THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA MINISTRY OF POWER AND ENERGY

CEYLON ELECTRICITY BOARD

KUKULE GANGA HYDROPOWER PROJECT FEASIBILITY STUDY

SR5A Geology
Construction Materials

August 1992

Joint Venture Kukule Ganga

Nippon Koei Co., Ltd, Electrowatt Engineering Services Ltd. Lahmeyer International Gmbh Counterpart Engineers

Central Engineering Consultancy Bureau TEAMS & RDC

THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA MINISTRY OF POWER AND ENERGY

CEYLON ELECTRICITY BOARD

KUKULE GANGA HYDROPOWER PROJECT

FEASIBILITY STUDY

Volume 5

SR5A Geology

SR5B Construction Materials

August 1992

Joint Venture Kukule Ganga

Nippon Koei Co., Ltd. Electrowatt Engineering Services Ltd. Lahmeyer International Gmbh Counterpart Engineers

Central Engineering Consultancy Bureau TEAMS & RDC

FEASIBILITY STUDY OF KUKULE GANGA HYDROPOWER PROJECT

FEASIBILITY STUDY REPORT

List of Volumes

Executive Summary			
Volume 1	Main Report		
Volume 2	Drawings		
Volume 3	Environmental Assessment Report		
	SR3A SR3B		
Volume 4	SR4 SR4B SR4C	, Topography Hydrometeorology Hydrometeorological Database Report	
Volume 5	SR5A SR5B	Geology Construction Materials	
Volume 6	SR6A	Plan Formulation	
Volume 7	SR7A SR7B SR7C	Design of Civil Works Access Roads Hydromechanical Works	
Volume 8	SR8A SR8B SR8C	Mechanical Works Electrical Works Transmission Line Works	
Volume 9	SR9A SR9B	Construction Planning and Cost Estimates Outputs of EVALS, WASP III and SEXSI	

Note: SR3A shows Supporting Report A contained in Volume 3.

THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA MINISTRY OF POWER AND ENERGY

CEYLON ELECTRICITY BOARD

KUKULE GANGA HYDROPOWER PROJECT

FEASIBILITY STUDY

SR5A Geology

August 1992

Joint Venture Kukule Ganga

Nippon Koei Co., Ltd. Electrowatt Engineering Services Ltd. Lahmeyer International Gmbh Counterpart Engineers

Central Engineering Consultancy Bureau TEAMS & RDC

FEASIBILITY STUDY OF KUKULE GANGA HYDROPOWER PROJECT

SR5A GEOLOGY

TABLE OF CONTENTS

			Page
1	Intr	oduction	SR5A-1
	1.1	General	SR5A-1
	1.2	Geological-Geotechnical Investigations	SR5A-1
		1.2.1 Previous Studies and Data	SR5A-1 SR5A-2 SR5A-4
		1.2.4 Scope of Geotechnical Investigations1.2.5 Remaining Geotechnical Investigations	SR5A-5
		of Phase II-b Programme	SR5A-6 SR5A-7
2	Regi	ional Geology	SR5A-9
	2.1	Geomorphology	SR5A-9
	2.2	Stratigraphy	SR5A-9
	2.3	Lithology	SR5A-10
	:	 2.3.1 Highland Group 2.3.2 Southwestern Group 2.3.3 Vijayan Complex 	SR5A-10 SR5A-11 SR5A-11
	2.4	Structural Geology	SR5A-11
	2.5	Economic Minerals	SR5A-12
	2.6	Seismicity and Seismic Risk	SR5A-13
3 -	Rese	ervoir Geology	SR5A-15
	3.1	Geomorphology	SR5A-15
	3.2	Rock Types	SR5A-15
	3.3	Structural Geology	SR5A-17
	3.4	Stability of Reservoir Rims	SR5A-18
	3.5	Watertightness of Reservoir	SR5A-20
	3.6	Geological Aspects of Environmental Impacts	SR5A-22

4		Geological-Geotechnical Aspects of the Area of Selected K-K 205		
	Oi S	elected K-K	205	SK3A-20
	4.1	General		SR5A-26
	4.2	Dam and A	ppurtenant Structures	SR5A-26
		4.2.2 G 4.2.3 G	opography and Geomorphology deological Assessment deotechnical Investigations deotechnical Assessment	SR5A-26 SR5A-27 SR5A-31 SR5A-32
	4.3	Waterways		SR5A-37
		4.3.2 G 4.3.3 G	opography and Geomorphology eological Assessment eotechnical Investigations	SR5A-37 SR5A-37 SR5A-42 SR5A-44
	4.4	Powerhouse,	Surge Shaft and High Pressure System	SR5A-47
		4.4.2 G 4.4.3 G	opography and Geomorphology eological Assessment eotechnical Investigations eotechnical Assessment	SR5A-47 SR5A-48 SR5A-50 SR5A-53
5	Con	iparative Ass	sessment of	
	Elin	ninated Can	didate Sites	SR5A-57
	5.1	General	***************************************	SR5A-57
	5.2	Geological-G	eotechnical Aspects of the Area of	
			- K205	SR5A-57
		5.2.2 To 5.2.3 Go 5.2.4 Go	eneral opography and Geomorphology eological Assessment eotechnical Investigations eotechnical Assessment	SR5A-57 SR5A-57 SR5A-58 SR5A-61 SR5A-63
	5.3		eotechnical Aspects of the Area	011071 05
				SR5A-67
		5.3.2 To 5.3.3 Go 5.3.4 Go	eneral Dipography and Geomorphology eological Assessment eotechnical Investigations eotechnical Assessment	SR5A-67 SR5A-67 SR5A-68 SR5A-72 SR5A-73

5.4 Geological-Geotechnical Aspects of the Area of K-P Alternatives (205, 230, 242) and of Alternatives Abandoned after Phase I SR5A-77 5.4.1 General SR5A-77 5.4.2 Geological Assessment SR5A-77 5.4.3 Geotechnical Assessment SR5A-82 5.4.4 Comparative Assessment of Alternatives Abandoned after Phase I SR5A-87

LIST OF TABLES

Tab. 1	Summary of Geotechnical Investigation Works	5A-T-1
Tab. 2	Mineral Composition of the Rock Types of Project Area (2 sheets)	5A-T-2
Tab. 3	Classification of Weathering Grades of Rock Mass	5A-T-4
Tab. 4	Geomechanics Classification of Jointed Rock Mass (CSIR)	5A-T-5
Tab. 5	Summary of Results of Drilling as of 17.08.92	5A-T-6
Tab. 6	Rock Mass Classification Adopted in Project	5A-T-7
Tab. 7.1	Seismic Events - Sri Lanka	5A-T-8
Tab. 7.2	Historic Seismic Events - Sri Lanka (Acc. Fernando, 1986)	5A-T-9
Tab. 8	Point Load Strength of Kukule Rocks in Relation to Rock Mechanical Parameters of other Sri Lankan Sites 10	5A-T-
Tab. 9	Geomechanical Characteristics of Soils and Rocks	5A-T-11
Tab. 10	(1/3) Rock Mass Descriptions KK-205 Dam Site (New) 12	5A-T-
Tab. 10	(2/3) Rock Mass Descriptions KK-205 Surge Shaft	5A-T-13
Tab. 10	(3/3) Rock Mass Descriptions KK-205 Surge Shaft	5A-T-14
Tab. 11 Tab. 11 Tab. 11 Tab. 11	(1/4) SPT Values versus Depth, K-K 205 (New) (2/4) SPT Values versus Depth, K-K 205 (Old) (3/4) SPT Values versus Depth, K-K 230; (4/4) SPT Values versus Depth, K-P Plan	5A-T-15 5A-T-16 5A-T-17 5A-T-18
Tab. 12	Piezometer Installations	5A-T-19
Tab. 13	Borehole Logs for Engineering Purposes, BH KK-1 through KK-43, BH KP 1, KP 3, KP 7, KP 8	5A-T-21
Tab. 14	Point Load Test Records (8 sheets)	5A-T-89
Tab. 15 Tab. 15 Tab. 15 Tab. 15	(1/4) Permeability Test Records, K-K 205 (New) (2/4) Permeability Test Records, K-K 205 (Old) (3/4) Permeability Test Records, K-K 230 (4/4) Permeability Test Records, K-P Plan	5A-T-97 5A-T-98 5A-T-99 5A-T-100
Tab. 16	Results of Analyses of Water Obtained from Boreholes at KK-230 Dam Axis	5A-T-101

12-14-36

LIST OF FIGURES

Fig. 1	Locations of KK and KP Plans	5A-F-1
Fig. 2	Locations of Geological Investigations (9 sheets)	5A-F-2
Fig. 3	Work Time Schedule & Progress	5A-F-11
Fig. 4	Regional Geology - Geological Map	5A-F-12
Fig. 5	Regional Geology - Structural Map	5A-F-13
Fig. 6	Locations of Seismic Events	5A-F-14
Fig. 7	Reservoir Geology - Geological Map	5A-F-15
Fig. 8	Geological Map of Dam Site Areas - K-K Plan (2 sheets)	5A-F-16
Fig. 9	Detailed Geological Map of River Section D/S of Dam Axis K-K 205 (New)	5A-F-18
Fig. 10	(1/2) Geotechnical Sections along K-K 205 (New) Dam Axis	5A-F-19
Fig. 10	(2/2) Geotechnical Section along KK-205 (New) Dam Axis and Intake	5A-F-20
Fig. 11	Geotechnical Section of Desander K-K 205 (New)	5A-F-21
Fig. 12	Geotechnical Section along Waterways K-K 205 (New)	5A-F-22
Fig. 13	Geotechnical Section of Powerhouse Area, Headrace, Intake, Tailrace Outfall K-K 205 (New)	5A-F-23
Fig. 14	Structural Diagrams, K-K 205 (New) Dam Site (2 sheets)	5A-F-24
Fig. 15	Geotechnical Section along Dam Axis, K-K 205 (Old).	5A-F-26
Fig. 16	Geotechnical Section along Desander of K-K 205 (Old)	5A-F-27
Fig. 17	Geotechnical Section along Waterways, K-K 205/230 (Old)	5A-F-28
Fig. 18	Structural Diagrams, K-K 205 (Old)	5A-F-29
Fig. 19	Geotechnical Section along Dam Axis, K-K 230	5A-F-30
Fig. 20	Structural Diagrams, K-K 230	5A-F-31
Fig. 21	Geological Map of Dam Site Area, K-P Plan	5A-F-32
Fig. 22	Geotechnical Section along Dam Axis, K-P Plan	5A-F-33
Fig. 23	Geotechnical Section along Waterways, K-P Plan	

Fig. 24	Structural Diagrams, K-P Plan	5A-F-35
Fig. 25	Geotechnical Section along Dam Axis, K-D Plan	5A-F-36
Fig. 26	Geotechnical Section along Waterways, K-D Plan	5A-F-37
Fig. 27	Geologic Log of Test Pit (24 sheets)	5A-F-38

LIST OF REFERENCES

- 1. Administrative Report by Coomaraswamy, A.K., Mineral Survey, Part IV, P. E9, Colombo 1906
- 2. Feasibility Study on Multipurpose Development of the Nilwala Ganga, Gin Ganga and Kalu Ganga Basins, 1968 by ECI (Three basins study)
- 3. A Study of the Geomorphology and the Morphotectonics of Ceylon by Vitanage, P.W., GSM (2)/89, UNESCO/ESCAFE, 2nd Int. Sem. Geochem. Prospect, Method and Techniques, ESCAFE, Bangkok 1970
- 4. The Precambrian Metamorphic Rocks of Ceylon by Katz, M.B., Geol. Rdsch., 60:1523-1549, 1971
- 5. Facies Series of the High Grade Metamorphic Rocks of the Ceylon Precambrium by Katz, M.B., Proc., Section 2, 24th Int. Geol. Congress, 43-51, 1972
- 6. Post Precambrian Uplift and Regional Tectonic Movements in Ceylon by Vitanage, P.W., 24th Int. Geol. Congress, Montreal 1972
- 7. The Precambrian Metamorphic Rocks of Ceylon, a Critique of a Radical Interpretation by Berger, A.R., Geol.Rdsch., 62: 342-347, 1973
- 8. Engineering Classification of Rock Masses for the Design of Tunnel Support by Barton, N., Lien, R. and Lunde, J., Rock Mech., Vol. 6, No. 4, 1974
- 9. Precambrian Structure and Chronology in the Highland Series of Sri Lanka by Berger, A.R. and Jayasinghe, N.R., Precambrian Res. 3: 559-576, 1976
- Rock Mass Classification in Rock Engineering by Bieniawski, Z.T.,
 Proc. Symp. on Exploration for Rock Engineering, Vol. I, 97-106,
 Johannesburg, 1976

- 11. Rock Slope Engineering by Hoek, E. and Bray, J.W., 1977
 - 12. Der Felsbau, Bd. 3 by Mueller L., Stuttgart, 1978

and officer along

- 13. Geology of Sri Lanka by Cooray, P.G. Proc. 3rd Regional Conf. on Geology and Mineral Resources of SE Asia, Bangkok, 1978
- 14. Is the Highland Eastern Vijayan Boundary in Sri Lanka a Possible Mineralized Belt? by Munasinghe, T. and Dissanayake, C.B., Econ. Geol., 74: 1495-96, 1979
- 15. Underground Excavations in Rock by Hoek, E. and Brown, E.T., The Institution of Mining and Metallurgy, London, 1980
- 16. Rock Characterization, Testing and Monitoring by I.S.R.M., 1981
- BS 5930 (1981), Site Investigations by British Standards Institution,
 Int. Ins. Aerosp. Survey and Earth Sc., London, 1981
- Randenigala Project, Tender Documents, Lot 1+2, Vol. 1.6, Part C,
 Report on Engineering Geology, Ministry of Mahaweli Development,
 Colombo, March 1981
- 19. Rock Mechanics Design in Mining and Tunneling by Bieniawski, Z.T., 1984
- The Geology, Structure and Tectonics of Sri Lanka and South India by Vitanage, P.W., Recent Advances in the Geology of Sri Lanka, CIFEG, Paris 1985
- Seismicity of Sri Lanka by Fernando M.J. and Kulasinghe A.N.S., Physics of the Earth and Planetary Interior, 44, 99-106, Elsevier, Amsterdam, 1986
- 22. Masterplan for the Electricity Supply of Sri Lanka, Vol. A1, Part 1, CEB-GTZ, July 1987

- 23. Guide to Rock and Soil Descriptions by Geotechnical Control Office, Hong Kong, 1988
- 24. Masterplan for the Electricity Supply of Sri Lanka, Support Vol. KUKU022, CEB-GTZ, Feb. 1988
- 25. Masterplan for the Electricity Supply of Sri Lanka, Support Vol. GING074, CEB-GTZ, Feb. 1988

Control of the Control

A CONTRACTOR OF STREET

- 26. Pre-Feasibilty Study for Kalu Ganga Multipurpose Project by TAMS, 1989
- 27. Grundbau-Taschenbuch, Teil 1, Verlag Ernst&Sohn, Berlin 1990
- 28. Inception Report for Feasibility Study of Kukule Ganga Hydropower Project, by JVK, Colombo, August 1991

Section of the Contract of

Control of the Control

- 29. Conceptual Design Report for Feasibility Study of Kukule Ganga Hydropower Project, by JVK, Colombo, December 1991
- 30. P.O.E. Report 1, Kukule Ganga Hydro Power Project, Colombo, March 1992
- 31. P.O.E. Report 2, Kukule Ganga Hydro Power Project, Colombo, August 1992

Text

CHAPTER 1. INTRODUCTION

1.1 General

The geological - geotechnical investigations for the feasibility study were conducted in two phases: II-a and II-b.

During phase II-a of the study a geological - geotechnical investigation programme was carried out from 17th August 1991 to 16th December 1991 with the ultimate aim of obtaining the required information for conceptual design work.

During this phase geotechnical work was done at locations pertinent to all alternative schemes then under consideration, namely Kukule-Peleng and Kukule-Kukule both for reservoir and run-of-river type development plans. Geological investigations covered also the reservoir areas associated with above referred schemes.

The investigation programme of phase II-b which was prepared in December 1991 was mainly to be based on general observations since results of investigations of phase II-a were not yet available. However, by March, to the arrival of the Panel of Experts, a certain amount of information became accessible. On the basis of that information, and with the acceptance of the run-of-river alternative, a new investigation programme was prepared for the D/S location [see figure No. 2(1/9), 2(3/9), 2(4/9) and 3]; total amount of drilling was 695 m.

1.2 Geological - Geotechnical Investigations

1.2.1 Previous Studies and Data

In 1961 the Kukule Ganga Project was studied as a constituent of the three basin study by ECI (Engineering Consultants Inc. U.S.A.).

Geotechnical investigations of foundations comprised core drilling, excavation of test pits & auger boring. Nine exploratory holes with a total of 426.3

drilling metres were sunk along two dam axes. Further, two pits and two auger borings were executed to augment the above mentioned drilling results.

For materials three borrow areas (A, B & C), located about one and two km upstream of the dam axis on the RB (area A) and LB (area B & C), respectively were investigated by 36 auger borings reaching various depths up to 20 ft. 35 disturbed samples were subjected to grain size analysis, consistency & specific gravity tests. Also, five undisturbed samples were tested for optimum moisture content, consolidation, shear strength etc. These were obtained from five pits dug in barrow areas A and B.

In 1989 in the process of the Masterplan Study for the Electricity Supply of Sri Lanka, a desk study was done on Kukule Ganga Project considering it as a single purpose project for hydroelectric power.

Almost simultaneously, in 1989, TAMS of U.S.A. conducted a pre-feasibility study of Kukule Ganga Project also with emphasis on hydropower generation, and it was concluded that the project was economically feasible with the following project components: rockfill dam with FSL at 242 m MSL, active storage 300 M m³, underground power house with 144 MW installed capacity, along with a 6 km transbasin tunnel outfalling to Peleng Ganga.

1.2.2 Geological and Geotechnical Investigations

Out of the three conceived alternative schemes only Kukule-Peleng and Kukule-Kukule (including run-of-river plan) were geotechnically investigated during phase II-a, whereas on Kukule-Delwitiya scheme only geological investigations such as geo-mapping, photo geology, geomorphological and structural analysis etc., were performed.

A geophysical survey was conducted on locations of dam sites and waterways of these two schemes, and a preliminary geological survey was carried out in the reservoir areas of both schemes.

(1) Kukule - Peleng Plan

During phase II-a this alternative was investigated by means of core drilling, (water pressure testing, core sampling etc.) and a micro-seismic survey,

conducted at the dam site, waterways, high pressure system and power house.

(2) Kukule - Kukule Plan

This scheme, including the "run of river" alternative, consisting of weir, waterways, underground powerhouse and surge shaft was investigated by means of core drilling and seismic survey conducted in the areas of structural foundations.

For both above programmes pitting was included but was not executed.

Investigations of phase II-b were mainly directed towards Kukule-Kukule R-O-R 205 alternative, and the initial programme which was prepared for this purpose is shown in Figure No. 2.2/9. Subsequently, this programme was altered with the decision to shift the R-O-R weir axis to the D/S, present location (see Figure No. 2.1/9). The final programme with progress up to 17th August 92 is shown on Figure No. 3 and Table No. 1.

This programme comprised geotechnical-geological and seismic investigations including pitting, test adit and rock mechanical testing.

CEB awarded geotechnical works of phase II-a in two contract packages to two government organizations, i.e. Geological Survey Department (G.S.D.) and Irrigation Department (I.D.). The original drilling programme consisted of 20 holes with a total of 1,100 m along with water pressure tests, SPT, constant head tests, etc. This programme was to be executed from mid August to end of November 1991.

However, due to delayed commencement and poor progress of work the above referred investigation programme was revised on 4th October 1991 (see Table 1), which introduced a reduction of the total quantity of drilling metres from 1,100 m to 700 m. The locations of drilling investigations and seismic profiles are shown on Figure 2. The progress of work as per 10th December 1991 is tabulated on Figure 3.

Final investigation programme for phase II-b, prepared in March 1992, was to be executed by both G.S.D. and I.D. However, when Phases II-a drilling

work was completed, I.D. was reluctant to continue with the works and as a consequence the total job was awarded to G.S.D.

