon spinach cultivation in India. 

Keywords: AUC, Climate suitability, DIVA-GIS, Goodness-of-fit, MaxEnt model, Model accuracy, 
ROC curve

INTRODUCTION

Ceylon spinach (Basella alba  L., 2n=48.) 
belongs to the family Basellaceae. It is also 
known as Indian spinach, Malabar spinach, 
and vine spinach. It is native to tropical Asia 
(Grubben and Denton, 2004) and thrives well 
in tropical and subtropical climates (Grubben, 
1997). It is one of the important underutilized and 
underexploited tropical leaf vegetables widely 
adapted to a variety of soils and climates (Reddy 
et al., 2014). Tender shoots with succulent 
stem along with thick, semi-succulent and 
mucilaginous leaves are used as leafy vegetable 
(Reddy et al., 2014). It is rich in food value with 
the presence of minerals, vitamins, proteins, 
carbohydrates and dietary fibre (Adeboye, 
1996). It is extremely heat tolerant (Grubben 
and Denton, 2004), frost tender (Reddy et al., 
2014) and short-day plant (Reddy et al., 2014). 
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It is a fast growing herbaceous perennial with 
twining or creeping habit (Reddy et al., 2014). 
It has significant economic, nutritional and 
medicinal value and plays a vital role in food, 
nutritional and economic security (Maundu et 
al., 1999; Reddy et al., 2014). 

The landraces of Ceylon spinach are under 
cultivation in tribal, rural and peri-urban 
vegetable farming systems by the tribal folks, 
small and marginal farmers of south India 
(Reddy et al., 2014). As leafy vegetables 
including Ceylon spinach are increasingly 
utilized in Indian vegetarian diet, it is essential 
to increase its production to meet the growing 
demand. Its production can be enhanced either 
by improving the productivity of the cultivars 
or by bringing new potential areas under its 
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cultivation. For any crop, its cultivation depends 
on interactions between thermal and water 
resources with the climate plyaing an important 
factor. Climate suitability maps are useful 
to determine potential areas which will have 
the greatest success for growing a new crop. 
The basis for the present study is the general 
notion that knowledge about environmental 
conditions at locations where particular plant 
species are successfully grown should provide a 
basis for summarizing crop growth parameters 
throughout the region. It is pertinent to have 
a model that provides a plausible prediction 
of the area that is suitable for Ceylon spinach 
cultivation. 

Currently, ecological niche models (ENMs) 
and species distribution models (SDMs) are 
increasingly being used to map potential 
distributions of many species. ENMs and 
SDMs integrate species occurrence data with 
climatic and other environmental variables and 
generate realized distribution maps of species 
(Bentlage et al., 2013) that are used to design 
scientific surveys, plan and manage sustainable 
farming systems. Generally SDMs are used 
for modeling animal and plant distributions 
in natural environments, but have rarely been 
used to develop landscape models for cultivated 
crops (Evans et al., 2010). Even though, many 
models like BIOCLIM, BLOMAPPER, DIVA, 
DOMAIN, CLIMEX, GAM, GLM, GARP and 
Maximum entropy (MaxEnt) have been used 
in species distribution modeling (Kriticos and 
Randall, 2001; Phillips et al., 2004; Guisan and 
Thuiller, 2005; Elith et al., 2006; Sun and Liu, 
2010), MaxEnt unravels  the best predictive 
capacity and was the most precise (Moffett et al., 
2007; Wang et al., 2007; Giovanelli et al., 2008; 
Saatchi et al., 2008; Wu and Li, 2009; Kumar et 
al., 2014) giving the most accurate distribution 
function based on best entropy (Kumar et al., 
2014). Several studies indicated that MaxEnt 
modeling performed well or better than the 
other models (Elith et al., 2006; Hernandez 
et al., 2006; Phillips et al., 2006). MaxEnt is 
‘the least biased estimate possible on the given 

information; i.e., it is maximally non-committal 
with regard to missing information’ (Jaynes, 
1957) and estimates the probability of presence 
of a species based on occurrence  records and 
randomly generated background points by 
finding the maximum entropy distribution 
(Phillips et al., 2006). The evaluation of model 
accuracy is an essential step as it indicates the 
level of accuracy of the estimations. The concept 
of model validation (Bair, 1994; Oreskes, 1998) 
is generally accepted and interpreted in terms 
of suitability for a particular purpose (Rykiel Jr, 
1996; Sargent, 2001). Several methodologies 
have been used for model accuracy assessment 
in species distribution modeling. The receiver 
operating characteristic (ROC) and defined 
thresholds are important methodologies used 
for the evaluation of MaxEnt model quality. 