1.2.3 Methodology of Geotechnical and Geological Investigations

(1) Geotechnical Investigations:

Considering the prevailing geological geomorphological and geo-structural conditions as well as the availability of data needed for the assessment of foundation conditions for major structures and underground excavation conditions the following investigation methods were adopted for phase II of this study:

- 1. Core drilling
- 2. Bore-hole testing
- 3. Bore-hole instrumentation
- 4. Point load strength testing
- 5. Geophysical investigations
- 6. Pitting
- 7. Test adit excavation
- 8. Laboratory testing of rock (to be excuted following adit excavation).

(2) Geological investigations

The methods adopted were:

- 1. Geological mapping (scales: 1:10,000, 1:2,000 and 1:100)
- 2. Geomorphological survey
- 3. Geo-structural analysis

1.2.4. Scope of Geotechnical Investigations

(1) Core Drilling

During phase II-a investigations were carried out for both alternatives: Kukule-Peleng plan and Kukule-Kukule (including run-of-river) plan (see Table 1).

During phase II-b mainly the R-O-R 205 (new) alternative was considered (see Tables No. 1 and 5).

(2) Bore Hole Testing

Water pressure tests (Lugeon-type) with a complete pressure cycle (5 steps) reaching a maximum of 10 bars (30 bars in surge shaft and powerhouse holes) were performed in all drill holes (below the overburden and decomposed rock) in rock where packers could be installed properly. In overburden and decomposed rock constant head tests and standard penetration tests (SPT) were conducted. The results of these tests are shown on drill logs and geotechnical sections.

(3) Borehole Instrumentation

A total number of 15 piezometers (old and new programmes) were installed in the vertical holes (see Tables No. 1, 5 and 12).

(4) Point Load Strength Testing

As drilling progressed six rock types were subjected to testing as soon as possible after core samples became available.

(5) Géophysical Survey

During phase II-a seismic survey covering 3.8 km of profile lengths was carried out (for locations see Figures 2.2/9, 2.3/9 and 2.8/9). This work commenced on 1st November and was completed by end of December 1991.

During phase II-b, seismic survey covered 2.1 km of profiles (see Figures 2.3/9 and 2.4/9. This work commenced on 15th March and results were available by end of June 1992.

(6) Test Pitting

Programme for pitting is shown below:

<u>Location</u>	No. of Pits
Weir Site	10
Switch yard	5
Outfall structure	5
Depression (left bank of the bend u/s of weir site)	5

As of 17th August 1992 all work on pitting is completed apart from one pit at the intake of the access tunnel.

(7) Laboratory Testing of Rock (Petrographic Analysis)

Petrographic analyses on the rock samples, partly obtained from drill cores, for the purpose of rock classification was carried out at the petrographic laboratory of Peradeniya University (see Table 2).

1.2.5 Remaining Geotechnical Investigations of Phase II-b Programme

(1) Exploratory Drilling

The remaining drilling works comprise about 100 m in drill hole KK 43 (powerhouse), 30 m in KK 41 (access tunnel) and 50 m in additional drill hole KK 44 (saddle near surge shaft). It is expected that all drilling will be completed by about end of September.

(2) Soil Testing

On soil samples obtained from test pits the following tests were proposed: gradation, moisture content, bulk/dry density and plastic limits. Results were not available at the time of report compilation (17th August 1992).

(3) Rock Mechanical Testing

(A) Laboratory Tests

Uni-axial Compression Test Required 10 nos. per rock type: total 30 nos.

Triaxial Compressive Test
 Required 6 nos. per rock type: total 18 nos.

3. Brazil Test

Required 6 nos. per rock type: total 18 nos.

It is being considered to reduce above outlined laboratory testing programme considerably if the good quality rock, that is currently expected in the powerhouse area, would be confirmed by the adit. In this case about 10 nos. of uni-axial compression tests would suffice in order to calibrate results of point load testing.

(B) In-situ tests

- 1. Dilatometer tests are to be conducted in the exploratory adit. Required are about 6 Nos. per rock type encountered (These tests could be omitted if adit excavation confirms good quality rock as currently anticipated).
- 2. Primary Stress Tests Flat jack tests and hydraulic fracturing tests are to be conducted for this purpose.
- 3. Exploratory Adit As a part of the exploratory programme it is anticipated to excavate a horse-shoe shape adit with height of 3.0 m and 2.5 m invert width. Three alternatives with various inclinations and lengths (lengths: 680 m, 420 m and 330 m) reaching the power house cavern were proposed.

1.2.6 Presentation of data

Results of geological and geotechnical investigations are presented in the form of geological sections & maps, structural diagrams, geotechnical sections, classification charts etc. These classification systems and certain modes of geological data presentation are described below:

Classification of Rock Mass According to the Degree of Weathering

The presented classification is based on B.S. 5930 of 1981, which describes the weathering of the rock mass in relation to the distribution of rock material within the same mass and the effect of weathering on discontinuities. This classification is given in Table 3.

Geomechanics Classification of Jointed Rock Masses (CSIR)

The Geomechanics Classification System (10) derives a rock mass rating (RMR), obtained by summing 5 parameter values and adjusting this total by taking into account the joint orientations (rock material strength, RQD, joint spacing, joint roughness and separation, groundwater). The descriptions and corresponding ratings for these parameters are given in Tab. 4.

NGI System of Rock Mass Classification

The NGI system of classification (8) is based on three aspects: rock block size (RQD/Jn), joint shear strength (Jr/Ja) and confining stress (Jw/SRF).

The rock mass quality number Q is calculated from:

 $Q = RQD/Jn \times Jr/Ja \times Jw/SRF.$

The corresponding values to be substituted into the equation for Q are given in the respective geotechnical sections.

CHAPTER 2. REGIONAL GEOLOGY

2.1 Geomorphology

The geomorphology of Sri Lanka is characterized by the presence of three distinct topographic levels, so-called peneplains. The lowermost peneplain or coastal plain, is generally flat with elevations of less than 30 m. Towards the central mountainous complex elevations rise up to 90-120 m. In the south and east of the island the central hills rise with sharp escarpments to the next higher peneplain at elevations of about 750 m, while from the western to the northern and eastern arc the hills slope more gently. The uppermost erosional level is at about 1500 to 1800 m with individual peaks of up to 2500 m.

2.2 Stratigraphy

About nine-tenth of the area of Sri Lanka consist of high grade metamorphic rock belonging to the granulite and amphibolite facies. Sedimentary rock is found in the northern and northwestern part of the island where Jurassic sandstone beds as well as Miocene limestones and sandstones occur. Remarkably, there is a tiny outcrop of Miocene limestone at the southeastern tip of the island to be found.

The metamorphic rocks have been subdivided into two groups:

Highland Group Vijayan Complex

The Vijayan Complex is geographically separated into western and eastern sectors by the 'linear-arcuate fold belt' (Vitanage) of the Highland Group. Within the Highland Group a Southwestern Group has been differentiated.

The stratigraphic and tectonic relationship between the above mentioned lithostratigraphic units is subject to controversial discussion. Radiometric age determinations of recent years could not satisfactorily clarify the stratigraphic sequence so that still three hypotheses are maintained by their respective authors: The earliest view on the metamorphic rock was that the Vijayan Complex is a basement to the Highland Group of rocks (Coates, Wadia, Fernando). Vitanage believes that the Vijayan rocks are of the 'supra-crustal' type whereas others (Cooray, Berger, and Jayasinghe) believe in a younger Vijayan being formed by retrograde metamorphism of the pre-existing Highland Group rocks.

2.3 Lithology

2.3.1 Highland Group

The rocks of the Highland Group represent the metamorphosed equivalents of sedimentary rocks such as claystone, limestone and sandstone. Common rock types are (see Figure 4):

Garnet Gneiss

This rock type is characterized by the presence of alumina-rich minerals such as sillimanite and garnet. The garnets often are large and their presence gives the rock a typical 'plum pudding' appearance.

Quartz-Feldspar Gneiss

The typical rock is light coloured and is chiefly made up of quartz and feldspar. Gneissic texture is generally well developed.

Quartzite and Quartzitic Gneisses

Quartzites are chiefly made up of quartz, accessory minerals being sillimanite, garnet and magnetite. Typical quartzites are whitish in colour and glassy in appearance. Grain size is generally medium to coarse.

Marbles and Calc-Silicate Gneisses

Marbles and impure marbles are characteristic rock types of the Highland Group. Calcite and dolomite are the main constituents of this rock type

accessory minerals being olivine, phlogopite, diopside etc. Solution of the calcite component may lead to karstification, particularly near the surface.

Charnockite and Granulitic Gneiss

Charnockites are the most striking rock type of the Highland Group. By some authors they have been divided in a sub-group of the Highland Group. There are several varieties of charnockites. A common property of all types is a greenish-grey to bluish-grey colour due to the unusual dark colour of its quartz constituents. According to their geochemical composition basic, intermediate and acid charnockites can be distinguished. Texture is often granulitic. Therefore, they are grouped together with granulites and granulitic gneisses.

2.3.2 Southwestern Group

The Southwestern Group is lithologically a sub-division of the Highland Group. The metasedimentary sequence is characterized by slightly lower grade of metamorphism. Characteristic mineral assemblages include cordierite, wollastonite and scapolite occurring in rock types such as cordierite bearing garnet sillimanite gneisses, wollastonite bearing calc-granulites etc. Texture of Southwestern Group rocks is often granitic or migmatitic.

2.3.3 Vijayan Complex

Rocks of the Vijayan Complex make up most of the coastal plains. The western Vijayan Complex (see para on stratigraphy) consists of biotite gneisses, migmatite, pink granite gneisses and granitoids. The eastern Vijayan unit is mainly made up of biotite-hornblende gneisses with scattered bands of metasediments. Towards the east coast occurrence of small granite plutons and acidic charnockites can be observed.

2.4 Structural Geology

The tectonic pattern of the different litho-stratigraphic units exhibits a marked contrast. The tectonic style of the Highland Group is characterized by tight folding into anticlines and synclines ranging from first order folds with amplitudes of several km to small scale folding of cm to dm scale. A variety

of fold pictures may be found from isoclinal to recumbent folds. Shear zones are frequently found along axial planes of folds in the Highland Group.

Fracture zones which are often continuous over 10 to 15 km are generally perpendicular to the folding pattern. They often control the drainage system. Some of these features are reportedly faults.

There is a remarkable influence of the structural geology on the land forms and the drainage pattern, particularly in the area occupied by the Highland Group. In this group three dominant structural trends can be recognized:

NW-SE to NNW-SSE trends in the central part of the Highland Group and in the Southwestern Group,

N-S to NE-SW trends in the north and northeast,

A sharp E-W and NE-SW swing of fold axes in the southwest upland and highland areas (Rakwana, Nuwara Eliya etc).

The project area is situated within the tectonic unit that is characterized by NW-SE to NNW-SSE trending fold elements (see Figure 5). The aforementioned inventory of structural elements such as first order folds, small scale folding, fracture zones etc. are also present in the project area.

2.5 Economic Minerals

In the pre-feasibility study (26) it is pointed out that the river basins of the Kalu Ganga and its tributaries including the Kukule Ganga are famous for producing valuable gem varieties. Gems are usually found in stream beds, in the 'gravel layers of alluvial deposits, in river terraces and in buried river channels.

In the small pond that will be created by the proposed K-K 205 R-O-R scheme the potential for significant gem deposits is certainly limited. On the other hand, the large areas that would have been inundated by the previously considered high dam alternative are highly prospective gem areas with a great potential for presently unknown and unexploited gem deposits that are

potentially of high economic value. This is true even though exploitation of gem deposits is currently of little significance in the area.

2.6 Seismicity and Seismic Risk

Sri Lanka is located within the Indian ocean region of world earthquake zones. The region comprises a complex pattern of ocean ridges and tectonic features which permits a certain active volcanism of mostly basaltic type. The seismicity bound to these features is considered to be of shallow character.

Epicentres of the magnitude of about M=5.0 are rather scarce (see Tab. 7.1) and irregularly distributed some 70 to 400 km off Sri Lanka's shoreline (see Fig. 6); no events of similar magnitude have been recorded onshore during the observation period which covers about 50 years. Maximum ground accelerations in central Sri Lanka (project area) resulting from the severest event (1973 earthquake: 5.9 M) can be calculated to about 0.001 g.

First results of a microseismic network set up with the Kotmale hydropower project confirm that Sri Lanka is not entirely as aseismic as previously assumed, but is rather seismically active at a M=2.0 level (21). So far no earthquakes, even micro-earthquakes, have been recorded whose focii appeared to be located in the close vicinity of the reservoirs and whose magnitudes were higher than normal for the region.

The seismicity of Sri Lanka and respective project areas was evaluated for all major hydropower projects constructed during the past decade; the ground acceleration factor (horizontal acceleration) adopted in those projects ranges between 0.05 (Samanalawewa) and 0.1 g (all other projects).

For the feasibility study of the Kukule project the following factors seem essential:

- seismic level of Sri Lanka in general is low which is confirmed by seismic records covering a period of over 50 years as well as by historic reports of the past 100 years (maximum ground acceleration experienced in the island during past 50 years is about 0.001 g, refer to above said);

- seismic risk of the project area in particular is not apparently elevated since there are no lineaments of regional significance in the close vicinity (say 20 km);
- no high dam cum large reservoir is to be constructed so that no particular risk of reservoir induced (man-made) seismicity is to be expected;
- the proposed structures are of types and sizes which are inherently insensitive to earthquakes (31);
- all structures will be founded on rock or even located inside the rock mass so that no amplification effect could take place;

Summarizing the above said it is proposed that all structures should be designed to resist a ground acceleration of at least 0.05 g without any damage. In designing for these conditions probably no special provisions will be required.

CHAPTER 3. RESERVOIR GEOLOGY

3.1 Geomorphology

In the vicinity of the proposed K-K 205 weir site the Kukule Ganga forms a narrow, gorge-like valley with an approximately V-shaped cross section. About 3 km upstream of the weir site the valley widens and its dominant shape is that of a trough with broad and flat flood plains bordered by generally medium steep slopes. Mountain crest levels range from 400 to 800 feet above valley bottom in the vicinity of the dam site while they are exceeding 1,000 feet near the southern limits of the project area.

Orientations of the valleys of the Kukule Ganga and its tributaries reflect the structural conditions which are controlled by the orientation of folding (NW-SE to NNW-SSE) and more or less perpendicular fracture zones. General geological conditions as indicated by weathering depth, prevailing rock types, structural conditions etc. are manifested in moderate slope angles, straight river courses oriented in a strikingly rectangular pattern and almost complete absence of steep and high rock faces and cliffs as well as the relatively scarce occurrence of rock outcrops.

3.2 Rock Types

Geological mapping of dam site areas and related reservoir areas as well as results of core drilling revealed the presence of a variety of rock types including biotite gneiss, hornblende-biotite gneiss, charnockitic gneiss, amphibolite, quartz-feldspar gneiss and garnet gneiss which occasionally may contain small patches of graphite. In the western part of the project area rock types have generally a massive appearance because gneissic fabric is poorly developed and spacing of fractures is moderate to wide, this is in marked contrast to the eastern regions where rock tend to be more intensively fractured.

Owing to their mineral content (see Tab. 2) rock types develop different susceptibility to weathering. The quartz-rich rock types such as biotite gneiss and some varieties of charnockitic gneisses are not easily weathered. These

rocks often form the centres of prominent ridges and, on the other hand, have shallow weathering profiles developed on them. In contrast, weathering is deep on rocks that contain high proportions of biotite and/or feldspar; particularly easily weathered are graphite bearing rock types. Interbedding of rocks with different weathering characteristics results in a very irregular and occasionally deep weathering profile. At some sites, for instance at previous K-P axes and at Watugala dam site, a characteristic feature is observed that assumes the form of a sandwich-like interbedding of weathered and fresh rock, and which may occur down to considerable depths. It appears that weathering is generally more intensive and deep in the eastern project region (reservoir area of high dam alternative).

Widespread occurrence of calcareous rock types is a matter of particular concern in any hydropower project since that could be hazardous to the project (water tightness of the reservoir, under seepage of the dam, instability of slopes etc.). However, extensive geological and geotechnical investigations have not revealed the presence of such rocks at K-K 205 weir site nor within the associated reservoir area. At K-K 205 weir site as well as at alternative dam sites, which will be located within the pondage area of this site, a considerable number of drill holes was sunk. However, the recovered core material does not reveal the presence of calcareous or any other soluble material.

Two small scale occurrences of metamorphosed limestone which were observed near the town of Kalawana, and which would have been situated within the reservoir area of a K-K 242 dam scheme, seem to be isolated and of local significance according to spatial distribution and characteristics of these rocks.

Summarizing it can be stated that geological mapping and geomorphological analysis of the reservoir area of K-K 205 as well as drilling results confirm the absence of rock types which may be of any potentially hazardous consequences to project structures, human settlements and the natural environment that may arise due to reservoir operation.

3.3 Structural Geology

The analysis of the structural conditions of the project area was done in the field, simultaneously with geological mapping, as well as using photo-interpretation technique, the latter being particularly useful with respect to macro-structural elements and geo-dynamic features. Results suggest that the project area can be structurally divided into at least two structural domains, which also exhibit marked lithological contrasts, with the following characteristics and demarcations:

Firstly, the area comprising the dam site, including all dam site alternatives, and associated waterways is characterized by very massive and competent rock types such as quartz-rich biotite gneiss, charnockite, amphibolite etc. The tectonic style of these rock types is characterized by tight folding, and numerous anticlinal and synclinal axes have been identified. Sizes of fold elements range from first order folds to small scale folding including flow-folding. Longitudinal extension even of large folds often cannot be traced for any long distance which may sometimes be attributed to the great lithological variability of the rock. According to the measured dip directions and dip values folds are mostly isoclinal, while in some places fold limbs appear to be slightly overturned resulting in a slight NE-vergence. Small scale folds show great variability and may range from isoclinal to recumbent fold pictures.

The fold system is dissected by an E-W to NE-SW oriented pattern of fracture zones (photo-lineaments) which can be easily identified on aerial photos. On rock outcrops, for instance in gullies, they can occasionally be directly observed in the field. Such features are assumed to cause most of the gullies which dissect the slopes at the dam site areas. They can also be found along the waterways alignments.

Structural geology and lithology result in a remarkably strict orientation of mountain ridges and river courses. Long and mostly narrow ridges follow precisely orientations prescribed by the fold pattern (foliation strike) while river valleys change their directions abruptly following sometimes for a certain stretch foliation whereas for some distance perpendicularly oriented fracture zones may control the orientation of a given valley.

Secondly, geological mapping and photo-interpretation of the upstream areas of the previously considered high dam cum reservoir revealed the presence of a structural and lithological inventory which is markedly different from the aforementioned tectonic domain. Lithologically this area is made up of rock types which are relatively incompetent and are more easily weathered as for instance garnet gneiss which often contains patches of graphite, quartz-feldspar gneiss, well foliated biotite gneiss, etc. Owing to the lack of outcrops there is less information regarding the number, extension, size and form of tectonic elements. There seems to be more intensive tectonization along shear zones, fold axes, etc. However, it appears that basically the structural inventory of both domains comprises the same elements. Consequently, resulting landforms and drainage pattern are more irregular and morphology is generally softer with wide trough shaped valleys, gentle slopes and many isolated small hillocks compared to the aforesaid pronounced mountain ridges.

3.4 Stability of Reservoir Rims

Along reservoir rims slope failures can often be related to:

- presence of thick overburden or weathered rock
- occurrence in sound bedrock of unfavourably oriented discontinuities.

Reservoirs can have an impact on slope stability along their rims since most soils and weathered rock types that come under the impact of reservoir operation, i.e. alternating saturated and drained conditions, have the tendency to alter strength characteristics, while in bedrock along joints pore pressures can vary thus perturbing the equilibrium of forces within the slope.

In the course of geological investigations stability of reservoir slopes was assessed with respect to the presence of potentially hazardous conditions of either type. The results of the survey can be summarized as follows:

Slopes along both banks of K-K 205 reservoir are mostly covered by overburden in form of talus which consists mostly of boulders of variable sizes embedded in a slightly clayey silty-sandy matrix. Thickness of overburden is generally in the range of about 5-10 m. According to results of drill holes talus overburden is relatively thick in the upstream reaches of K-K 205 reservoir, about 20 m in drill holes KP-1 and KP-3. Angle of repose of talus is about 30 to 35°0 while slope angles of existing slopes vary between 25 and 30°0 so that

soil slopes can be considered stable provided no excessive pore pressures would develop.

This assumption is in line with field evidence, because no significant zones of potential instability of overburden and highly weathered rock, which has similar geomechanical characteristics, were identified along both banks of the reservoir. There is only one example of an existing small scale landslide which was observed at the left bank reservoir rim about 250 m upstream of KP dam axis at an elevation of about 210 to 220 m above MSL, i.e somewhat above proposed reservoir level. The slide took place in thick overburden and assumes the form of a rotational slide. The scar and the bulging of the sliding mass are still visible. The total volume which was affected by the slide may be in the range of 1000 - 2000 m³.

However, it may be inferred that the talus slopes which exist on both banks along the reservoir rim could develop some instability in places, where the toe of such a talus accumulation is wetted, which may take the form of progressive creep. That could result in the destabilization of the overburden cover further up in the slope. However, areas and volumes which could be affected would certainly be relatively small.

There are only short stretches of the rim, where outcropping rock forms the slopes of the reservoir. Along right bank rims foliation dip has generally a component into the slope which makes sliding unlikely. Similar structural conditions exist in some stretches along left bank slopes. This is due to the presence of a major anticline axis which approaches the valley. Further towards upstream the fold axis runs along the upper left bank slopes, so that the lower slope sections form part of the northeastern limb of the structure. Slopes are consequently dip slopes, i.e. foliation is sub-parallel to slopes, which, in general terms, could result in unfavourable conditions if foliation is undercut. However, dip of foliation is generally steeper than slopes so that instability due to daylighting foliation need not be anticipated. However, no recent rock slides are evident along the reservoir rims. Along limited sections of the rim rock falls rather than rock slides tend to occur (this feature is frequently observed downstream of the Kukule waterfalls).

Rock falls are most likely to result from intersections of foliation dipping out of the slope with near vertical joints. However, due to the massive character of the rock mass there is only a limited potential for rock falls, which would be of small scale, along short stretches of the reservoir rim.

Summarizing the above said, it is assumed that the potential for large scale slides, that could endanger the safety of the reservoir and the dam, as well as reservoir induced slope instability, that could be hazardous to settlements or the natural environment, is rather limited considering the absence of steep or very high slopes of large extension or any of the above mentioned unfavourable criteria.

3.5 Watertightness of Reservoir

Water seepage from the reservoir towards adjoining catchments, or around the dam into the same river, could potentially occur along faults and major fracture zones. Additionally, a potential cause for water losses could be the presence of marble (metamorphosed limestone) and calc-silicate gneisses due, to their potential of solution (karstification).

Elsewhere in Sri Lanka (Kotmale, Samanalawewa) severe seepage and stability problems were encountered which stem from the presence of these limestones and calc-silicate gneisses. Hazardous behaviour is predominantly through the loss in volume associated with their solution. For instance, as these layers approach the ground surface and become weathered, the loss in volume results in subsidence of the overlying beds. If the zone of subsidence is located on slopes, it can be sufficient to set off land sliding in the material at higher elevations. An additional aspect of solution of these rock types is obviously the high potential of seepage through these rocks.

Calc-silicate gneisses occur at numerous locations in the Highland Series. The layers are typically thin, one or two metres, but may have considerable lateral extension (Kotmale Reservoir, Samanalawewa Reservoir). The calcitic content occurs as thin veins within the layers and also in form of the minerals diopside and scapolite. Feldspar and quartz usually make up the bulk of the other constituents. The calcitic fraction of the layers may be partially lost at depth, by solution, or wholly lost during the weathering process. In addition, the diopside has been found to alter to hornblende. Since limestones deform more readily than gneisses under tectonic pressures, the layers of calc-silicate

often exhibit micro-folding and small to large scale boudinage effects in the formation (frequently observed at Laxapana).

Consequently the presence of marble, calc-silicate gneisses and their derivate weathering products was given particular attention during logging of drill cores and geological mapping of dam site and reservoir areas. While the presence of marble and calc-silicate gneisses would be quite evident in drill cores, it is generally difficult to trace them in the field since these rocks, particularly marble, are seldom found in form of sound rock pieces. Generally, direct evidence of calcareous rock types is scarce, mostly it is indirect for instance in form of presence of typical soils, presence of morphological features as for instance subsidence or landslides, typical groundwater regime etc. While above features are quite pronounced in marbles they are less developed in calc-silicate rocks due to the lower content of calcareous components.

With respect to above mentioned problematic behaviour of calacareous rock types particular attention was given to the occurrence of such material in bore holes at dam sites as well as in the reservoir areas of K-K 205 and of other alternatives. However, no evidence of calcareous rock types, including above described adverse features, was found in the drill cores at the weir site nor during reservoir mapping. Also, at present there is no indication, according to available results of drill holes as well as field observations, that limestone or calc-silicate geisses could occur along the waterways or in the powerhouse area. However, a conclusive answer to this latter question can be only given when results of test adit excavation will be available.

Hence, with the results of core drilling and geological mapping currently in hand, the following model of trans-basin seepage (underseepage and seepage around the weir will be discussed in chapter 4.2.2) can be developed:

Seepage into neighbouring valleys would generally have to develop through mountainous watersheds formed by gneissic rocks including their overburden cover of varying thickness. However, watersheds at reservoir level are rather wide while, on the other hand, reservoir induced hydraulic head in watershed areas is relatively low resulting in low to very low hydraulic gradients whereby the water would have to pass through zones of massive rock of low permeabilities, as results of water pressure test indicate which were performed

in drill holes KK-29 and KK-42, and a blanket of more or less impervious soil and decomposed rock.

Summarizing the above said, it can be assumed that watertightness of the reservoir is not a major concern.

In this context it shall be mentioned, that during mapping of the reservoir area of K-K 242 dam scheme two small scale occurrences of limestone were observed near the town of Kalawana. This location would have been within the reservoir area if a reservoir level at 242 m FSL were considered. Available information regarding tectonic position, continuity of the rock and typical rock characteristics suggested at that time that the limestone occurrence is isolated and does not extend any great distance. It was then assumed, that it is unlikely that it would provide potential seepage paths into the adjoining river basin. Since then more thought has been given to this problem and now it would appear in a different light (refer to above discussion), in the sense, that additional investigations would be needed to definitely confirm this statement.

3.6 Geological Aspects of Environmental Impacts

Evaluation of the above topics is being focused on the selected project alternative, i.e. K-K 205 R-O-R scheme. Geological aspects may be relevant for the following groups of environmental elements which could potentially be affected by the different components of the proposed hydropower project:

- Landscape,
- Landslide hazard and other dangers,
- Groundwater,
- Surface water (regime, quality)
- Gem mining

In the following discussion only the major structural components are considered, since other elements such as access roads, quarries, switchyard and dump sites for excavated materials, particularly for the selected project layout, have too small dimensions as to cause significant disturbances of a.m. environmental elements, apart, possibly, from slope instability which, however, will be looked after during engineering design.

Landscape-

Obviously, during construction of any hydroelectric project, also of its appurtenant structures, considerable re-shaping of the natural landscape is done. In this context excavation of cut slopes is the main concern. As regards stability of these man-made slopes proper design (appropriate slope angles, protective measures) will exclude any damage to the existing environment.

Groundwater regime may be locally disturbed but will be of limited impact due to the relatively small size (excavation depth) of relevant structures.

Landslide Hazard and other Dangers

Landslide potential is discussed in detail in chapter 3.4 and it is concluded that the proposed reservoir would not result in an increase of the existing low risk situation.

"Other dangers" refers mainly to the risk of reservoir induced earthquakes. In chapter 2.6 the seismic risk associated with the project is discussed. In this context it may be mentioned that the large reservoirs (Kotmale, Victoria, Randenigala), which have been built in Sri Lanka during the last decade, have not led to a significant increase of the seismic level in the vicinity of the reservoirs. In 1983 Joint Venture Randenigala did a preliminary evaluation of the then available records of the Kotmale micro-seismic network and came to the conclusion that most recordings were related to the ongoing construction work at Randenigala. Only few records were correlated with tectonic seismicity and no indications were found of elevated seismic activity. Final evaluation of the Kotmale seismic records are still not available, but above preliminary results will probably be confirmed, with one amendment to this statement: along the so-called Mahaweli lineament which forms the morphological escarpment of the eastern slopes of the central highlands, seismic activity and intensity was elevated to about M=3 level during the initial years after impounding of the newly constructed large reservoirs, but has presently dropped to the original M=2 level (verbal information by Dr. Wijeratne, CECB).

Summarizing the above said it can be stated, that size and volume of the proposed K-K 205 reservoir will be so small that man-made earthquakes and related hazards can be excluded.

Groundwater

The main impact on the groundwater regime results potentially from the weir/reservoir and the underground works. Other structures are too small and/or related excavations too superficial as to result in a significant change of the groundwater table.

As to the weir/reservoir impact, it can be said that the reservoir level is only few metres above valley bottom and will inundate only the lower slope sections along the reservoir rim. That will certainly result in a rise of the water table in these lower slopes, particularly during the dry season. On the other hand, it was found during drilling and also by inspection of existing wells, that during the normally 9-month long wet period the groundwater table is generally close to surface level, so that during this period the impact is insignificant, while during the normally short dry period it may be relevant to the flora, particularly should sensitive plants grow in this area.

During construction phase of the underground works these will act as a drainage to the surrounding rock mass. Depending on the presence of major waterpaths, for instance along fracture zones, large rock mass volumes may be dewatered. Currently, information is scarce as to the nature and extend of fracture zones. However, during the extended drought from January to May 1992, presence of perennial springs and almost unaffected discharge of the artesian aquifer encountered in drill hole KK-3, suggest that rock mass portions with relatively large volumes of stored groundwater exist which would be drained if cut through during tunnel construction.

As to the impact of the potential lowering of the groundwater table of this mountain ridge a twofold effect may be expected:

Firstly, the watersupply of the settlers in the powerhouse and surge shaft area (few households) may be disrupted during the construction period.

Secondly, vegetation might potentially be affected, particularly during exceptionally long dry periods, whereas, if a normal weather pattern would prevail, the retention potential of the overburden cover and weathered rock profile should be sufficient to bridge over moderate dry periods between wet seasons.

There is one important aspect to note: These adverse environmental impacts are temporary and only applicable during the construction phase of say three to four years, since all waterways will be lined and made impervious against the natural groundwater. It is of course difficult to judge, whether any already occurred damage to the prevailing flora would be reversible.

Surface Water (Regime, Quality)

Apart from the obvious impact on the regime of the Kukule Ganga along the river section between the weir site and the outfall structure no adverse variation of the surface water regime and/or quality due to geological reasons is anticipated. As is discussed in chapter 3.5 no water seepage into adjoining catchments is to be expected including the potential effect of solution and associated change in water quality.

Gem Mining

A restricted potential only appears to be existing for economically relevant resources of valuable gems, which is mostly due to the limited extend of alluvial deposits in the small reservoir area of K-K 205 R-O-R scheme (see also chapter 2.5).

CHAPTER 4. GEOLOGICAL-GEOTECHNICAL ASPECTS OF THE AREA OF SELECTED K-K 205

4.1 General

This alternative dam site was identified during phase II-a investigations but was not considered competitive with the upstream site at that time due to hydraulic as well as geologic considerations. Later it was realized, however, that this was mainly due to site conditions prevailing at the time of the field visit when the water level was high.

In the course of investigations at the eliminated site it became obvious that foundation conditions of the desander at the left bank flood plain are quite unfavourable and would require deep excavations of unsuitable rock (up to 20 m). On the other hand, when the results of the topographic survey became available, it became apparent that considerable rock excavation would have been required to improve hydraulic conditions downstream of the desander. Consequently, and with the advise of the P.o.E (30), the downstream site was selected as the definite weir site.

4.2 Dam and Appurtenant Structures

4.2.1 Topography and Geomorphology

At the selected K-K 205 dam site the valley is relatively narrow. The cross section is almost V-shaped and has somewhat flat limbs on a relatively narrow basis of about 60 m width. At the dam axis abutments are relatively low, about 60 m above weir crest; towards downstream valley slopes rise more than 100 m above river level. Slopes are more or less regular.

The typical cross section along the dam axis has the following slopes: At the left bank average slope angle up to dam crest level is about 18°. Due to the more favourable structural pattern, foliation dip is into the slope, right bank is slightly steeper (about 28°).

4.2.2 Geological Assessment

(1) Weathering and Overburden

At the dam site bedrock is exposed in the river section (during dry weather conditions) on both banks up to elevations of about 200 m above MSL. The outcrop extends some 80 m upstream of the dam axis; towards downstream exposed rock forms the river channel beyond the rapids, some 120 m from the dam axis. Existing drill holes as well as results of the seismic survey indicate the following:

At the left bank intake of the inflow channel drill hole KK 34 shows that overburden and weathered rock are only about 1 m thick. Results of drill hole KK 35 indicate that a thin cover of overburden (1.4 m) exists at the left bank weir axis. In drill hole KK 36 which is located at the slope side of the desander, some 130 m downstream from the intake, overburden and weathered rock are about 12 m thick.

On the right abutment the weathering profile is of similar depth owing to the favourable structural conditions (see para (4) of this chapter). According to the result of drill hole KK 33 depth of overburden and weathered rock is about 11.5 m at dam crest level (see Fig. 10).

(2) Rock Types and Rock Mass Parameters

According to results of dam site mapping and results of already executed drill holes dominant foundation rock consists of the following rock types (description of the mineral composition is partly based on petrographic analyses of samples taken from drill cores at weir site):

Biotite Gneiss and Garnet-Biotite Gneiss

This is the dominant rock type that will make up the major part of the dam and desander foundation areas. Main constituents are quartz, plagioclase, biotite, hornblende, some garnet and accessoric minerals (see Tab. 2). The typical variety exhibits pronounced gneissic fabric. The quartz-rich variety which has a massive appearance is practically absent at the dam site area.

The presence of hornblende-biotite gneiss and quartz-feldspar gneiss was also observed, but is of no consequence for foundation conditions.

Rock strength can be extrapolated with sufficient accuracy from a great number of point load tests. Average uniaxial compressive strength of the sound rock material is about 150 to 200 MPa; respective values of the slightly to faintly weathered rock which will be available at foundation level is about 80 to 150 MPa (Tab. 10, 1/3).

Fracturation (degree and orientation) of the rock mass in the weir foundation area could be observed during the extended dry period, from December 1991 to mid April 1992, when great portions of the river section were exposed. Dominant discontinuity set is foliation in addition to which two joint sets were observed:

Spacing of foliation joints is moderately wide on an average of 0.3 to 1.0 m; locally it is >1m. This gives the foundation rock mass a relatively massive appearance though, as was already mentioned, gneissic structure of the main rock type is well pronounced. It appears that foliation joints are mostly tight and, hence, do not significantly contribute to the rock mass permeability. Foliation joints are mostly plane or slightly undulating and smooth which is mainly due to some biotitic coating (JRC = 2-4).

Average spacing of joint set No. 1 (JS 1) is about 1 to 3 m, and locally it is 5 m. Surfaces of joints are mostly slightly rough (JRC = 6-10) and joint wall rock is generally hard; only occasionally may soft joint wall rock occur on weathered joints. Based on field observations as well as water pressure tests in already drilled holes some separation of individual joints may be expected down to a depth of about 10 m; below 10 m joints are more or less tight (separation <1 mm).

According to the results of a joint survey done during detailed mapping Joint Set No. 2 (JS 2) has similar characteristics: spacing = 1-3 m, max. 7 m; JRC = 8-10.

On the basis of above data collection a preliminary rock mass description and classification was done using NGI and CSIR classification systems (summary of results is given in Tab. 10,1/3):

Q-values (NGI-classification) range from 6.6 to 14.5, while average RMR-value (CSIR-classification) is 64. Such values are characteristic of a foundation rock which in general terms could be described as good quality rock mass. Based on this classification and field observations on joint conditions geomechanical parameters of the foundation rock mass may be taken as follows:

Shear Strength (Rock Mass) $\phi = 40-45^{\circ}$; c = 1-2 MPa

E-Module (Rock Mass) E = 10-20 GPa

Shear Strength (Foliation) $\phi = 25-30^{\circ}$; c = 0.1 MPa Shear Strength (Joints) $\phi = 35-40^{\circ}$; c = 0.2 MPa

(3) Structural Geology

(A) General

During geological mapping a first order anticline was identified to run along the left bank of the Kukule valley. At K-P dam site the axis of the anticline is at a distance of about 250 m from the river and approaches the river in a downstream direction finally reaching the river at the upper end of the S-shaped bend, upstream of K-K 205 dam site. Consequently, with respect to the fold pattern the dam site assumes a position at the NE-limb of the anticline.

The fold system is dissected by an E-W to NE-SW oriented pattern of fracture zones which, according to field evidence, are zones of closely jointed rock of a few to several tens of metres width. On aerial photos these fracture zones appear as linear topographic features which can sometimes be traced for distances of up to 15 km. This type of fracturation is perpendicular to the fold geometry and, hence, genetically probably tensional. Its age cannot be determined, it is likely, however, to have been developed soon after metamorphism. At the dam site this type of structural feature is represented by joint set No. 1.

At various locations of the project area a second joint set (at the dam site referred to as JS 2) has been observed which is oblique to the fold

pattern (foliation). It appears to be also tensional and somewhat less pronounced (possibly related to the upheaval of the Sri Lankan land mass).

In addition to above structural elements there are features of random direction. One such feature occurs at the S-shaped bend upstream of the dam site, where the valley is intersected by a pronounced linear topographic feature of E-W orientation. The nature of this feature was for a short while disclosed in the river bed when the water level was low. The visible part consisted of a set of intensively jointed rock zones, however, the weakest material was probably not exposed but carved out, and/or covered, by the stream channels. Such characteristics are typical of a fault or shear zone which would probably be of ancient origin related to metamorphism and/or folding.

(B) Foliation

Orientation of foliation is perpendicular to the dam axis. Owing to the above outlined tectonic position on the northeastern limb of an anticlinal structure dip direction is towards NE at medium steep angles (59-76°), i.e. orientation is with the slope at the left abutment while it is with a component into the slope at the right abutment.

Orientation of foliation is quite regular as can be seen from the well pronounced maximum (see Fig 14.1/2):

Fol = 060-076/59-760

(C) Jointing

Two main joint sets were observed at the dam site area. JS 1 is subparallel to the dam axis and dip is at steep angles towards upstream. This joint set is parallel to above mentioned system of fracture zones. Owing to its direction this joint set does not directly contribute to underseepage of the dam, but may indirectly add to it by connecting upstream-downstream seepage paths. The second joint set (JS 2) is oblique to the dam axis, hence providing potential upstream-down-

stream seepage paths. The following distribution was measured (see Fig. 14.1/2):

JS $1 = 168-188/40-58^{\circ}$ JS $2 = 305-324/34-49^{\circ}$

4.2.3 Geotechnical Investigations

Core Drilling

At the sites of the weir structure, intake and desander a total number of 8 drill holes was carried out amounting to a total of 180 drilling metres (see Tab. 1). All drill holes were performed with rotary drilling equipment using double tube core barrels in hard rock. In soft rock such as residual soil, talus and decomposed rock dry drilling techniques were partly employed using single tube core barrels. Drill holes were mostly vertical except for two inclined holes (KK 31, KK 32) in the river section.

A summary of the results including collar elevations, coordinates, length of drill hole, elevation of weathering grades of rock, overburden and instrumentation with piezometers is shown on Tab. 5. Geological and drilling details of drill holes are given in the "Logs for Engineering Purposes" (see Tab. 13).

Objectives of drill holes at various sites included the following:

- Identification of zones of weathering and close fracturation (weir axis),
- Assessment of permeability (weir axis),
- Investigation of depth and type of overburden (all structures),
- Assessment of prevailing foundation conditions with respect to availability and quality of rock (all structures).

Borehole Tests and Instrumentation

Water pressure tests (Lugeon-type) were carried out in drill hole sections where packers could be sealed properly (results are shown in drill logs, Tab. 13).

Installation of piezometers was done in three drill holes.

Geophysical Investigations

Two seismic profiles, one along the weir axis and a second one along the axis of the desander, were executed for assessment of the weathering profile (locations see Fig. 2, 1/9).