In view of the above, an attempt has been made 
using MaxEnt with presence-only modeling 
algorithm with an objective to provide a climate 
suitability map for Ceylon spinach cultivation, 
based on regional crop presence data at the 
county level for India.

MATERIALS AND METHODS

Crop species occurrence data

Majority of the species distribution models 
including MaxEnt use precise geographic 
coordinates (latitude/ longitude) of species 
occurrences. Precise geographical coordinates 
recorded using a Global Positioning System 
(Garmin GPS-12) during an eco-geographic 
survey conducted by the National Bureau of 
Plant Genetic Resources, Regional Station, 
Hyderabad in collaboration with Vegetable 
Research Station, Dr. Y. S. R. Horticultural 
University, Rajendranagar during 2010 was 
used. Following random sampling strategy, crop 
presence data of Ceylon spinach was collected 
from five points covering two districts of 
Andhra Pradesh and one of Odisha, India (Table 
01). Therefore, a total of 5 reference points (n=5 
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records) were used to generate a preliminary 
climate suitability map of Ceylon spinach, thus 
making use of the best available data. Of the 
total sample records (n=5), 60% was selected 
for training data; the other portion (40%) was 
used for test data for both MaxEnt analysis and 
evaluation of MaxEnt model. 

Climate data

We obtained climate data for 19 bioclimatic 
layers from the WorldClim dataset (Hijmans 
et al., 2005; http://www.worldclim.org/) at 
1 km spatial resolution to represent current 
climatic conditions. The WorldClim dataset 
was generated using an interpolation technique 
using altitude and monthly temperature and 
precipitation records from 1950 to 2000, 
which represents long term (1950-2000) 
monthly means of maximum, minimum and 
mean temperatures and total rainfall. The 
19 bioclimatic variables that define general 
trends, seasonality and extremes are considered 
biologically more meaningful than simple 
monthly or annual averages of temperature 
and precipitation in defining a species’ eco-
physiological tolerances (Nix, 1986; Kumar et 
al., 2009).

Modeling procedure

MaxEnt algorithm version 3.3.3k (Phillips et 
al., 2006) was used for mapping the potential 

geographic distribution of Ceylon spinach in 
the world in general and in India in particular 
using 5 geo-reference points (Table 01) along 
with WorldClim dataset.  Default settings were 
used in MaxEnt so that the complexity of the 
model varied depending upon the number of 
data points used for model fitting. The ASCI 
file generated by the MaxEnt run for Ceylon 
spinach occurrence points was imported to 
grid file using DIVA-GIS software version 7.5 
(Hijmans et al., 2012). The grid layer generated 
for each run was overlaid on India shape file 
using DIVA-GIS and analysed (Sundar and 
Mitsuko, 2005). The output from MaxEnt is an 
estimate of habitat suitability for a species that 
generally varies from 0 (lowest) to 1 (highest). 
Classification of climatic zones in terms of 
their suitability for Ceylon spinach cultivation 
was arrived at by determining the existence 
probability using this model.

Statistical analysis of MaxEnt model

The relevance, goodness-of-fit, predictive 
accuracy of the MaxEnt model was tested 
in two ways: 1) through receiver operating 
characteristic (ROC) plots, and 2) through 
defined thresholds. 