Test Pits

A total number of 10 test pits was executed along the intake and desander axes. Objective was to establish the presence and character of soils and weathered rock and to collect samples for material testing (classification) (locations see Fig 2-5/9, 2-6/9, 2-7/9; results are shown on geologic logs of test pits, Fig. 27).

Material Testing

Point load tests were carried out on rock cores recovered from drill holes as soon as possible after this material became accessible, so that test conditions were more or less corresponding to natural moisture conditions (test records are given in Tab. 14).

On soil samples obtained from tests pits the following tests were proposed to be carry out: gradation, moisture content, bulk/dry density and plastic limits. However, results were not available at the time of report compilation (17.8.92).

Petrographic analyses on core samples were done at the petrographic laboratory of Peradeniya University in order to determine mineral content (for instance percentage of abrasive minerals), texture, structure, mineral fracturation, etc. (results are shown on Tab. 2).

4.2.4 Geotechnical Assessment

(1) Excavation

On the basis of eight drill holes on both river banks, detailed geological mapping and two seismic profils, parallel to the weir axis and along the

desander axis, the following excavation conditions are anticipated (see Fig. 10.1/2 and 10.2/2):

The weir structure can be founded on sound rock with need of only very little excavation. In the river section as well as on the lower slopes basically only trimming of the exposed rock down to the designed excavation grades is needed. According to the results of drill hole KK 35 which is located at dam crest level on the left abutment excavation will comprise about 2 m of overburden and weathered rock. On the right abutment excavation conditions appear to be somewhat less favourable: in drill hole KK 33, located at weir crest level, residual soil and decomposed rock are found down to a depth of 11.5 m. However, all currently available information indicates that at the designed foundation levels, more or less throughout the entire dam foundation, the rock is sound and of good quality. Only, it appears that there are several linear features hidden by the stream channel. The inclined drill hole KK 31 intersects the downward extension of two such features the upper one, at about 3 m depth, consisting of 30 cm weathered material and the lower one, at about 11 m depth, manifested by a 25 cm tectonized zone which is probably one foliation shear. Such features can be treated by dental concrete near surface and by grouting in their downward extension.

The desander structure including appurtenant structures are to be founded on rock. Results of core drilling and seismic survey indicate that at designed foundation levels rock of good quality will be available. In drill hole KK 36, located at the hillside slope of the desander, overburden and highly weathered rock are found down to about 12 m, which is about 213 m amsl, and are underlain by sound and massive biotite and garnetiferous biotite gneiss, so that the designed foundation level of the structure falls within the sound rock.

In the area of the flushing tunnel no drill hole was carried out due to limited resources. Extrapolating the results of drill hole KK 36, which is the most closely located hole, it may be concluded that a sufficiently long section of the proposed flushing tunnel can be driven in rock.

(2) Permeability and Grouting

The prevailing structural pattern, i.e. foliation as well as joint set No. 2, has an unfavourable orientation with respect to underseepage of the weir, at least

speaking in general terms. Strike of both is perpendicular or near perpendicular to the dam axis, hence, potentially providing direct seepage paths from the reservoir to the downstream toe of the dam. Results of water pressure tests executed in drill holes KK 31, KK 34 and KK 35, located along the left bank weir axis and the intake, respectively, as well as drill holes KK 32 and KK 33 on the right bank, indicate generally low rock mass permeability. Moderate permeability is related to narrow zones of jointed rock mass. This is in accordance with the low degree of fracturation observed in the field as well as with high RQD-values which are on average between 90 and 100 %. Relatively higher water losses, in the order of about 14 to 17 Lugeon, were encountered in the inclined drill hole KK 31 where it intercepts two small either weathered or sheared zones (see previous para).

With respect to the actual potential of underseepage of the weir some remarks may be added regarding the necessity of grouting:

. 🐔

According to observations in the field as well as on the recovered core material it appears that foliation joints are mostly tight. On the other hand, joint set No.1 does not directly contribute to the upstream / downstream component of permeability, but may indirectly connect such waterpaths. Both discontinuity sets would contribute to the overall rock mass permeability, but only a fraction of the measured water losses is relevant for the actual under-seepage of the structure. In conclusion, it would be reasonable to assume that the actual water losses due to under-seepage would be less than those calculated from the measured Lugeon-values.

However, a more relevant aspect as to the need of grouting seems to be the high economic value of water with respect to the R-O-R project concept and the available small storage volume. Additionally, the potential uplift pressures seem to be mostly related to individual pervious zones, as those intercepted in drill hole KK 31. Number and location of such zones are not known, whereas their orientation can be assumed to be mainly upstream / downstream. Consequently, in order to conserve as much water as possible and to limit uplift pressures it is strongly recommended to provide for a grout curtain.

On the basis of currently available data specifications for curtain grouting may be assumed as follows:

Rows: 2

Depth: 10 m

Spacing of Holes: 3 m

Specific Grout Take: 50 kg/m

Overall Length: 225 m (extension see

Fig. 10, 1/2)

(3) Stability of Foundations and Slopes

Currently, it is assumed that at designed foundation levels of the weir and appurtenant structures sound rock in form of slightly to faintly weathered rock will be available. The foundation rock is generally poorly fractured and, hence, has low to very low deformability (see Tab. 9). Variations in rock types are of no consequence. Locally the foundation area will be traversed by thin bands of weathered or tectonized material which extend in linear form more or less perpendicular to the dam axis. These features can be treated by slush grout or dental concrete near the surface, while they will be intercepted by the grout curtain at depth.

Since some open joints may be expected in the surface near zone of the foundation area (as well as shattering due to blasting) it is suggested to provide for consolidation grouting of the foundation area of the weir structure in order to homogenize and consolidate this rock zone. Currently, the following specifications may be tentatively assumed:

Depth of Holes: 3 m

Spacing of Holes (staggered): 3 m

Specific Grout Take: 50 kg/m

With respect to foundation stability one more aspect is of concern: in rock foundations stability is often controlled by the orientation of discontinuities. The structural diagramme given in Fig. 14, 2/2 indicates that foliation joints and JS 2 form wedges which have theoretically some freedom for movement in a downstream direction along JS 1. However, the actual potential for such movement depends on the magnitude and the direction of the stress vector created by the dam. A rough estimate suggests that safety against sliding is very high. Nevertheless, it is felt that this should be confirmed by somewhat more detailed computations using for instance a computer programme such as

GEODAT (geomechanical parameters may be taken as given in para (2) of the previous chapter).

In order to assess stability conditions of rock slopes, existing natural as well as cut slope's required for construction, a structural analysis was carried out result of which is summarized in the Great Circle Diagramme given in Fig. 16, 2/2. The diagramme shows the potential wedges that can be formed by intersection of the prevailing major joint sets. It also gives the directions of potential movements in relation to main slope directions, and additionally, by representing the assumed range of friction angles of relevant discontinuities, it permits to roughly assess the possibilities of sliding.

The results show that at left bank slopes rock wedges are formed by the intersection of foliation and JS 2 as well as by foliation and JS 1. The first one has no sliding potential for its direction of movement is more or less parallel to the slopes and for the second family of wedges only a very limited possibility of sliding exists, firstly, because direction of movement forms an angle of about 35°0 with the slopes, i.e. main component is parallel to the slope, and secondly, sliding angle is about 40°0, which is about equal to the friction angle on joints.

At right bank slopes, and on right hand side slopes of the desander, rock wedges are formed by intersection of JS 1 and JS 2. The sliding angle has an inclination of about 20° which is much less than friction angles on foliation (> 25°) and joints (about 40°).

Regarding soil slopes, it is currently assumed that some of moderate height will have be excavated, for instance along the desander. The nature of overburden and decomposed rock has been inspected in test pits and was found to consist mostly of residual soil and talus material of two different categories (rich in matrix and rich in boulders, respectively) (results of laboratory testing are not yet available). For feasibility design geomechanical parameters of this material, slope inclinations, bench heights etc. may be taken as tentatively given in Tab. 9 (these values are based on experience and literature).

4.3 Waterways

4.3.1 Topography and Geomorphology

The intake portal of the headrace tunnel is located at the downstream end of the desander on a moderately steep slope (dip slope of about 30°). Orientation of the initial sections of the headrace is about W 300° N and S 256° W, i.e. oblique to the mountain ridge (and paralleling foliation), which is to keep distance to the adjoining tributary valley. In this initial section mountain crest levels are about 420 m asl, while valley bottoms are about 250 m asl. Following a sharp bend at Stat. 2+343 the tunnel is almost in the centre of a massive NW-SE ridge which almost parallels foliation strike with crest levels of about 380 m asl. This route is more or less identical with the old alignment but is adjusted to conform the new power house location.

The tailrace tunnel maintains more or less the same orientation but shifts closer to the western slopes of the ridge with its crest levels decreasing towards NW. The outfall of the tailrace is in a relatively thin rocky nose that marks the NW-end of the ridge.

4.3.2 Geological Assessment

(1) Weathering and Overburden

Weathering conditions along waterways can be currently concluded from 8 drill holes, including 1 drill hole along the previous route, as well as field observations during geological mapping. Additionally, results of 3 seismic profiles are available to establish the weathering profile.

The headrace intake has been investigated by one drill hole, KK 39, which shows about 1.5 m of overburden and decomposed rock and about 3.5 m of highly weathered rock overlying sound and massive rock.

Drill hole KK 6 was drilled in order to investigate geological conditions at the bottom of the Hulukiri valley along the previous tunnel alignment. Overburden is practically absent and sound rock is available at about 1.5 m. This was then supported by the results of one seismic profile which indicated

shallow weathering across the valley bottom. Abundant rock outcrops are found elsewhere in the valley suggesting similar conditions along the valley.

On the other hand, general geological considerations suggest that the valley was formed along some zone of weakness which may be composed of one or more zones of sheared rock or a less resistant rock layer(s), probably quite narrow, which would not be detected by seismic investigations and would only incidentally be intercepted by drilling.

Similar geological conditions may be expected along the ridge which contains the headrace and tailrace tunnels in points where it is traversed by saddles and depressions.

To date only one such saddle, near the previous surge shaft location, has been investigated by drilling (KK 29), and showed sound rock at about 9 m below surface. One additional inclined drill hole (KK 44) was proposed recently (on advice of P.o.E.). It will be drilled in the saddle area adjoining the surge shaft (new location) towards upstream and will be inclined in such a way as to intercept sub-vertically directed joints.

Additionally, results of three seismic profiles, each about 400 m long, are available to assess weathering depth in saddle areas of the ridge. Results indicate that the 'top of sound rock' is generally only slightly deeper than elsewhere along the ridge. However, geologically it is most likely that strong and massive rock make up the ridge crests whereas points where the ridge is crossed by narrow zones and/or bands of fractured rock or weaker rock layers, which cannot be depicted by seismicity, are morphologically delineated by saddles and depressions.

Ridge crests were investigated at the locations of the previous surge shaft (drill hole KK 7) and the relocated surge shaft (drill hole KK 42) and is presently being investigated at the powerhouse site. In drill hole KK 7 sound rock is found at shallow depths (about 3 m) while at the present surge shaft and powerhouse locations it is available at about 20 m and 15 m, respectively.

Similar conditions prevail at the tailrace outfall which is accommodated in the narrow rocky nose that marks the NW-end of the main ridge. Along the crest of this narrow ridge two drill holes (KK 8 and KK 28) were located showing

thin overburden of about 2.5 m thickness while sound rock was found at about 3 to 7 m, respectively.

(2) Rock Types and Rock Mass Parameters

Geological mapping and core drilling revealed the presence of a variety of gneissic rock types along the alignment of the headrace and tailrace tunnels. Common rock types are (description is based on previous petrographic analyses and visual examination):

Biotite Gneiss and Garnet-Biotite Gneiss

This is the dominant rock type in which waterways tunnels would be driven. Main constituents are quartz, plagioclase, biotite, hornblende, i.p. garnet, and accessoric minerals. The typical variety exhibits pronounced gneissic structure whereas the quartz-rich variety has a massive appearance.

Charnockite and Charnockitic Gneiss

According to geological mapping it is likely that major portions of the tunnels would be driven in this rock type. Its mineral assemlage includes: quartz, plagioclase, hypersthene as well as diopside, hornblende etc.

A typical property is the greenish-grey to bluish-grey colour due to the dark colour of the quartz component. According to their geochemical composition the local varieties appear to belong to the intermediate family. Structure is often granulitic and contributes to the massive appearance of this rock.

Quartz-Feldspar Gneiss

This rock type is occasionally found in drill holes; it is less frequently observed in the field. The rock is chiefly made up of quartz, feldspar plagioclase, orthoclase, microcline, perthite) as well as biotite, hornblende and accessoric minerals. Gneissic fabric of the medium coarse rock is less pronounced than in biotite gneiss but is poorly developed in the coarse grained variety.

Additional rock types that may be locally encountered in the tunnels are hornblende-biotite gneiss, amphibolite, vein quartz, pegmatite etc..

Geomechanical parameters relevant for design, excavation and support of the headrace and tailrace tunnels will vary considerably along the tunnel route. Parameters such as deformability and shear strength of the rock mass, as well as shear strength of discontinuities (relevant for local instability of rock wedges), depend generally on rock type, rock strength (rock wall strength), degree of fracturation, conditions of fractures, groundwater conditions, etc. On the other hand, these physical characteristics of a given rock type are modified for instance by weathering (apart from the influence of excavation method, magnitude and orientation of the primary stress field and the orientation of the tunnel with regard to such parameters).

According to point load tests on similar material from previous dam site alternatives the strength of fresh material of any of the above mentioned rock types is quite high, in the range of 150 to 200 (and above) MPa. However, it was observed that weathering reduces rock strength (see Tab. 14).

Degree of fracturation is a function of local tectonic intensity as well as weathering and is also reflected by reduced RQD-values.

Conditions of joints are related to their genetic origin (tension, compression, stress magnitude, displacement, etc.), rock type, weathering, etc.

Groundwater conditions in the rock mass at hand depend mainly on the degree of fracturation at a given location along the tunnel alignment.

As mentioned above, due to their variability along the tunnel route it is infeasible to estimate to a reasonable degree of accuracy individual parameters at a given location, particularly considering the lack of firm data. However, it appears realistic to adequately assess a group of parameters in the form of rock mass classification which has become a universally accepted method for feasibility studies (see para 4.3.2). Regarding data collection of the fresh rock mass reference is made to above para (4.3.1).

Resulting values which are interpreted on the basis of recent publications are given in Tab. 9.

(3) Structural Geology

The area along the headrace and tailrace tunnel routes is not easily accessible and due to the sparce population road infra structure consists of only few foot path's along rivers and across the ridge that accommodates the tunnels. Therefore, geological mapping consisted basically of a few traverses across the ridge (foliation strike) and detailed mapping of outcrops found along river courses and on the ridge. Due to the variability of rock types, particularly the absence of any marker bands, structural assessment relys solely on measurements of foliation supported by photo-geology and extrapolation of results from nearby areas. It is felt that on this basis a structural map of the area could be prepared that depicts with some confidence the general structural set up, and probably also some structural details. Results of this work are presented on the geological map of the project area (Fig. 7) and on the geotechnical section along waterways (Fig. 12). Tectonic conditions along the tunnels may be summarized as follows:

The initial section of the headrace tunnel traverses the axial zones of three major fold elements at about Stat. 0+500, Stat. 1+700 and Stat. 2+200; respective angles formed between tunnel route and fold axes are about 350 and 50.

Following a sharp bend the headrace alignment runs slightly oblique to the fold pattern (foliation) at an angle of about 20°. The tailrace line is slightly turned and angle formed between foliation and tunnel is about 25°.

In the area of the power house information is scarce as to the structural attitude. In adjoining areas a number of minor fold axes was identified, hence, relative irregular structural conditions may prevail. Obviously, test adit excavation would be needed to draw a more accurate picture.

According to field evidence the nature of fold axes is often characterized by close fracturation, foliation shears and shear zones; width of such features may be several tens of metres.

The fold system is dissected by E-W to NE-SW oriented fracture zones which, according to field evidence, are zones of closely jointed rock of a few to several tens of metres width, in which fracturation takes the form of

individual joints, mostly of sub-vertical orientation, spaced at about 0.05 to 0.3 m. On aerial photos these fracture zones appear as linear topographic features which can sometimes be traced for considerable distances. It is particularly this feature that is supposed to form the morphologic saddles separating hill crests along the ridge containing the waterways arrangement.

At various locations of the project area a second joint set has been observed which is oblique to the fold pattern.

In addition to above structural elements there are features of random direction. One such feature is assumed to form the tributary valley that falls into the Kukule valley at the S-shaped bend upstream of the dam site. The nature of this feature was for a short while disclosed in the river bed when the water level was low. The visible part consisted of a set of intensively jointed rock zones, however, the weakest material was probably not exposed but carved out, and/or covered, by the stream channels. Such characteristics are typical of fault or shear zones.

4.3.3 Geotechnical Investigations

Core Drilling

At the sites of the headrace intake, headrace tunnel, tailrace tunnel and tailrace outfall a total number of 6 drill holes was proposed (including site of old surge shaft and additional inclined hole at saddle) amounting to a total of 435 drilling metres (see Tab. 1 and 5). At the time of report compilation (August 17th) 5 drill holes were completed (385 m).

All drill holes were (are to be) performed with rotary drilling equipment (for some more drilling details refer to chapter 4.2.3). All drill holes were vertical. A summary of the results including collar elevations, coordinates, length of drill hole, elevation of weathering grades of rock, overburden and instrumentation with piezometers is shown on Tab. 5. Geological and drilling details of drill holes are given in the "Logs for Engineering Purposes" (see Tab. 13).

Objectives of drill holes at various sites included the following:

- Investigation of depth and nature of overburden, rock types, rock characteristics etc.,
- ,- Identification of zones of weathering and close fracturation,
- Assessment of prevailing foundation conditions with respect to availability and quality of rock,
- Assessment of groundwater conditions (permeability).

Borehole Tests and Instrumentation

Water pressure tests (Lugeon-type) were carried out in drill hole sections were packers could be sealed properly (results are shown in drill logs, Tab. 13).

All drill holes are constructed in such a way as to enable water table readings after completion.

Geophysical Investigations

Three seismic profiles along ridge saddles are at hand for assessment of weathering depths (locations see Fig. 2, 4/9). Additionally, two seismic profiles at Hulukiri Dola (old alignment) provide useful information to establish the weathering profile (locations see Fig. 2, 3/9).

Test Pits

A total number of 9 test pits was proposed at the tailrace outfall, switchyard and access tunnel areas. Objective was to establish the presence and character of soils and weathered rock and to collect samples for material testing (classification); to date 8 pits have been excavated.

Material Testing

A great number of point load tests have been carried out on core material of respective drill holes.

On soil samples obtained from tests pits the following tests are proposed to be carry out: gradation, moisture content, bulk/dry density and plastic limits; at this time results of such tests are not yet available.

Test Adit and Rock Mechanical Testing.

(refer to chapter 4.4.3)

4.3.4 Geotechnical Assessment

(1) Rock Mass Classification and Support

Currently rock mass parameters for design of underground structures cannot be based on in-situ or laboratory testing. In previous reports and by the P.o.E. (30) it has been stated that for final design such test results, including informations that can be obtained by test adit inspection, would be needed in order to make final design assumptions with sufficient confidence. However, the data presently available are certainly adequate for feasibility design. Also, rock mass classification methods, which have been employed in this study to arrive at the required parameters, are now so well developed that parameters adequate for feasibility design can be acquired with a limited amount of testing.

The tentative rock mass classification was done with the objective to provide information on the rock quality that could be expected along the tunnel alignment. The classification is based mainly on field observations in form of detailed rock mass descriptions (assessment of rock strength by means of point load testing, measurements of discontinuity spacing, description of joint conditions, measurements of joint continuity, assessment of joint wall strength by means of Schmidt hammer rebound values, etc.), collection of general data regarding rock types, rock structure, nature of rock mass, type of weathering, weathering depth, groundwater conditions, geomorphology including evaluation of results of drill holes and seismic profiles. These observations were only partly made along the tunnel line, partly they were extrapolated from representative locations and, finally, conservative assumptions were made on the basis of geological considerations.

In order to check on the confidence of the rock mass classification two methods which both are extensively used in civil projects were employed, namely the CSIR and NGI classification methods. Both classification methods provide guidelines for the selection of support measures. On the basis of these guidelines and with respect to the limited amount of firm data it was

considered adequate to develop a specific "classification adopted in the project" minimizing the number of rock support classes (three/four numbers). However, with respect to the lack of data no details regarding dimensions, capacity, etc of support measures were specified. It may be noted that this classification is considered tentative and that the final support design will be done by the rock mechanics engineer after test adit excavation and rock mechanical testing is completed. Results of the preliminary classification are summarized in Fig. 12.

(2) Geotechnical Sections along Tunnel Alignments

The tunnel route was divided into a number of structural regions (domains) for which identical geological-geotechnical conditions were assumed. The resulting geotechnical situation along the new tunnel alignment is summarized in the geotechnical profile presented in Fig. 12, and is described in short as follows (confidence level is discussed above):

In the area of the tunnel intake one drill hole (KK 39) has been carried out. It can be assumed that limited soil and rock excavation is needed to construct the tunnel intake portal.

From the portal up to about Stat. 0+070 it is assumed that rock support corresponding classes III and IV is required due to the expected effect of weathering on rock strength, fracturation etc.

The following section up to about Stat. 0+470 is assumed to be composed of strong and poorly fractured rock mass. Also, the tunnel is expected to be excavated under dry conditions, and no support will be required (class I/II).

From Stat. 0+470 to 0+570 the tunnel will traverse the axial region of one anticline which is thought to be weakened by fracturation and some shearing; additionally, some moderate water inflow may be expected. This section is therefore thought to require in some parts systematic rock bolting (classes I/II and III).

Corresponding geological conditions resulting in equivalent excavation conditions (classes I/II and III) are expected to be found at the following

tunnel sections: Stat. 1+600 to 1+700, Stat. 2+200 to 2+900, Stat. 3+200 to 3+750.

For the tunnel portions between above stations it is assumed that tunnel excavation'will be mainly in sound and massive gneissic rock mass requiring no support (class I/II).

Along the remaining section up to the upstream surge shaft the headrace tunnel is thought to traverse three fracture zones. Current evidence is that each fracture zone consists of one or more portions of closely jointed rock of up to a few tens of metres width. These are likely to be water bearing and at several points considerable water inflow which may be under moderate pressure may be anticipated (classes I/II and III). Stations were such conditions may be expected are as follows: Stat. 4+350 to 4+450, Stat. 5+050 to 5+150 and Stat. 5+300 to 5+400. Tunnel sections between such fractured regions are assumed to consist of sound and relatively unfractured rock mass which would be generally dry or moist, only, requiring no supports (class I/II).

The initial portion of the tailrace tunnel (Stat. 5+760 to 5+860), powerhouse area is described separately in the following para, is thought to traverse one more fracture zone presumably of above described nature and corresponding excavation conditions (classes I/II and III). One further fracture zone of similar nature may be expected between Stat. 6+760 and 6+860.

Tunnel sections adjoining the outfall portal were investigated by two drill holes, KK 8 and KK 28, which encountered sound rock at shallow depth. However, tunnel sections with burden less than 50 m above tunnel roof are thought to possibly encounter locally rock mass which is slightly weakened by weathering, hence, requiring systematic rock bolting etc. (class III, Stat. 7+210 to 7+310), and in places rock strength may be markedly reduced requiring steel ribs etc.(class IV, Stat. 7+310 to 7+360).

According to the results of core drilling and pitting excavation for portal construction will comprise relatively small volumes of overburden and highly weathered rock.

(3) Geotechnical Aspects of Design and Construction Conditions

,Following is a brief discussion on some geological - rock mechanical aspects of certain design and construction considerations:

Feasibility design provides for concrete lining of the headrace and tailrace tunnels. With regard to the external and internal hydrostatic pressures acting on the lining and as to dealing with them the following assumptions should be made:

- Head of external water pressures should be taken as to equal surface levels above tunnel roof since field observations suggest that during the rainy season ground water levels are generally close to surface;
- Along lined tunnel sections contact grouting and consolidation grouting of the surrounding rock should be foreseen to consolidate rock shattered due to blasting. However, there are no tunnel sections where internal pressures are greater than external pressures, hence, requiring consolidation grouting to prevent leakage from the tunnel into the surrounding rock mass; this is due to topographic conditions.

As to excavation conditions some general remarks may be adequate:

During excavation pervious fracture zones will be intersected and provisions will have to be made as to dealing with such conditions (technical and contractual)(30).

4.4 Powerhouse, Surge Shaft and High Pressure System

4.4.1 Topography and Geomorphology

The new location of the powerhouse, surge shaft and high pressure system is within an isolated hill along the ridge which is surrounded by pronounced saddles, valleys and ravines. Morphological elements such as these are generally related to geological features. Elsewhere in the project area it was observed that saddles, gullies etc. are controlled by fracture zones which consist of one or more zones of closely fractured rock of a few metres up to some ten or twenty metres width. They may also be related to tectonized or

less weathering-resistant rock. Currently the nature of these geological features is not known. On the other hand, indirect information obtained from seismic survey does not suggest the occurrence of highly fractured or weak rock including deep reaching weathering in saddle areas, for such features would be reflected by lower velocities. However, as is pointed out by P.o.E. (30), it would be prudent to maintain as much distance between them and the underground structures as possible.

4.4.2 Geological Assessment

(1) Weathering and Overburden

With respect to the weathering profile on the morphological knob that accomodates the powerhouse cavern and related structures results of two drill holes - KK 42 (new surge shaft) and KK 43 (powerhouse, in progress) - are at hand. Additionally, relevant information can be obtained from drill holes KK 7 (old surge shaft) and KK 29 (saddle near old surge shaft). Findings are that depth of weathering is relatively shallow to moderately deep. In drill holes KK 42 and KK 43 fresh rock is available at depths ranging from about 15 m (KK 43) to 20 m (KK 42). Water pressure tests in drill hole KK 42 reveal some moderate permeability (10 and 5 Lugeon at low pressures) of fractured sections (at about 45 and 65 m, respectively), and no oxidation was observed on joints at that depth. On the other hand, rock cover above power cavern is about 180 m, so that influence of weathering need not be expected.

(2) Rock Types and Rock Mass Parameters

According to results of drill holes KK 42 (surge shaft) and KK 43 (powerhouse), the latter one having currently a depth of about 140 m, as well as geological mapping and results of relatively nearby drill hole KK 7, dominant foundation rock types include biotite gneiss, garnetiferous biotite gneiss, charnockitic gneiss and quartz-feldspar gneiss. Occasionally layers of quartz-rich biotite gneiss, hornblende-biotite gneiss, amphibolite and pegmatitic quartz-feldspar gneiss were found (for some more petrographic details of rock types refer to chapter 4.3.2, para (2).

Strength of intact rock material can be extrapolated from point load tests done on core material of drill hole KK 42 and nearby KK 7. Uniaxial compressive

strength of all rock types is high, about 150 to >200 MPa, and petrographic variations are of no significance for the strength of the rock mass.

With respect to further parameters required for rock mass classification as for instance RQD, spacing and conditions of joints as well as groundwater conditions evidence currently at hand is of satisfactory degree of confidence for feasibility design assumptions:

- RQD values are available from drill holes KK 42 and KK 43; on average values are high ranging between about 90 to 100%;
- With respect to spacing of foliation joints it can be said that gneissic fabric
 of biotite gneiss is generally well developed whereas it is less pronounced
 in charnockitic gneiss and quartz-feldspar gneiss resulting in about 1-3 m
 and > 3m spacing, respectively;
- Estimates of joint spacing from core material is somewhat problematic, however, on the assumption that two major joint sets are present (in addition to foliation) and inclination is generally steep, about 70 to 80°, average spacing of both joint sets is estimated at about 1 to 3 m, which is true, of course, only for the sound rock mass portions between fracture zones which are thought to occur at the periphery of the cavern;
- Conditions of joints can be observed on core material with sufficient accuracy; joint planes are predominantly slightly rough and somewhat undulated (JRC = 6 10) whereas foliation planes are often smooth due to biotitic coating (JRC = 2 4);
- Groundwater conditions can be assessed on the basis of water pressure tests that have been continuously carried out in drill holes KK 42 and KK 43. Test results indicate virtually impervious rock even at relatively high pressures of 30 bars that have been applied. Low to moderate permeability was observed in only three sections of drill hole KK 42 (39 to 45 m, 63 to 66 m and 100 to 103 m).

(3) Structural Geology

The area of the powerhouse and appurtenant structures is difficult to access and, therefore, information on structural geology is scarce. It appears that overall dip direction of the rock mass of the entire ridge is towards W to SW, i.e. towards Makeliya Dola. In adjoining areas a number of minor fold axes was identified, hence, relative irregular structural conditions may be assumed to prevail at the powerhouse site. Tentatively, average orientation of foliation may be taken as:

 $Fol = 240-260/50-70^{\circ}$

As was already mentioned, the hill containing the powerhouse and appurtenant structures is framed by a number of linear topographic features i.e. saddles, valleys, gullies etc., which most certainly are related to geological features probably in the form of fracture zones consisting of closely jointed, possibly also sheared rock portions. Based on photo-geology it is assumed that dip is more or less subvertical while approximate strike directions are as follows:

Zone $1 = N 070^{\circ} E$ Zone $2 = E 110-115^{\circ} S$

4.4.3 Geotechnical Investigations

Core Drilling

At the sites of the powerhouse cavern and the upstream surge shaft two drill holes were proposed each 230 m deep (see Tab. 1). At the time of report compilation (August 17th) the powerhouse hole was still in progress (140 m).

Drill holes were/are to be performed with rotary drilling equipment (for some more drilling details refer to chapter 4.2.3). Both drill holes are vertical. It certainly would have been desirable to measure the orientation of such deep holes, however, no adequate measuring device could be made available by the contractor or the client. On the other hand, it need not be assumed that deviation of the drill holes could be so substantial that interpretation could be hampered. Geological and drilling details of drill holes KK 42 and KK 43,

up to present depth, are given in the "Logs for Engineering Purposes" (see Tab. 13).

Objectives of drill holes in the powerhouse area include the following:

- Investigation of depth and nature of overburden (open cut excavation of surge shaft), rock types, rock characteristics etc. (rock mass classification),
- Identification of zones of close fracturation (powerhouse location, stability),
- Assessment of prevailing rock mass conditions with respect to quality of rock (stability),
- Assessment of groundwater conditions (permeability),
- Provide test sections for hydrofracturing tests.

Borehole Tests and Instrumentation

Water pressure tests (Lugeon-type) were (are to be) carried out to assess permeability conditions and to provide additional information on rock quality (high pressures to be applied) (results are shown in drill logs, Tab. 13).

Drill holes were/are to be constructed in such a way as to enable performance of hydraulic fracturing tests later on as well as to measure water tables after completion.

Material Testing

Point load tests will continue as additional core material becomes accessible to provide additional input data for rock mass classification.

Test Adit

Three alternative alignments for test adit excavation were proposed. It is the primary objective of the adit to provide first hand information on geologic structure and, secondly, to provide locations for rock mechanical testing.

Proposals of three local firms are available and are currently being evaluated. It is JVK's and the P.o.E.'s opinion that only alternative no. 2 (medium steep

slope and medium length) which could be developed for use as a permanent cable tunnel should receive further consideration.

Rock Mechanical Testing

Considering the new test adit alignment and the subsequent change of available test locations the previously proposed rock mechanical testing programme has to be modified:

- In-situ Testing

1. Hydraulic Fracturing Tests

a. Surge Shaft

10 tests in existing drill hole (KK 42) (in order to measure minimum principal stress);

b. Power Cavern

Required 3 drill holes (450 to each other), 10 tests per drill hole: total of 30 tests;

2. Small Flat Jack Tests

Required 10 nos.

3. Dilatometer Tests

Required 6 nos. in 3 drill holes of different orientation: total of 18 tests.

- Laboratory Tests
- 1. Uniaxial Compressive Tests

Required 10 nos. per rock type: total of 30 tests

2. Triaxial Compressive Tests

Required 6 nos. per rock type: total of 18 tests

3. Brazil Tests

Required 16 nos. per rock type: total of 18 tests

Currently it is assumed that the rock mass in the area of the powerhouse and appurtenant structures is of excellent physical characteristics. If this assumption would be confirmed by test adit excavation it will be considered to reduce the amount of in-situ and lab testing (reduction of hydrofracturing tests to about 5 tests per hole; omission or reduction of dilatometer tests; omission of lab tests apart from about 10 uniaxial compression tests to calibrate point load tests). Decission could be made after excavation of the initial 100 m of the test adit.

4.4.4 Geotechnical Assessment

(1) Rock Mass Classification and Support

Presently rock mass classifications relevant for the area of the powerhouse and appurtenant structures are being based on a limited amount of firm data. Main available evidence is the core recovery of the surge shaft drill hole KK 42 and the powerhouse drill hole KK 43 which is currently about 140 m deep. As to the geological parameters used for classifications reference is made to para 4.4.2. It should be noted that this classification is strictly relevant only for the sound rock mass between assumed fracture zones (for results see Fig. 13).

For fracture zones assumed to occur at the periphery of the powerhouse no data are at hand as to the relevant geomechanical parameters. In order to present at least the possible range of rock mass quality that can reasonably be expected, parameters are extrapolated from observations of similar features elsewhere in the project area. Results of rock mass classification are summarized in one geotechnical section (Fig. 13).

No attempt was made to estimate the required support due to the preliminary character of the available data. Additionally, it should be noted that geotechnical section and employed data are considered preliminary and will be updated as more data become available in the course of ongoing investigations (drilling, test adit, rock mechanical testing).

(2) Geotechnical Domains at Powerhouse and Appurtenant Structures

The rock mass in which the structures are to be excavated is divided into a number of domains, i.e. zones in which certain geological features are more or less uniform within each region. It is currently assumed, which is of course quite arbitrary but is due to the lack of relevant data, that the powerhouse as well as the lower section of the upstream surge shaft including pressure shaft and the entire downstream surge shaft are located within one structural domain which is characterized by sound and massive rock. Rock mass quality values resulting from classification based on above refered rock characteristics indicate very good rock mass quality of this material with RMR ratings ranging from 82 to 92 and Q values ranging from 30 to 33 (see Fig. 13). The resulting preliminary rock mass parameters may be taken from Tab. 9.

Above mentioned fracture zones are tentatively assumed to be located at the periphery of the structures which will have to be confirmed by test adit excavation.

The upper sections of the upstream surge shaft would have to be grouped into separate domains, of more or less horizontal extension, which is due to the influence of weathering on rock mass quality and related geotechnical conditions (see Fig. 13). Based on the results of drill holes KK 42 and KK 43 (presently at 140 m) three separate geotechnical domains can be identified. The uppermost zone from 0.00 to 10.00 m below ground level corresponds essentially soil mechanical conditions. From 10.00 to about 20.00 m rock mass classification yields RMR ratings from 44 to 58 and Q values from 4.8 to 29 corresponding fair quality rock (see Tab. 6).

(3) Geotechnical Aspects of Design and Construction Conditions

Major considerations in the design of a large underground structures are orientation, shape, dimensioning, support and reinforcement requirements and excavation sequence. Obviously, at this date when firm data are lacking, it appears unconvenient to indulge in speculations on, for instance, magnitude and direction of primary stresses, location and nature of fracture or fault zones etc. Following are, therefore, only a few general remarks on some of the above aspects:

Orientation

The feasibility design provides for the longitudinal axis of the cavern to be perpendicular to foliation which is thought to be the dominant discontinuity set. However, this assumption will have to be confirmed by test adit excavation. There is a possibility that cavern side walls are parallel to a major discontinuity set (E-W joints) which may be geomechanically more relevant. This is of particular concern if a cavern with vertical side walls would be considered.

On the other hand, if high stress conditions are to prevail, which is however not very likely, magnitudes and directions of principal stresses are of equal importance as to the general objective to orientate the structure in such a manner that minimizes instability. In intact rock instability implies failure due to excavation-induced stresses higher than rock strength. In closely jointed rock it is related to sliding of rock wedges into the opening. Size, shape and orientation of each block depends on joint orientation whereas the normal and shear forces developed along discontinuity planes depend on the stress state.

Above stated clearly indicates the significance of the test adit and rock mechanical testing for final design assumptions.

- Shape

Currently the shape of the power cavern is designed to suite its function and to minimize stress concentrations and accumulation of stored strain energy in order to optimize stability. P.o.E. recommends to consider a vertical sided cavern. There are indications that this would be acceptable since it is unlikely that the in-situ stress field is high in comparison to rock mass strength. Most certainly, however, orientation of the cavern would have to be optimized with respect to the geomechanically relevant discontinuity set. This again indicates the relevance of rock mechanical investigations and test adit excavation.

- Dimensioning

Dimensions of the cavern are of course governed by functional aspects. However, with respect to the assumed presence of fracture zones at the periphery of the cavern there appears to be a possibility for optimization of dimensions, this is also true with regard to the location of the cavern, in order to avoid intersection with closely jointed rock zones and related instability. In this context the need for the test adit becomes evident one more time.

- Support and Reinforcement, Excavation Sequence

These design steps are typically done by numerical modelling for which information on the in-situ stress state is of paramount importance.

With respect to geotechnical conditions prevailing at the high pressure shaft, main aspect is as to what extent steel lining is required. Present indication is that the rock mass is sufficiently strong and sound to prevent leakage and hydraulic fracturing in the high pressure shaft so that steel lining beyond the currently designed levels would not be needed. Obviously, final decision can be made only after results of rock mechanical testing are at hand.

CHAPTER 5. COMPARATIVE ASSESSMENT OF ELIMINATED CANDIDATE SITES

5.1 General

5.2 Geological-Geotechnical Aspects of the Area of Eliminated K-K 205

5.2.1 General

When K-K plan was initially formulated as an alternative to K-P plan two alternative dam sites were identified about 1.3 and 1.65 km downstream of K-P dam site. The downstream site (K-K 205) was considered suitable only for a diversion structure due to topographic conditions while the upstream site (K-K 230) was designated for a low CFR-type dam as well as for a concrete weir.

5.2.2 Topography and Geomorphology

At K-K 205 dam site the valley bottom is relatively wide thus providing sufficient space for the desilting basin of a diversion weir. Slope angles at the left bank are moderate at about 20° while right bank slopes rise relatively steeply at about 30°.

Orientation of the initial section of the headrace tunnel is about W 305 N so that it would traverse at more or less right angles a series of parallel ridges and intercalated valleys. Mountain crest levels rise to about 420 m, while valley bottoms are at about 250 m. Following a sharp bend, tunnel alignments of all alternatives are identical and more or less in the centre of a NW-SE massive ridge. The ridge and, hence, the tunnel alignment are sub parallel to foliation. The ridge is intersected by saddle zones reflecting E-W fracture zones (photolineaments). Crest levels between saddle areas are at elevations of about 380 m amsl.

5.2.3 Geological Assessment

(1) Weathering and Overburden

At K-K 205 dam site the left bank flood plain is about 100 m wide. Due to analogous geological conditions for the river section and adjoining flood plain the weathering profile corresponds more or less to that of the adjoining upstream K-K 230 site (see Fig 15). That was confirmed by the results of 8 drill holes and 1600 m seismic survey.

Along right abutment slopes an average of about 8 m weathered rock may be tentatively assumed while at the left bank thickness is about 15 m.

Along waterways alignments rock outcrops are frequently found to make up mountain crests and steep slopes. Similarly, along river beds such as Hulukiri and Makeliya Dola rock is often exposed. On slopes it appears that weathering is relatively deeper on flat slopes. However, this latter statement cannot be based on drilling results but on field observations only.

(2) Rock Types and Rock Mass Parameters

According to results of core drilling at K-K 205 rock types including biotite gneiss, amphibolite and charnockite would make up the foundation of a diversion weir. However, in general terms it can be stated that sound rock of any of the prevailing gneissic rock types would make up a suitable foundation. For more petrographic details refer to chapter 4.2.2 and 4.3.2.

At the left bank flood plain overburden consists of residual soil, talus and alluvium. Nature of this material is generally very heterogeneous. To investigate soil mechanical characteristics a number of test pits was proposed. However, excavation was delayed so that no first hand information is available. Only source to estimate strength characteristics are results of SPT tests carried out in drill holes (see Tab. 11). For estimated soil mechanical characteristics refer to Tab. 9.