Table 01: Occurrence points of Ceylon spinach used for MaxEnt analysis

S. No. Crop species

Geographic coordinates

Latitude

(°N)

Longitude

(°E)

1 Basella alba L. 18.76913 84.40862

2 Basella alba L. 18.35955 83.87347

3 Basella alba L. 18.31328 83.57062

4 Basella alba L. 18.58172 82.91382

5 Basella alba L. 18.62643 82.58880
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RESULTS AND DISCUSSION

The distribution of Ceylon spinach cultivation 
depends on climate, socio-economic conditions, 
local production technologies, soil type, 
geographic characteristics, crop varieties, 
human activity, and so on. In this study, 
the environmental conditions at the current 
locations of Ceylon spinach crop in south India 
were utilized to to predict the probability of 
suitable conditions existing for the same crop 
at other locations of the globe and/or country 
using MaxEnt model. 

Analysis of global climate suitability map 
of Ceylon spinach generated using MaxEnt 
model

The global climate suitability for Ceylon spinach 
cultivation using MaxEnt model is depicted in 
Figure 01. Warmer colors show areas where 
better predicted conditions exist. White dots 
show the presence locations used for training, 
while violet dots show test locations. The red 
color indicates areas with a high probability 
of occurrence, the blue and green represent 
moderate probability, the yellow color represents 
low probability of occurrence and the white 
indicates areas not suitable for Ceylon spinach. 
In fact, this worldwide climate suitability map 
can be used in the countries that lack precise 
coordinates of Ceylon spinach occurrences and 
generate a preliminary climate suitability map 
of Ceylon spinach because it may be too late 
to wait for the precise coordinates of Ceylon 
spinach occurrences to generate a perfect 
climate suitability map. 

Analysis of state-wise Indian national level 
climate suitability map of Ceylon spinach 
generated using MaxEnt model and DIVA-
GIS

State-wise Indian national level climate 
suitability map for Ceylon spinach was 
generated using MaxEnt software and DIVA-
GIS (Figure 02).  Climatic zones were classified 
in terms of their suitability for cultivation, 

based on the existence probability, determined 
through MaxEnt. The geographical ranges of 
the excellent area (0.7087-1.0000), optimum 
area (0.5315-0.7087), suitable area (0.3543-
0.5315), less suitable area (0.1772-0.3543) 
and unsuitable area (0.0000-0.1772) are shown 
in the climate suitability map with different 
colours (Figure 02). The image uses colours 
to indicate predicted probability, with the red 
indicating probability (0.71 to 1.0) of high 
suitability, green indicating conditions of 
suitability and lighter shades of green indicating 
low suitability conditions. The suitable pockets 
in this study lie slightly in the central and 
southward which includes parts of Tamil 
Nadu, Pondicherry, Maharashtra, Orissa, West 
Bengal, Bihar, Madhya Pradesh, Uttar Pradesh, 
Rajasthan and Gujarat. These states had the 
potential regions for introducing and cultivating 
the Ceylon spinach landraces and for planning 
in-situ on-farm conservation sites in the light of 
climate change scenario. In addition, most of 
the western region has less suitable area; and 
the northern parts of India had ‘unsuitable’ to a 
‘less suitable’ or ‘suitable’ area. 

The preliminary state-wise Indian national 
level climate suitability map thus developed in 
this study (Figure 02) can be refined to district 
scale by integrating detailed species occurrence 
data and higher resolution predictor variables. 
This climate suitability map will be useful to 
agriculture managers and policymakers for 
designing local, regional and national-level 
planning for Ceylon spinach-based farming 
systems in India. 

Evaluation of quality of MaxEnt model

Model utility is dependent on an evaluation of 
performance. This is a critical element of model-
building. As with any modeling approach, the 
fit or accuracy of the model should be tested to 
determine the relevance of the model. The utility 
of MaxEnt in real world applications requires 
the knowledge of the model’s accuracy. 
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Figure 01: Worldwide cultivation potential of Ceylon spinach based on MaxEnt model

Figure 02: Climate suitability map for Ceylon spinach cultivation in India derived using 
MaxEnt software and DIVA-GIS
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Receiver operating characteristic curve