Along waterways alignments a variety of gneissic rock types was identified during geological mapping including biotite gneiss, hornblende-biotite gneiss, charnockite, amphibolite etc. The observed rock mass is generally massive but

is traversed at irregular intervals by fracture zones. In massive portions spacing of discontinuities is about 1-3 m, while it is about 0.05-0.3 m in fracture zones. This observation is supported by results of core drilling which show high RQD values between about 90 and 100 %. For some more details on rock types and rock mass parameters along waterways reference is made to chapter 4.3.2.

(3) Structural Geology

(A) General

At the dam site area a first order anticline was identified by geological mapping to traverse the dam foundation of K-K 205 dam site at the left bank flood plain. The axis of the anticline can be traced further upstream where it is found at the upper slopes of the left abutment of K-P dam site, while towards downstream subhorizontal foliation planes in the river bed, some 300 m downstream of the dam axis, are assumed to reflect the vertex of the anticline.

Geological mapping along the waterways alignment revealed the presence of three fold structures of regional extension. Additionally, a number of minor fold elements could be located (see Fig 15).

Prominent fracture zones are oriented E-W to NE-SW. Morphologically they are represented by saddles as well as gullies which can be found at both dam site areas as well as along the mountain ridge that accommodates the waterways structures. Additionally, a NW-SE photo-lineament, that traverses the dam site area about 300 m downstream of K-K 205 dam axis, is currently interpreted as manifestation of a fracture zone.

(B) Foliation

Orientation of foliation is perpendicular to K-K 205 dam axis. Due to the presence of above mentioned anticline dip is towards SW at the left abutment while it is towards NE at the river section and the right abutment, so that at both abutments foliation dips into the slope which is, in general terms, favourable with respect to stability of natural or cut slopes. The following maxima were obtained (see Fig. 18):

Fol₁ = 224-260°/33-50° Fol₂ = 052-074°/46-68°

As was mentioned above a number of minor and major fold elements exists along the waterways alignment resulting in both SW as well as NE dip direction of foliation (locations can be seen on Fig 17). The following distribution was measured (see Fig. 17):

Fol₁ = $245-265^{\circ}/50-70^{\circ}$ (prominent) Fol₂ = $065-085^{\circ}/50-70^{\circ}$

(C) Jointing

At K-K 205 dam sites outcrops are too scarce to obtain a great number of joint readings. However, sufficient readings were taken at representative locations further upstream and downstream indicating the presence of two major joint sets. JS 1 is more or less parallel to the dam axis with steep dip angles towards downstream and occasionally upstream. This joint set represents above mentioned E-W fracture zones. The second joint set is perpendicular to the dam axis corresponding to the longitudinal system with respect to fold geometry.

The following distribution was measured (see Fig. 18):

JS 1 = 172-1940/65-900

 $JS 1A = 343-360^{\circ}/70-90^{\circ}$

 $JS 2 = 298-308^{\circ}/70-80^{\circ}$

 $JS 2A = 110-120^{\circ}/55-65^{\circ}$

Photo-geology and field observations suggest that both joint sets will be present along the alignment of waterways.

(D) Faults

There is no physical evidence for the presence of a fault or shear zone of any significance. However, at K-K 230 dam site a mylonitic seam was encountered in drill hole KK 3 possibly representing a shear zone which would probably run parallel to above mentioned anticline axis. According to the prevailing general structural conditions the presence of similar elements may be inferred.

5.2.4 Geotechnical Investigations

Core Drilling

At the sites of the weir structure, intake and desander a total number of 8 drill holes was carried out amounting to a total of 205 drilling metres (see Tab. 1).

All drill holes were performed with rotary drilling equipment using double tube core barrels in hard rock. In soft rock such as residual soil, talus and decomposed rock dry drilling techniques were partly employed using single tube core barrels. Drill holes were vertical. A summary of the results including collar elevations, coordinates, length of drill hole, elevation of weathering grades of rock, overburden and instrumentation with piezometers is shown on Tab. 5. Geological and drilling details of drill holes are given in the "Logs for Engineering Purposes" (see Tab. 13).

Objectives of drill holes at various sites included the following:

- Identification of zones of weathering and close fracturation (weir axis),
- Assessment of permeability (weir axis),
- Investigation of depth and type of overburden (all structures),
- Assessment of prevailing foundation conditions with respect to availability and quality of rock (all structures).

Borehole Tests and Instrumentation

Water pressure tests (Lugeon-type) were carried out in drill hole sections where packers could be sealed properly (results are shown in drill logs, Tab. 13).

In soil sections of drill holes Constant Head tests were carried out in order to determine permeabilities.

In order to assess strength characteristics of soils SPT tests were carried out.

Installation of piezometers was done in three drill holes.

Geophysical Investigations

Four seismic profiles along the weir axis, on either bank of the river and along the headrace tunnel intake were carried out for assessment of the weathering profile (locations see Fig. 2. 3/9).

Test Pits

A total number of 21 test pits was proposed at the weir and desander areas. Objective was to establish the presence and character of soils and weathered rock and to collect samples for material testing. Excavation was delayed and later on skipped owing to the relocation of the weir site.

Material Testing

Point load tests were carried out on rock cores recovered from drill holes (see Tab. 14).

5.2.5 Geotechnical Assessment

(1) Weir and Appurtenant Structures

(A) Foundation Conditions of Weir

(a) Excavation

On the basis of 8 drill holes, located at both banks of K-K 205 dam site, 1600 m of seismic profils along the dam axis and along both banks of the river, which included the longitudinal axis of the desander, as well as field observations during geological mapping the following approximate foundation levels would be assumed at K-K 205 dam site (see Fig. 15):

The concrete weir should be founded on bedrock owing to the expected heterogeneity and poor geomechanical characteristics of the weathered material. The bedrock level appears to be irregular. Along the dam axis suitable rock is available at depths ranging from 3 to 15 m while at the left bank, immediately upstream and downstream of the axis, weathered material may extend as deep as 15 to 20 m.

At the left bank flood plain excavation would comprise up to 12 m of unsuitable weathered rock while in the river section only trimming of about 3 to 5 m slightly weathered rock would be needed; alluvial deposits seem to be more or less absent in the river bed. On the right abutment lower slopes about 10 to 15 m of highly weathered rock are likely to be encountered, whereas on the upper slope sections unsuitable weathered rock may extend only down to about 3 to 5 m.

(b) Permeability and grouting

Rock mass permeability has been investigated by a considerable number of water pressure tests which have been conducted in drill holes along the dam axis (KK 9, KK 10 and KK 20) in the foundation area of the desander (KK 16, KK 18, KK 20 and KK 21) as well as in the tunnel intake area (KK 11, KK 12).

Summarizing it can be said that generally low water absorptions (Lugeon values ranging from 0 to about 5) reflect the predominantly massive character of the rock mass and its low overall permeability. In places moderate water absorption was recorded (Lugeon values up to about 20) where narrow zones of close rock fracturation were intercepted.

As to the effect of the structural pattern to underseepage of the weir orientation of foliation and longitudinal joints is clearly unfavourable. These discontinuity sets are perpendicular to the dam axis thus providing direct upstream/downstream seepage paths. A third joint set has been identified which is more or less parallel to the dam axis. However, interpretation of the water pressure tests is quite complex as to the proportion of water losses each discontinuity set contributes to the overall rock mass permeability (see discussion in chapter 4.2.4).

As to the need of grouting works, considering the type of structure as well as the prevailing foundation conditions, curtain grouting of similar specifications as proposed for the new weir site would appear adequate (see chapter 4.2.4). No significant problems would have to be expected in execution of an effective grout curtain.

(c) Stability of foundations and slopes

With respect to foundation stability it can be stated that the sound rock has sufficient strength to support a dam and appurtenant structures of the envisaged size. Orientation of foliation, which is the dominant structural element, is perpendicular to the dam axis and would therefore have no hazardous effect on foundation stability.

A plot of main discontinuity sets shows that there is no potential for unfavourable intersections and consequent formation of unstable rock wedges.

Due to the presence of the above mentioned anticline structure within the dam foundation area there is a possibility that features of similar nature and orientation of that observed at KK 230 dam site would occur. However, such features could be easily treated by dental concrete at foundation levels while at depth they would be intercepted by the grout curtain.

Slope stability conditions would be favourable owing to the presence of above mentioned anticline structure which results in components of foliation dip being directed into the slope at either abutment.

(B) Diversion

Diversion would be done through the desander and, hence, no separate structure would be needed.

(C) Desander

The desander should also be founded on rock, firstly, because underseepage would be difficult to control if it was to be founded on soil of heterogeneous characteristics and, secondly, because of the extremely irregular "top of sound rock" level which would result in extremely different bearing capacities at any intermediate foundations level.

Consequently, due to the great depth of overburden and weathered rock (see Fig. 16) a tremendous amount of soil and rock excavation would be needed.

(2) Waterways

Tunnel alignments of K-K 205 and K-K 230 alternatives are for most sections identical. Even in the initial sections, which take slightly different routes, geological conditions can be considered analoguos. Therefore, geotechnical

situation of both alignments is summarized in one single geotechnical profile presented in Fig. 17. The information contained in the section is mainly based on geological mapping as well as on three drill holes located at the crossing of the Hulukiri Dola (KK 6), at the location of the surge shaft (KK 7) and at the saddle near the surge shaft (KK 29).

It is not possible to indicate specific rock types in particular tunnel sections which is due to difficult access and the lack of outcrops as well as the variability of the prevailing rock types (biotite gneiss, hornblende-biotite gneiss and charnockite, for further petrographic details see chapter 4.3.2). However, an attempt was made to delineate the structural pattern along the tunnel alignment. About two distinct homogeneous zones with respect to structural conditions can be differentiated:

From the portal to about station 3+000 wide spanned folding is predominant. Orientation of the dominant structural element is more or less perpendicular to the tunnel axis.

In the following tunnel section up to the outfall structure foliation is subparallel to the tunnel alignment. Geological mapping revealed the presence of a number of anticlinal and synclinal fold elements so that foliation dip is at medium steep angles towards either SW (dominant) or NE. In general terms such a situation can be considered fair, particularly with regard to the massive character of the prevailing rock types.

Classification of the rock mass along the tunnel alignment (CSIR and NGI classification and a project-specific support classification are adopted) shows that in both tunnels good to very good rock will be available for most tunnel sections (86 % class I in headrace tunnel and 83 % class I in tailrace tunnel). Relative length of other rock classes is shown in Fig 17.

(3) Powerhouse, Surge Shaft and High Pressure System

The underground powerhouse and associated structures are located in a massive northwest-southeast trending ridge. Burden above the cavern roof is about 300 m. Therefore it can be assumed that the rock mass is not affected by weathering.

No firm data on rock types and rock mass parameters are available that are based on geotechnical investigations. The main source of information are field observations during geological mapping along some accessible sections of the tunnel alignment as well as results of one drill hole located at the surge shaft. Additionally, extrapolations can be made from investigations conducted at the new powerhouse location. The following assumptions are tentatively made:

The prevailing rock comprises biotite and hornblende-biotite gneiss, as well as charnockitic gneisses. Uniaxial strength is high and is between 150 and 200 MPa, with some charnockitic and quartz-rich gneisses even exceeding 200 MPa. Spacing and conditions of discontinuities are thought to be similar to those described for the new powerhouse location (see chapter 4.4.2).

On the basis of such information it could be assumed that underground excavation conditions for the power cavern and surge shaft facilities are very favourable. It appears that this location is situated in a more massive portion of the ridge than the new powerhouse site, it would, therefore, seem that in a direct comparison with the new powerhouse location this site would present more favourable conditions.

However, this powerhouse site was omitted on considerations regarding length of access tunnel and separate cable and ventilation tunnels.

5.3 Geological-geotechnical Aspects of the Area of K-K 230

5.3.1 General

K-K plan was formulated as an alternative to K-P plan. Two alternative dam sites were identified about 1.3 and 1.65 km downstream of K-P dam site. The upstream site (K-K 230) was designated for a low CFR-type dam as well as for a concrete weir.

5.3.2 Topography and Geomorphology

At K-K 230 dam site the valley cross section is narrow and V-shaped. Slopes are more or less regular and average slope angle, up to about 240 m asl elevation, is about 350 at the left bank, while it is about 250 at the right bank.

Towards upward slopes continue with flat sections of about 220 at the left bank and of about 180 at the right bank.

In its initial section headrace tunnel alignment will at right angles traverse a series of parallel mountain chains and intercalated valleys. Ridge crest levels are about 420 m asl, while valley bottoms are at about 250 m asl. Following a sharp bend, tunnel alignment is more or less in the centre of a NW-SE massive ridge with crest levels of about 380 m asl.

5.3.3 Geological Assessment

(1) Weathering and Overburden

Weathering conditions can be concluded from the results of three drill holes (KK 1 through 3), one seismic profile along the dam axis as well as field observations made during geological mapping of the dam site area (see Fig. 19).

At the lower slope sections of the left abutment continuous outcrops of sound and massive rock can be observed. Towards the upper slope sections the sound rock is covered by a thin layer of overburden, which is revealed by the results of seismic profiling.

Core material recovered from drill hole KK 3 shows that at the left bank flood plain weathered talus material occurs to a depth of 9 m underlain by 0.3 m of alluvial clay and followed by 1.7 m of moderately weathered rock. That suggests the existence of a re-filled river channel which is possibly filled with ancient landslide material. On the other hand, outcrops of slightly weathered rock, some 100 m upstream of K-K 230 dam axis, indicate that at the central part of the river section sound foundation rock will be available at shallow depths.

At the right abutment few outcrops of highly weathered rock can be seen along a shallow gully just downstream of the dam axis. According to results of two drill holes, which confirm the findings of the seismic survey, considerable depth of weathering can be expected: sound rock would be available at about 15 to 20 m at the lower slope sections, while at upper slopes it would be found about 10 m deep. Character, depth and shape of the

weathering profile are very similar to those found at K-P dam site where corresponding geologic-geomorphologic conditions are found.

Along waterways alignments rock outcrops are frequently found to make up mountain crests and steep slopes and, similarly, rock is often exposed along river beds such as Hulukiri and Makeliya Dola. Drilling results of drill holes KK 6 (Hulukiri crossing), KK 7 (surge shaft of eliminated K-K 205), KK 29 (saddle near surge shaft) and results of drill hole KK 42 (surge shaft of selected K-K 205) as well as results of seismic survey confirm the field observations. On the other hand, deep weathering may be inferred on moderate and flat slopes.

(2) Rock Types and Rock Mass Parameters

Rock outcrops are scarce except for the lower sections of the left abutment where massive biotite gneisses would make up the foundation of a low dam. According to results of drill holes KK 3 and KK 2 biotite gneiss with intercalated charnockite and hornblende-biotite gneiss forms the river section and the lower right bank slopes, whereas charnockite makes up the upper right bank slope sections as shown by the recovered core material of drill hole KK 1.

Apart from above mentioned left bank outcrop of massive gneiss the nature of the rock mass has to be derived from drill cores. Core material of KK 3 has high RQD values indicating that the massive character of the rock mass continues, at least partly, underneath the left bank flood plain. The excellent quality of this material is underlined by its complete impermeability (according to WPT). Nature of the core material of KK 1 and KK 2 is somewhat irregular which is manifested by relatively variable RQD-values which are generally high but are nil in places. Water pressure tests generally reflect such inconsistency. However, water takes are generally low to moderate, so that in general terms it can be stated that sound rock of any of the prevailing gneissic rock types would make up a suitable foundation (for rock mass parameters see Tab. 9).

Along waterways alignments a variety of gneissic rock types was identified during geological mapping including biotite gneiss, hornblende-biotite gneiss,

charnockite, amphibolite etc. The observed rock mass is generally massive but is traversed at irregular intervals by fracture zones.

For further details reference is made to chapters 4.3.4 and 5.2.5.

(3) Structural Geology

(A) General

At the dam site area a first order anticline was identified by geological mapping to traverse the dam foundation at the left bank flood plain. The axis of the anticline can be traced further upstream where it is found at the upper slopes of the left abutment of K-P dam site, while towards downstream it approaches the river channel. Subhorizontal foliation in the river bed at the upstream end of the S-shaped riverbend, some 600 m downstream of K-K 230 dam axis, may reflect the vertex of the anticline.

Geological mapping along the waterways alignment revealed the presence of three fold structures of regional extension. Additionally, a number of minor fold elements could be located (see Fig. 17).

Prominent photo-lineaments are oriented E-W to NE-SW. Morphologically they are represented by saddles as well as gullies which can be found at the dam site area as well as along the mountain ridge which accommodates the waterways structures. Additionally, a very prominent NW-SE photo-lineament, which can be traced for about 15 km, crosses the dam site area about 600 m downstream of K-K 230 dam axis, and is interpreted as manifestation of a fracture or fault zone.

(B) Foliation

Orientation of foliation is perpendicular to K-K 230 dam axis. Due to the presence of above mentioned anticline dip is towards SW at the left abutment while it is towards NE at the river section and the right abutment, so that at both abutments foliation dips into the slope which is, in general terms, favourable with respect to stability of natural or cut slopes. The following maxima were obtained (see Fig. 20):

 $Fol_1 = 054-079^{\circ}/44-72^{\circ}$ $Fol_2 = 227-253^{\circ}/32-45^{\circ}$

As was mentioned above a number of minor and major fold elements exists along the waterways alignment resulting in both SW as well as NE dip direction of foliation (locations can be seen on Fig 17). The following distribution was measured (see Fig. 17):

 $Fol_1 = 245-265^{\circ}/50-70^{\circ}$ (prominent) $Fol_2 = 065-085^{\circ}/50-70^{\circ}$

(C) Jointing

At K-K 230 dam site outcrops are too scarce as to obtain sufficient numbers of joint readings. However, some readings were taken further upstream and downstream at representative locations indicating the presence of two major joint sets. JS 1 is more or less parallel to the dam axis with steep dip angles towards downstream and occasionally upstream. This joint set represents above mentioned E-W fracture zones. The second joint set is perpendicular to the dam axis corresponding to the longitudinal system with respect to fold geometry.

The following distribution was measured (see Fig. 20):

JS 1 = 188-208°/56-75° JS 2 = 287-316°/43-63°

Photo-geology and field observations suggest that both joint sets will be present along the alignment of waterways.

(D) Faults

In drill hole KK 3 a mylonitic seam of 0.5 m width was encountered at a depth of about 49 m possibly representing a shear zone running parallel to above mentioned anticline axis. The fault seems to act as an aquiclude for an eruption of artesian water in this drill hole. In drill hole KK 2 corresponding conditions were encountered. At almost identical depth the hole struck artesian water of almost identical chemical

composition (see Tab. 16) so that it is reasonable to infer that sources are of the same origin.

5.3.4 Geotechnical Investigations

Core Drilling

Along the dam axis a total number of 3 drill holes was carried out amounting to a total of 200 drilling metres (see Tab. 1).

All drill holes were performed with rotary drilling equipment using double tube core barrels in hard rock. In soft rock such as residual soil, talus and decomposed rock dry drilling techniques were partly employed using single tube core barrels. Drill holes were vertical except for drill hole KK 2 which was inclined to investigate the river section. A summary of the results including collar elevations, coordinates, length of drill hole, elevation of weathering grades of rock, overburden and instrumentation with piezometers is shown on Tab. 5. Geological and drilling details of drill holes are given in the "Logs for Engineering Purposes" (see Tab. 13).

Objectives of drill holes at various sites included the following:

Identification of zones of weathering and close fracturation (dam axis),

Assessment of permeability (dam axis),

Investigation of depth and type of overburden (all structures),

Assessment of prevailing foundation conditions with respect to availability and quality of rock (all structures).

Borehole Tests and Instrumentation

Water pressure tests (Lugeon-type) were carried out in drill hole sections were packers could be sealed properly (results are shown in drill logs, Tab. 13).

In soil sections of drill holes Constant Head tests were carried out in order to determine permeabilities.

In order to assess strength characteristics of soils SPT tests were carried out.

Installation of piezometers was done in two drill holes.

Geophysical Investigations

One seismic profile was carried out along the weir axis for assessment of the weathering profile (location see Fig. 2. 3/9).

Material Testing

Point load tests were carried out on rock cores recovered from drill holes (see Tab. 14).