The first approach used for MaxEnt model 
evaluation in this study was the ROC. A ROC 
plot is a plot of sensitivity and 1-specificity, 
with sensitivity representing how well the data 
correctly predicts presence, whereas specificity 
provides a measure of correctly predicted 
absences (Fielding and Bell, 1997). The 
ROC curve is generally used to evaluate the 
simulation accuracy of the model (Hanley and 
McNeil, 1982). The area below the ROC curve, 
i.e. the value of the area under the curve (AUC) 
indicates the predictive accuracy of the model. 
The AUC is a ranked approach for assessing 
model fit that determines the probability that 
a presence location will be ranked higher than 
a random background location (Phillips et al., 
2006). AUC’s are developed from ROC plots 
for assessing differences in species suitability 
for developed models compared to a random 
distribution. A binomial test of omission (known 
areas of presence/ predicted absence) can then 
be used to test whether or not this difference is 
significant (Philips et al., 2006). 

The ‘40’ entered for ‘random test percentage’; 
command the program to randomly set aside 
40% of the sample (presence) records for 
testing. This allows the program to do some 
simple statistical analysis. Much of the analysis 
uses a threshold to make a binary prediction 
with suitable conditions predicted above the 
threshold and unsuitable below. The picture 
(Figure 03) shows the omission rate and predicted 
area as a function of the cumulative threshold. 
The omission rate was calculated both on the 
training records and on the test records (60% 
and 40% of the presence records, respectively). 
The omission rate should be close to the 
predicted omission, because of the definition of 
the cumulative threshold. Figure 3 shows how 
testing and training omission and predicted area 
vary with the choice of cumulative threshold. 
The omission on test samples (sky blue line) 
is a very good match to the predicted omission 
rate (black line), the omission rate for test data 

drawn from the MaxEnt distribution itself. The 
predicted omission rate is a straight line (black 
line), by definition of the cumulative output 
format. In some situations, the test omission 
line (sky blue line) lies well below the predicted 
omission line (black line), while in some other 
situations the test omission line (sky blue line) 
lies well above the predicted omission line 
(black line).  A common reason is that the 
test and training data are not independent, for 
example if they derive from the same spatially 
auto-correlated presence data. This indicates 
that MaxEnt model was significantly better 
than random in binomial test of omission and 
predicted area curve. Since only occurrence 
data is available and no absence data, ‘fractional 
predicted area’ (the fraction of the total study 
area predicted present) is used instead of more 
standard commission rate (fraction of absences 
predicted present).

The next plot is the ROC curve for the same data 
(Figure 04) and the specificity is defined using 
predicted area, rather than true commission. 
This implies that the maximum achievable 
AUC is less than 1. If test data is drawn from the 
Maxent distribution itself, then the maximum 
possible test AUC would be 0.898 rather than 
1 and  in practice the test AUC may exceed this 
bound. The significance of the (ROC) curve is 
also quantified by the AUC which has values 
that typically range from 0.5-1.0, indicating 
the following degrees of predictive accuracy 
(Swets, 1988): 0.50-0.60 (fail), 0.60-0.70 
(poor), 0.70-0.80 (fair), 0.80-0.90 (good), and 
0.90-1.0 (excellent). Values close to 0.5 indicate 
a fit no better than that expected by random, 
while a value of 1.0 indicates a perfect fit. It 
is possible to have values less than 0.5 which 
indicates that a model fits worse than random 
(Engler et al., 2004). In general, the higher the 
AUC value, the more accurate the prediction 
of the constructed model (Elith, 2002) and 
when the AUC values are more than 0.75, the 
constructed model is applicable. In the present 
study, the AUC of the constructed model based 
on the potential climatic factors affecting the 
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distribution of the Ceylon spinach cultivation 
zone was 0.953 and 0.994, for training and test 
data, respectively. This AUC value indicated 
that the constructed model is applicable and had 
‘excellent’ predictive accuracy and therefore 
it was suitable for predicting the geographic 

distribution of Ceylon spinach cultivation in 
India. The course-scale MaxEnt modeling 
predicted the suitable areas in the Model (Figure 
04) with excellent goodness-of-fit (AUC=0.953 
for training data and 0.994 for test data).