5.3.5 Geotechnical Assessment

(1) Dams and Appurtenant Structures

(A) Foundation Conditions of Dams

(a) Excavation

On the basis of three drill hole, results of seismic survey as well as field observations during geological mapping the following foundation levels may be assumed at K-K 230 dam site (see Fig 21):

The shell of a CFR dam would need minimal excavation at the left abutment slope. At the adjoining section of the left bank flood plain excavation would comprise up to 12 m of unsuitable weathered rock while in the river section only trimming of about 3 to 5 m slightly weathered rock would be needed since alluvial deposits seem to be more or less absent in the river bed. On the right abutment lower slopes about 10 to 15 m of highly weathered rock would be encountered, whereas on the upper slope sections unsuitable weathered rock extends only down to about 3 to 5 m.

For the plinth foundation additional excavation of about 5 m beyond shell excavation grades may be assumed.

A concrete weir should be founded on sound bedrock to avoid extensive foundation treatment that would be needed due to the heterogeneity and poor geomechanics parameters of the decomposed and highly weathered rock.

(b) Permeability and Grouting

Water pressure tests have been conducted in rock portions of all drill holes (KK 1, KK 2 and KK 3). Results show that the massive biotite gneiss making up the left abutment and most parts of the river section are practically impervious apart from the uppermost section of drill hole KK 2 where maximum water takes correspond to about 25 Lugeon. No water absorption was recorded in drill hole KK 3. Water pressure tests of some of these sections seem, however, not to adequately represent the recovered core material. In drill hole KK 1 which is located at the upper right abutment of a high dam water losses corresponding to about 15 to 30 Lugeon extend about 20 m deep. Summarizing the results of water pressure tests it can be assumed that the overall rock mass permeability is generally low to moderate in fresh and slightly weathered rock due to the predominantly massive character of the rock mass.

As to the effect of the structural pattern with regard to underseepage orientation of foliation and longitudinal joints is clearly unfavourable. These discontinuity sets are perpendicular to the dam axis thus providing direct upstream/downstream seepage paths.

However, scarce information on the joint pattern does not permit a conclusive interpretation of the water pressure tests regarding the question as to the proportion of the water losses each discontinuity sets contributes to the overall rock mass permeability. Drill cores show that foliation planes are mostly tight and, hence, do not significantly contribute to the overall rock

mass permeability. Joints of the two principal joint sets are also frequently tight but individual joint planes may be moderately open. This can be indirectly concluded from the results of water pressure tests which suggest mostly turbulent flow conditions to be attributed to few open joints.

As to the necessity of grouting works it is proposed that with respect to the considered type of structures as well as regarding the prevailing structural pattern grouting should be considered for both, a low CFR-type dam as well as for a diversion weir. The above said would suggest that groutability of the rock mass would be good and that no significant problems would have to be expected in the execution of an effective grout curtain. A low to moderate grout take could be expected.

(c) Stability of Foundations and Slopes

With respect to foundation stability it can be stated that the sound rock has sufficient strength to support a dam and appurtenant structures of the envisaged order. Orientation of above mentioned mylonitic zone is probably perpendicular to the dam axis and would therefore have no hazardous effect on foundation stability provided there is no extreme increase in thickness. Due to the presence of the above mentioned anticlinal structure there is a possibility that additional features of similar nature and orientation could occur within the dam foundation area. However, such features could be easily treated.

Slope stability conditions can be considered favourable owing to the presence of above mentioned anticline structure which results in foliation dip being directed into the slope at both abutments.

(B) Spillway

For the K-K 230 dam the conceptual design layout provides for a spill-way at the left abutment. According to assumed weathering depths the spillway foundation would be more or less completely on sound

bedrock (at designed levels). No slope stability problems are anticipated.

(C) Diversion

The layout for conceptual design provides for two diversion tunnels at the left abutment. With respect to the design concept it is proposed that distance between tunnels should not be less than 2.5 diameters. Also, in order to avoid interference with the grout curtain the tunnel alignment should be located sufficiently deep inside the abutment which would result in that tunnel excavation would be mostly in good rock.

(2) Waterways

The layout provides for a headrace tunnel of 5495 m length; tailrace tunnel length is 2535 m. The initial section of the headrace tunnel, up to about station 3+000, is about E-W, i.e. almost perpendicular to the orientation of foliation, while the remaining sections of the headrace and tailrace tunnels would be driven more or less parallel to the strike of foliation.

The geotechnical situation of the tunnel alignment, as currently assumed, is summarized in the geotechnical profile presented in Fig. 17. The information contained in the section is mainly based on geological mapping as well as on results of three drill holes located at the crossing of the Hulukiri Dola (KK 6), at the location of the surge shaft

(KK 7) and at the saddle near the surge shaft (KK 29).

Due to difficult access and the lack of outcrops as well as the variability of the prevailing rock types, biotite gneiss, hornblende-biotite gneiss and charnockite are grading into each other, pinching out etc., it is not possible to indicate specific rock types in particular tunnel sections. However, an attempt was made to delineate the structural pattern along the tunnel alignment. About two distinct homogeneous zones with respect to structural conditions can be differentiated: from the portal to about station 3+000 wide spanned folding is predominant. Orientation of the dominant structural element is perpendicular to the tunnel axis. That can be considered very favourable assuming that direction of tunnel drive will be with the dip.

In the following tunnel section up to the outfall structure foliation is parallel to the tunnel alignment. Geological mapping revealed the presence of a number of anticlinal and synclinal fold elements so that foliation dip is at medium steep angles towards either SW (dominant) or NE. In general terms such a situation can be considered fair, particularly with regard to the massive character of the prevailing rock types.

Classification of the rock mass along the tunnel alignment (CSIR and NGI classification and a project-specific support classification are adopted) shows that in both tunnels good to very good rock will be available for most tunnel sections (86 % class I in headrace tunnel and 83 % class I in tailrace tunnel). Relative length of other rock classes is shown in Fig 17.

(3) Powerhouse, Surge Shaft and High Pressure System

The underground powerhouse and appurtenant structures of this alternative are identical with those of Alternative K-K 205, reference is therefore made to chapter 4.4.4.

5.4 Geological-Geotechnical Aspects of the Area of K-P Alternatives (205, 230, 242) and of Alternatives Abandoned after Phase I

5.4.1 General

At the proposed dam site three alternative layouts, namely CFR-type dams with 242 m FSL and 230 m FSL, respectively, and diversion weir with 205 m FSL were considered in the conceptual design.

5.4.2 Geological Assessment

(1) Topography and Geomorphology

At the selected dam site the general orientation of the river is NW-SE, i.e. parallel to foliation. Abutment slopes are medium steeply inclined. The gradient of the left abutment is quite steady at about 27° while at the right abutment a number of low scarps interrupts the regular gradient of the slope

which is at an average of about 31°. Shallow gullies occur in the vicinity of the site probably following local fracture zones.

A morphological feature, that resembles strongly to a landslide, occurs at the left abutment some 100 m downstream of the dam axis. There the valley opens abruptly without an obvious structural control. However, apart from morphology, there are no other indications to support the notion of a landslide. It is therefore assumed that the morphological depression is formed due to the oblique intersection with the valley of a less weathering resistant rock layer, the tectonic position of which is controlled by the left bank anticline (see para on Structural Geology).

The tunnel alignment of Alternative IV, which was selected for geotechnical investigations of phase II-a, will traverse a series of parallel mountain chains with crest levels of about 400 m asl. Orientation of the mountain ridges is strikingly regular since it is strictly controlled by the prevailing structural pattern, i.e. a set of parallel anticlinal and synclinal structures. Intramountainous valleys of the same orientation probably reflect the presence of rock types that are somewhat more easily weathered and, additionally, there may be some influence of structural features as for instance fold axes, narrow shear zones etc. The results of seismic profiling indicate, however, that the rock mass in valleys is about as competent as in the adjoining mountain ridge.

(2) Weathering and Overburden

At the dam site parts of the river section, extending from about 250 m upstream of the dam axis towards some 20 m downstream, are made up of outcropping fresh to slightly weathered rock. At the abutment slopes scarce outcrops of highly and moderately weathered rock can be found indicating surface-near presence of sound bedrock. A thin deposit of sandy alluvium exists along the left river bank, while at the toe of the right bank slope blocky talus is accumulated.

Depth and character of the weathering profile have been investigated by two drill holes, one on either side of the river as well as by seismic survey. Results can be summarized as follows: Below a thin cover of about 2 m of residual soil, decomposed and highly weathered rock is found down to a depth of about 10 to 15 m and 15 to 25 m, on the left and right abutment,

respectively. Sound bedrock follows below a transition zone of moderately weathered rock of about 5 to 10 m (see Fig 22 and Tab 5). Results of geological investigations suggest that generally sound rock is closer to the surface at upper slopes at the right bank, while at upper slope sections at left bank it is at relatively greater depth. At the position of drill holes, about midlevel of abutment slopes, weathering extends to greatest depths, particularly at the right abutment (for details see Fig. 22).

Along waterways alignment hill tops, steep slopes as well as some valley sections are frequently made up of outcropping rock. Generally, however a weathering profile is developed depth of which depends on the character of the parent rock: massive and weathering resistant rock types such as charnockite, amphibolite, quartz-rich biotite gneiss etc. produce blocky talus material of shallow depth while on more easily weathered biotite and feldspar containing rocks a deep weathering profile develops. This is confirmed by drilling as well as by seismic survey.

According to drill hole KP 8, which is located at the power outfall on a slope made up of charnockite, depth of weathered material consisting of residual soil and boulders is only about 5 m. In drill hole KP 7, which was located to investigate the rock mass characteristics at the tunnel crossing at Peleng Ganga, fresh rock is found at about 7 m. Field evidence as well as results of seismic survey show that along river beds, including Peleng Ganga and Maha Dola, top of sound rock is often close to the surface or rock is even exposed; deep weathering at the dam site was already mentioned.

(3) Rock Types and Rock Mass Parameters

According to results of dam site mapping and core drilling the prevailing dam foundation rock comprises biotite, hornblende-biotite gneiss, charnockitic gneiss and garnetiferous quartz-feldspar gneiss. A number of Point Load tests have been done on fresh as well as on weathered material. Results indicate that uniaxial compressive strength of the fresh rock is between 150 and 200 MPa, with some charnockite varieties and quartz-rich biotite gneisses even exceeding 200 MPa (see Tab. 9).

Spacing of foliation is about 0.3 to 1 m, while spacing of joint sets No 1 and 2 is about 1 to 3 m, locally it is >3 m. Foliation joints of the recovered core

material are generally plane and smooth due to chloritic and biotitic staining. Opening widths of surface near discontinuities were observed to exceed 1 mm in places.

Rock mechanical parameters derived from above tests and field observations are summarized in Tab. 9.

In order to investigate geological and structural conditions as well as geomechanical parameters along the waterways alignment detailed geological mapping was carried out along the relevant sections of Kalutara-Ratnapura road and other roads in the vicinity of the waterways alignment. The survey revealed the following: Rock inventory comprises biotite gneiss which is frequently rich in quartz, hornblende-biotite gneiss, charnockite, amphibolite, garnetiferous quartz-feldspar gneiss and calc-silicate rock. Most rock types exhibit a massive character, and rock mass parameters along distinct sections of the tunnel alignment can be derived from rock mass classifications shown in the relevant geotechnical section (Fig. 23).

(4) Structural Geology

(A) General

During geological mapping of the dam site area two first order fold elements could be identified. The course of the Kukule valley assumes a tectonic position between an anticline at the left and a syncline at the right bank of the river. At K-P dam site the axis of the anticline is at a distance of about 250 m from the river while it approaches the river in its extension towards NW. The axis of the synclinal element traverses the area at a distance of about 350 m from the river (see Fig. 21).

Along the waterways alignment 6 major fold elements would be traversed according to results of geological mapping. Additionally, there is a number of anticlines and synclines that may not be continuous for any great distance (projected locations are shown in Fig. 23).

The fold system is dissected by an E-W to NE-SW oriented pattern of fracture zones that can be easily identified on aerial photos. Such tectonic features are assumed to cause above mentioned shallow gullies

that locally dissect the dam site area. Owing to their regional occurrence they are also found along the tunnel alignment.

(B) Foliation

Orientation of foliation is perpendicular to the dam axis. Due to the above outlined tectonic position on the limbs of an anticlinal element towards SW and a synclinal structure towards NE dip direction is towards NE at medium steep angles (50 to 60°), i.e. orientation is with the slope at the left abutment while it is into the slope at the right abutment.

Orientation of foliation is quite regular as indicated by well pronounced maxima (see Fig. 24):

 $Fol = 040-070^{\circ}/50-60^{\circ}$

Orientation of foliation along the tunnel trace, as shown in Fig. 23, is extrapolated from geological mapping of adjoining areas.

(C) Jointing

Two main joint sets were observed at the dam site area. JS 1 is more or less parallel to the dam axis and dip is at steep angles to either upstream or downstream. This joint set corresponds to the above mentioned set of fracture zones. Genetically the joint set represents h00-direction, i.e. it is perpendicular to the fold geometry. The second joint set is perpendicular to the dam axis, hence providing potential upstream-downstream seepage paths. With respect to the fold symmetry this set represents 0k0-direction, i.e. the longitudinal orientation. The following distribution was measured (see Fig. 26):

JS 1 = 170-210°/70-90° and 000-020°/70-90° JS 2 = 270-295°/70-90°

Since these joint sets are of regional occurrence they are also found along the tunnel alignment (see Fig. 26).

5.4.3 Geotechnical Assessment

(1) Dam and Appurtenant Structures

(A) Foundation Conditions of Dams

(a) Excavation

On the basis of geological mapping, of a seismic survey as well as of two drill holes on either abutment the following approximate foundation levels may be anticipated (see Fig. 22):

For the shell of a rockfill dam excavation would comprise soil and highly weathered rock. On the upper and lower sections of both abutments excavation depths would range between about 5 to 15 m. Along slope mid-levels up to 20 m unsuitable rock would have to be excavated, while in the river section about 3 m of rock trimming would be needed.

For the plinth foundation excavation of about 5 to 10 m weathered rock, starting from the shell foundation level, would be needed. Field observations and results of previous core drilling suggest that some practical difficulties of foundation works may be expected due to irregularity of the "top of sound rock" level.

A concrete weir, though of minor dimensions, should be founded on sound rock due to the expected heterogeneity of the decomposed and highly weathered rock. To avoid extensive foundation treatment it would be advisable to consider the same excavation levels as for plinth foundation.

(b) Permeability and Grouting

The prevailing structural pattern, i.e. foliation and longitudinal joints, has an unfavourable orientation with respect to underseepage of the dam. Strike of both is perpendicular to the dam axis thus providing direct seepage paths from the reservoir to the downstream toe of the dam. However, results of water pressure

tests executed in two drill holes indicate low to moderate water takes of the unweathered rock mass with permeability ranging between 5 and 10 Lugeon. WPT results are in accordance with the low degree of fracturation observed in the field as well as in the recovered core material which mostly shows good RQD-values in excess of 80 %.

Groutability of the unweathered bedrock is assumed to be good, since, according to the available core material, joints of rock grades II and I do generally not contain joint fillings that could obstruct grouting. With respect to grout take low values can be assumed since high takes, for instance due to hydraulic fracturing, need not be expected owing to the competence of the rock mass.

Scarcity of data on rock mass permeability obviously does not permit final conclusions on the necessity and amount of grouting works, it may, however, be prudent to assume that grouting, even though not excessive, would be needed for the plinth foundation as well as for a small concrete weir.

(c) Stability of Foundations and Slopes

The bearing capacity of the rock mass prevailing at this dam site is mainly a function of the degree of weathering. The sound and slightly weathered foundation rock has a low to very low deformability. Variations in rock types are of little significance for the rock mass strength. For phase II-a stage of the study rock mass parameters were given on the basis of experience and comparison with test results from similar projects in Sri Lanka (see Tab. 8 and 9).

The magnitude of values for weathered rock mass, given in above table, indicates that grade III, or even grade III-IV rock, has sufficient strength to support the shell of a rockfill dam. It may be assumed that the range of strength values within a given weathering grade does not exceed tolerable limits. On the other hand, it cannot be excluded that at a given foundation level, due to differential weathering, rock of dissimilar weathering grade and,

hence, strength could be found next to each other. That could lead to differential settlement as well as to practical difficulties of foundation work.

With respect to foundation stability it was pointed out in the conceptual design report, that if this alternative would have been selected for further investigations, a more detailed structural analysis, particularly with respect to the presence (orientation and character) of joints and faults of random orientation that could be hazardous to foundation stability, would have to be carried out to confirm above mentioned preliminary assumptions.

(B) Spillway

The conceptual design provides for the spillway structure to be located at the right abutment. According to assumptions on weathering depths, as outlined above, the structure could be founded on sound rock. As to the stability of slope cuts no problems were anticipated during that stage of the study due to the favourable dip of the dominant discontinuity set, i.e. foliation, which was found to be directed into the slope (refer to above discussion).

(C) Diversion

Design of the conceptual design stage provides for two diversion tunnels to be located at the right abutment. It would probably be advantageous to locate the tunnels further into the slope, more or less below the spillway structure, to increase tunnel sections in good rock and, additionally, to avoid interference with the grout curtain.

(2) Waterways

Alternative IV of K-P plan alternative was considered in the preliminary design. Waterways of this alternative consist of a headrace tunnel of 4350 m length that links the reservoir with the upstream surge shaft and a tailrace tunnel of 3050 m length connecting downstream surge shaft and the outfall structure.

Both tunnels would be driven perpendicular to the orientation of major structural elements, i.e. foliation. In general terms, such situation can be considered very favourable to fair depending on the dip angle and drive direction (with or against steeply dipping discontinuities). Burden above tunnel roof is generally exceeding 100 m, so that weathering would not affect the rock mass.

The geotechnical situation of the then considered tunnel alignment is summarized in the geotechnical profile presented in Fig. 23. The information contained in the section is mainly based on geological mapping, one seismic profile as well as on two drill holes which are located at the crossing of Peleng Ganga and at the outfall structure. At the respective level of the study it was not possible to indicate individual rock types prevailing in particular tunnel section due to the variability of the gneissic rocks. However, an attempt was made to delineate the structural pattern along the tunnel alignment. About three distinct zones of more or less homogeneous conditions, with respect to structural characteristics, could be differentiated: from the portal to about station 3+000 wide spanned folding is predominant followed by a generally uniformly dipping rock sequence with local occurrence of minor folds. This section extends up to about station 6+500. The remaining portion up to the outfall is again characterized by wide folds of greater extension.

In the geotechnical section the rock mass is classified according to two widely used classification systems, namely the CSIR and NGI classifications. Obviously, at that stage of the study with relatively limited data available on relevant individual rock mass parameters the classification is somewhat crude, but probably allows to roughly outline the potential influence of fracture zones, weathering etc. on support requirements.

In view of the crudeness of the rock quality classification a support classification has been developed considering only three instead of the commonly used five or more rock classes (Tab. 6).

According to the classification result the bulk of underground excavation works would be in very good quality rock mass, respective length of class I being 86% in the headrace tunnel, while it would be 94% in the tailrace tunnel. In sections where the tunnels cross tributary valleys, it was then assumed that these would reflect fracture zones, or the presence of less

weathering resistant rock types, hence fair quality rock mass according to rock class II was expected; respective length being 13 % in the headrace tunnel and 5 % in the tailrace tunnel. Poor quality rock corresponding to rock mass class III was assumed to be restricted to the portal sections.

(3) Powerhouse, Surge Shaft and High Pressure System

For conceptual design the underground powerhouse and associated structures were located in a massive mountain ridge. Burden above the cavern roof would be about 300 m. Therefore it was assumed that the rock mass would not be affected by weathering.

No data on rock types and rock mass parameters were available which were based on geotechnical investigations. The only source of information was the geological profile exposed along the slope cut of the nearby Kalutara-Ratnapura road. The following assumptions were made:

The prevailing rock comprises biotite and hornblende-biotite gneiss, including quartz-rich varieties, as well as charnockitic gneisses. Uniaxial strength is between 150 and 200 MPa, with some charnockitic and quartz-rich varieties even exceeding 200 MPa. Spacing of foliation is about 1 to 3 m, locally it is >3 m. Information is insufficient regarding joint orientation and spacing. E-W oriented joints are present and spacing is probably wide. Since no core material is available no information is at hand as to the conditions of discontinuities of the fresh rock.