Figure 03: Graph generated by MaxEnt software showing omission and predicted area for 
Ceylon spinach

Figure 04: ROC curve of sensitivity versus specificity for Ceylon spinach
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Defined thresholds

The second approach used for MaxEnt model 
evaluation in this study was the defined 
thresholds. This approach involves selecting 
thresholds to establish sites that are considered 
suitable or unsuitable for the species of interest. 
Once a threshold has been identified, locations 
can be classified as suitable or unsuitable for 
the species of interest. These thresholds are 
established by maximizing sensitivity while 
minimizing specificity (Fielding and Bell, 1997; 
Phillips et al., 2006). Threshold values differ for 
each model and are selected to provide a desired 
balance between omission and commission 
(Fielding and Bell, 1997; Hernandez et al., 
2006). Where this threshold is applied is 
determined from ROC plots and is selected at 
the discretion of the modeller. For example, 
when dealing with endangered species, the 

modeller may want to maintain zero omission 
error, while identifying the minimum predicted 
area. However, if the modeller is interested 
in identifying any possible area that a species 
might use, then they would want to minimize 
commission error (Pearson et al., 2007). 

In this study, some common thresholds and 
corresponding omission rates for the evaluation 
of MaxEnt model accuracy are as follows 
(Table 02). Since test data are available and the 
number of test samples is less than 25, binomial 
probabilities are calculated using a normal 
approximation to the binomial. These are 
1-sided p-values for the null hypothesis that test 
points are predicted no better than by a random 
prediction with the same fractional predicted 
area. The ‘Balance’ threshold minimizes 6.00* 
training omission rate + 0.04* cumulative 
threshold + 1.60* fractional predicted area.

Table 02: Common thresholds and corresponding omission rates for the threshold- depen-
dent binomial tests of omission

Cumulative 
threshold

Logistic 
threshold Description Fractional 

predicted area
Training 

omission rate
Test 

omission rate P-value

1.000 0.023 Fixed cumulative value 1 0.511 0.000 0.000 2.61E-1
5.000 0.111 Fixed cumulative value 5 0.318 0.000 0.000 1.012E-1
10.000 0.205 Fixed cumulative value 10 0.243 0.000 0.000 5.901E-2
46.566 0.521 Minimum training presence 0.073 0.000 0.000 5.37E-3

46.566 0.521 10 percentile training 
presence 0.073 0.000 0.000 5.37E-3

46.566 0.521 Equal training sensitivity 
and specificity 0.073 0.000 0.000 5.37E-3

46.566 0.521 Maximum training 
sensitivity plus specificity 0.073 0.000 0.000 5.37E-3

89.767 0.766 Equal test sensitivity and 
specificity 0.007 0.667 0.000 5.181E-5

89.767 0.766 Maximum test sensitivity 
plus specificity 0.007 0.667 0.000 5.181E-5

4.488 0.098
Balance training omission, 
predicted area and 
threshold value

0.330 0.000 0.000 1.09E-1

7.634 0.159
Equate entropy of 
thresholded and original 
distributions

0.272 0.000 0.000 7.421E-2
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CONCLUSIONS

A climate suitability modeling was attempted for 
an under-utililzed and underexploited tropical 
leafy vegetable species, Ceylon spinach, based 
on SDM: MaxEnt. The present study would be 
the first of its kind in India using MaxEnt for 
assessing climate suitability for Ceylon spinach. 
Results provide insight into the different 
areas of its probable cultivation in India. The 
study presents a novel approach to assess the 
potential areas for extending the cultivation of 
Ceylon spinach using regional-level occurrence 
data using MaxEnt model. AUC measures 
derived from training and test data indicate 
that MaxEnt produced significantly accurate 
results. The sensitivity versus 1-specificity 
graph indicated that the MaxEnt model had 
‘good’ predictive accuracy (AUC=0.953 for 
training data and 0.994 for test data) in terms of 

the relationship between extending the Ceylon 
spinach cultivation and climate. The results 
show that the MaxEnt model can be used to 
study the climatic suitability for Ceylon spinach 
cultivation. MaxEnt modeling provides a tool 
for researchers and managers to understand 
the potential extent of Ceylon spinach species 
spread in India.  
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