Based on such, however general, information it was assumed that underground excavation conditions would be favourable. However, it was stated that in order to definitely assess underground excavation conditions, detailed information would be needed on rock mass parameters such as rock types, orientation, spacing and conditions of joints, presence of individual rock defects (shear zones etc.), magnitude and orientation of primary stress field etc. which could be obtained by a comprehensive geotechnical and rock mechanical investigation programme.

5.4.4 Comparative Assessment of Alternatives Abandoned after Phase I

(1) General

During phase I of the study four alternative layouts (Alternatives I through IV) were prepared for the power system of the K-P Plan including waterway and powerhouse for which preliminary comparison studies were carried out. As an additional alternative K-D plan was identified and investigated at the respective level.

(2) Geological-Geotechnical Aspects of Abandoned K-P Alternatives (I-III)

Based on the preliminary overall assessment it was then concluded that (28):

Alternative II is geotechnically better than Alternative I due to its rock cover above the headrace tunnel. For both, Alternative I and II some problems could be expected regarding dewatering of the deep excavation pit for the open-air powerhouse. On the other hand, Alternative II (open-air powerhouse layout) and Alternative III (underground powerhouse layout) are economically competitive.

Consequently, Alternative IV (underground power house layout with about 15% larger head than the others) is the most beneficial layout, since the power outfall will be situated at a river water level of some 20 m asl.

(3) Geological-Geotechnical Aspects of the Area of K-D Plan

Results of preliminary assessment during phase I can be summarized as follows:

The dam site has unfavourable topographical conditions presumably reflecting unfavourable geological conditions. Consequently a large dam volume and a considerable amount of excavation work were anticipated. For cost estimates a random-fill dam with integrated concrete section was then considered (regarding expected excavation depths refer to Fig. 25).

With respect to dam foundation quality moderate rock mass permeability with corresponding groutability was assumed and no major problems regarding slope stability were anticipated.

The layout provided for a headrace tunnel of about 4.6 km length and a tailrace tunnel of about 3.7 km length. Underground excavation conditions were considered as favourable. For relative length of rock classes see Fig. 26.

The underground powerhouse of this alternative was located in a relative massive mountain ridge. On the basis of the then available information it was assumed, that, in general terms, underground excavation conditions would be favourable.

TABLE 1 SUMMARY OF GEOTECHNICAL INVESTIGATION WORKS.

			r=
WORK AND LOCATION	REFERENCE	NUMBER	QUANTITY
DRILL HOLES			AS PER17/08/92
KK 205(NEW)DAM AXIS	,KK 31, KK 32, KK33, KK34		
AND RELATED STRUCTURES	KK 35, KK 36 KK37, KK39	8	180/180 M
KK 205(NEW/OLD) HEAD RACE	KK 6, KK 29,KK44	2	190/140 M
KK205 (NEW)SURGE TANK	KK 42	1	230/230 M
KK205 (NEW)POWER HOUSE	KK 43	1	230/AT 120?
	KK 8 , KK 28	2	90/90 M
KK205 (NEW/OLD) TAILRACE		1 / 1	50/NIL -
KK205 (NEW) ACCESS TUNNEL	KK 41		
KK 205(NEW/OLD) DAM - QUARRY	KK 4	1	20/20 M
KK205(NEW/OLD) P.H. QUARRY	KK 5	1	20/20 M
KK 205 (OLD)DAM AXIS	KK 9, KK 10, KK11, KK12,		1
AND RELATED STRUCTURES	KK 16, KK 18, KK20, KK21	8	205/205 M
KK205(OLD)SURGE TANK	KK7	1	175/175
KK230 DAM SITE	KK 1,KK2,KK3	3	200/200
KP DAM AXIS	KP1, KP3	2	100/100 M
KP WATERWAYS	KP 7, KP 8	2	70/70 M
TOTA		33	1710/1550 M
	- I	33	(1710/1350 W
PIEZOMETERS	luu oo uu oo	ı	ı
KK 205(NEW)DAM AXIS	KK 33, KK 35		•
AND RELATED STRUCTURES	KK 37	3	
KK205(NEW/OLD) HEADRACE	KK 6, KK 29	2	
KK205(NEW)SURGE TANK	KK 41	1	
KK205(NEW)POWER HOUSE	KK 42	1	
KK205(NEW)TAILRACE OUTFALL	KK8	1	
KK 205(OLD)DAM AXIS			
AND RELATED STRUCTURES	VV 11 VV 10	2	İ
	KK 11, KK 18		
KK205(OLD)SURGE TANK	KK7	11	
KK 230 DAM AXIS	KK 1, KK 3	2	
KP DAM SITE	KP 1, KP 3	2	
TOTA	L	15	1
SEISMIC SURVEY	1		Linear Metreage
			Proposed/Executed
			1
KK205 (NEW) DAM SITE	DR-1-S.DR-2-S		1000/1000
KK205 (NEW) DAIN SITE		3	1000/1000
	DR-3-S		
KK205(NEW/OLD) WATER WAYS	KK -6-S, KK-7-S,	5	2200/2200
	KK -8-S , KK-9-S	ļ	Ī
	KK-10-S		<u> </u>
KK 205(OLD)DAM SITE	KK -2 - S, KK - 3 - S		
	KK - 4 - S, KK - 5 - S	4	1600/1600 M
KK 230 DAM AXIS	KK -1 - S	1	300/300 M
KP DAM SITE	KP -1 - S	1	400/400 M
			
KP WATERWAYS	KP -2- S	1	500/500 M
TOTA	.L	15	6000/6000
TEST PITS			
			No of pits
			Proposed/Executed
KK205(NEW) DAM SITE		10	10/10
PANGALA ELLA AREA		5	5/6
			
KK205(NEW) OUTFALL &	1	10	10/8
SWITCH YARD	1	l	1
KK205(NEW) ACCESS TUNNEL TOTA		0	1/NIL 25/25

TABLE-2 MINERAL COMPOSITION OF ROCK TYPES OF THE PROJECT AREA

ROCK	ď	artzo-fe	Quartzo-feldspathic gneis	ic gneis:	s		Biotite	Biotite gneiss		L	Charnockitic gneiss	ockitic	c gnei	SS	Amphib	olite	Amphibolite Calc silicat Marble	Marble
CLASSIFICATION						Horblende-	Biotite	Garnet-	Garnet-				,				gneiss	
					-	Biotite	gneiss	Biotite	silimanite-									
						gneiss		gneiss	biotite									
									gneiss									
SAMPLE No >>	2	ဖ	7	12	20	80	17	16 18	13	4	5 10) 14	15	19	6	11	3	1
FELDSPARS			<u> </u>															
ORTHOCLASE	-				*	-	•	-	*				-	*				
MICROCLINE			•															
PLAGIOCLASE	-	-		•		×	•		*	,	-		*		*	•	·	
ALBITE-OLIGOCLASE																		
PERTHITE		-			•	•	*	w	•				•					
QUARTZ	-	•	-		*				*	Ŀ	-	-	-	*			•	
MICA GROUP											-	_	_					
LIGHT COLOURED																		
MICA																		
MUSCOVITE			•					•										
PHENGITE																		
PHLOGOPITE																		
SERICITE	*																	:
BOITITE	×				-	*	*	*	•			*	•			•		
PYROXENE GROUP																		
HYPERSTHENE										•	-		-	•	-	•	·	
DIOPSIDE										-	-	-		-	•	×	×	•
AMPHIBOLE GROUP																		
HORNBLENDE	*					*								•	*	,		
PARAGASITE																		
GARNET GROUP		•	*	*				*	•		-	\vdash	•					
OLIVINE GROUP													_					
FORISTERITE																		
OLIVINE											-	_	-					
EPIDOTE GROUP	-	•								·			_			-		ž.
			,		,				4 7 1) 		-!	ļ		100	100		-0.2,5

CONTINUED ...

TABLE-2

MINERAL COMPOSITION OF ROCK TYPES OF THE PROJECT AREA

ROCK	Qua	artzo-fe	Quartzo-feldspathic gneiss	hic gne	iss		Bioti	Biotite gneiss				Charn	ockiti	Charnockitic gneiss		Amphiboli	Amphibolite Calc silicat Marble	t Marble
CLASSIFICATION						Horblende-	Biotite	Garnet-		Garnet-							gneiss	
						Biotite	gneiss	Biotite		silimanite-								
						gneiss		gneiss		biotite								•,,
										gneiss								
SAMPLE No >>	2	9	7	12	20	တ	17	16 1	18	13	4	5 10	0 14	4 15	19	9 1	11 3	1
CARBONATE																		
CALCITE			*				-										-	•
DOLOMITE																		
LIMONITE													\dashv					
CHLORITE			-				-					_	-				-	
SERPENTINE											•							
CHRYSOTILE														<u>-</u>				
ANTLGORSITE									\dashv			-	\dashv	_				
SMECTITE				_		_			\dashv			_	-	_				
KOLINITE				_					-			-	\dashv	_				
ZIRCON		•	•			•		-	-		•		\dashv			-		
APATITE				_	•			•			*	_	-	_	-	•	-	
MAGNATITE	-	•		_		_	-		-		-		\dashv	-		-	-	
SPHENE									\dashv			-	\dashv				-	
PYRITE							_						_	_	,			

NOTE:PETROGRAPHIC ANALYSIS OF THIN SECTIONS WERE CARRIED OUT BY THE DEPT. OF GEOLOGY UNIVERSITY OF PERADENIYA

Table 3 CLASSIFICATION OF WEATHERING GRADES OF ROCK MASS

DESCRIPTION	GRADE
No visible sign of rock material weathering;	
perhaps slight discoloration on major discontinuity	
surfaces.	
discoloration indicates weathering of rock material	
and disontinuity surfaces. All the rock material may	l II
be discoloured by weathering.	
Less than half of the rock material is decomposed or	
disintergrated to soil. Fresh or dicoloured rock is	111
present either as a continuous framework or as cores-	
tones.	
More than half of the rock material is decomposed	, ·
and/or disintegrated to soil. Fresh or dicoloured rock	ΙV
is present either as a discontinuous framework or as	İ
corestones.	·
All rock material is decomposed and /or disintegrated	;
to soil. The original mass structure is still largely intact	V .
All rock matirial is converted to soil. The mass structure	
and material fabric are destroyed . There is a large	VI
change in volume, but the soil has not been significantly	
transported.	i i
	No visible sign of rock material weathering; perhaps slight discoloration on major discontinuity surfaces. discoloration indicates weathering of rock material and disontinuity surfaces. All the rock material may be discoloured by weathering. Less than half of the rock material is decomposed or disintergrated to soil. Fresh or dicoloured rock is present either as a continuous framework or as cores- tones. More than half of the rock material is decomposed and/or disintegrated to soil. Fresh or dicoloured rock is present either as a discontinuous framework or as corestones. All rock material is decomposed and /or disintegrated to soil. The original mass structure is still largely intact All rock material is converted to soil. The mass structure and material fabric are destroyed. There is a large change in volume, but the soil has not been significantly

This chart is based on BS 5930:1981 classification

		İ		_								
CATION OF	: JOINTEL	D ROCK	MASSES				RA		E	٠		
				L	PAR	IMETER		RAP	l	UES		
IINED FROM	TOTAL RA	TINGS			Streegth	Poim load	97.	٠ إ	1	47.	For this low	range
	-	,			ō			ا ا	۱	7	Sive feet la p	referred
	mass the ro		Average Itand-up time				> 200MPq	100 - 200 MPa	30 - IDGMPa	25 - 50MPa	10-23 3-H	0 1 - 3 MPd
-	-					Rating	2	2	~	•	1 2	0
		300 k Pa	years for 5 m pan	L	Drill core	quality ROD	%00I -%06	76% - 90%	50% - 75%	25% - 50%	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \
ļ	8	- 300k Pu 6r	months for 4m	ru -			Mashe	Poorly Fractured	Fractured	Highly Fractured	Crushed	
+	-		pan			Rating	20	1.1	£1	80		
	8		reek for 3m pun	· ·	Spacing	f points	es <	m2 -1	0.3 - La	30 - 300mm	× 30,	
	8	- 150kPe 5	hours for! 5 m	•		Railny	30	62	20	ō.	r	
		=	upd				Very rough surfaces		Stightly rough	Sickensided surfa		544
v 30	٧	1001 Pa	Jmin for 0.5 m			of joints	Not continuous ho separation itard joet wall rock	surfaces Sevaration of mm Hard joint wall rock	surfaces Seporation <imm Soft joint eatl</imm 	ces or Gouge Smmthick or joints open I- Smm Continuous joints		ants B joints
						Rating	52	02	2	•	0	
				<u> </u>	O.O.	Inflow per 10 m lunnel length		•	<25 litres/mm	25-125 lifes/min	>1251Hras,	U.B.
						į			20-00	02-03	^	
- 1			210121					, 167	Ment onty (interstitial water)	Water under muderate pressure	Severa	
- 1			MINNS			Kating		0	7	+	0	
Unfavourable	Very I hravourable	Fair	Interseruble		Strik	e and dip office of joints	Very forwroble	erdo anoxo.	Foir	Unferencois	Yery unfac	410014
7117	Strike	perallet				Tunnels	•	,	į	ĵ.	Ç	
	ASSIFICATION OF ETERMINED FROM RATING Inserced 100 - 81	CX MASS INDEX DETERMINED FROM TOTAL RA CX MASS INDEX DETERMINED FROM TOTAL RA CX MASS INDEX DETERMINED FROM TOTAL RA CX MASS INDEX DETERMINED FROM TOTAL RA For oct oct 80 - 61 440° - 45° 500 For oct 80 - 61 35° - 45° 150 For oct 40 - 21 35° - 45° 150 For oct 40 - 21 35° - 45° 150 With poor oct 40 - 21 35° - 45° 150 With poor oct 60 - 41 35° - 45° 150 For out oct 40 - 21 35° - 45° 150 For out oct 40 - 21 35° - 45° 150 For out oct 40 - 21 35° - 45° 150 With poor oct 60 - 41 35° - 45° 150 For out oct 40 - 21 35° - 45° 150 With poor oct 60 - 41 35° - 45° 150 For out oct 40 - 21 35° - 45° 150 For	FROM TOTAL RATINGS Friction angle of Cohesion of the rock mass the rock	CC	CK MASSES a stand-up time a stand-up time a span a	CK MASSES Average a stand-up time a stand-up time span span span span span span span span	PARAMETER Strangth attended index i	Strangth Polm load Strangth Polm load Strangth Polm load Strangth Polm load Strangth Polm load Strangth Polm load Strangth Polm load Strangth St	CK MASSES	CK MASSES PARAMETER RAING SYSTE	Strength Polint load	State Stat

GEOMECHANICS CLASSIFICATION OF JOINTED ROCK MASS (CSIR) (Slightly Modified) Table 4

- 60 -23

90 ÷

-53

6-

Foundations

Slopes

Dp 43% 90 Dp200-45 Dp410-90 Dp200-430 Dp410-90 Dp200-450 of sinks

to funnel date

Drme eith dep

11459-45° D0200-45° D0045°-90° C45° D0 0°-20° D0200-90° G1 11110

Strike poxohel or near poratiel (≦ ± 45°) to stope

ያኔ ያ

50434-900 00 00-450 00459-900 010200-450 010 130 200

Dip erth slope

Dig into slope

per pendicular or near perpendicular (\$ 1.45°) to ox at of foundation

Strike purched or neus portified (\$ 2, 45°) to foundation axis

Dip towards a/s

	Hole No	Depth	Inclination		Collar	Coordinates m.	es m.	LOCATION	DE	DEPTH Т	O ROC	TO ROCK GRADE	INSTRUMEN-
		Ė	from vertical	Bearing	Elevation m.								TATION
			Degrees	Degrees		Z	E		۸	2	Ξ	=	
KP PLAN	A L	50.19	0	,	223.220	151777.350	151710.310	DAM AXIS	4.5	21.60		25.00	PZ(S)
DAM	KP3	50.22	0	'	217.120	151691.430	151609.190	DAM AXIS	3.4	13.1		20.60	PZ(S)
KK PLAN	X L	50.23	0	٠.	229.655	152858.690	150859.480	DAM AXIS	1.2	4.90	-	10.00	PZ(D)
230DAM	KK2	100.00	04	229	196.000	152813.430	150813.350	DAM AXIS	5.6		,	18.00	,
	KK3	53.37	0	,	197.920	152775.150	150757.250	DAM AXIS	1.4			11.00	PZ(S)
KK PLAN	KK9	20.45	0		211.210	153148.970	150612.970	WEIR AXIS	5.8	7.80		10.00	PZ(S)
205 DAM	KK10	30.56	0	,	199.010	153100.409	150563.453	WEIR AXIS	6.5	,		16.9	ļ
(ELEMINATED)	KK11	30.10	0	•	211.580	153143.450	150444.280	DESANDER	1.0	1.88		- 14.9	PZ(S)
	KK12	30.03	0	,	238.350	153148.070	150359.850	HEAD RACE intake	•			1.6	,
	KK16	15.26	0	,	197.634	153131.507	150598.432	WEIR AXIS	2.9		•	3.6	,
	KK18	20.16	0		205.960	153173.429	150580.528	WEIR foundation	0.5	3.90	•	4.5	PZ (S)
	KK20	35.00	0		205.511	153055.970	150564.440	INTAKE	,	2.80		20.1	,
	KK21	25.20	0	•	199.710	153198.088	150457.897	DESANDER	4.5	6.90		11.85	•
KK PLAN	KK31	30.35	40	990	193.146	153564.959	150549.751	WEIR AXIS		,		00:0	
205 DAM	KK32	30.15	40	245	194.219	153581.020	150582.437	WEIR AXIS		•	,	00:0	,
(SELECTED)	KK33	20.15	0	,	210.762	153542.786	150638.605	WEIR & XIS	,		,	- 11.45	PZ (S)
	KK34	20.00	0	,	196.308	153509.846	150525.369	WEIR intake	,	0.50	,	- 1.05	, —1
	KK35	20.20	0		204.348	153547.133	150507.887	DESANDER	4.	•		- 1.5	(S) Zd
	KK36	23.00	0		212.878	153634.570	150482.244	DESANDER	-	10.60	,	- 13.65	
	KK37	20.25	0		202.497	153703.967	150487.696	DESANDER	,	1	,	- 2.9	PZ (S)
	KK39	20.15	0	,	217.907	153740.168	150439.820	Headrace intake	0.5	1.50		- 5.15	,
KP PLAN	KP7	50.11	40	222	56.465	149226.699	146221.652	Peleng river cross	•	•	,	4.5	
WATERWAYS	KP8	20.02	0		31.857	149019.933	144689.314	OUTFALL	,	·	·	2.4	
KK PLAN	KK6	40.20	0	•	242.552	153099.483	148849.029	Hulukiri stream cross	,		•	- 1.3	PZ(S)
WATERWAYS	KK7	175.11	0		301.487	155621.922	146881.772	Surge shft (alternat.)	,	•	,	- 2.8	PZ(S)
	KK8	40.05	0	1	40.568	157538.671	144926.924	OUTFALL	2.5		30	7.2	PZ(S)
	KK28	50.10	0	,	65.711	157515.196	144984.544	OUTFALL	0.8	9.0		3.2	
	KK29	99.86	0	4	254.637	155463.130	146967.893	SADDLE	9.2	,	•	- 10.59	
	KK41 •		0	,				Intake access tunnel					PZ(S)
	KK42	230.07	0		230.900			SURGE SHAFT	3.1	7.02	,	9.15 19.54	PZ(S)
	KK43 *	+	0					POWER HOUSE					
KK PLAN	Х 4	20.20	0	,	218.430	153464.350	149995.030	QUARRT (DAM)	•	•		9.7	,
	KKS	20.13	_		000	000	000 00011		,		_		

TABLE: 6 ROCK CLASSIFICATION ADOPTED IN PROJECT

CLASS	SUPPORT	CORRESPOI RATING	
	·	CSIR (RMR)	NGI (Q)
1 / 11	NO SUPPORTS / LOCAL BOLTS AND SHOTCRETE	>60	>6.0
Ш	SYSTEMATIC BOLTS, WIRE MESH AND SHOTCRETE	20-30	0.1 - 6
IV	LIGHT TO MEDIUM STEEL RIBS, BOLTS, WIRE MESH + SHOTCRETE	< 20	< 0.1

TABLE: 7.1 SEISMIC EVENTS

DAY	MONTH	YEAR	LATITUDE	LONGITUDE	FOCAL	MAGNITUDE
			Deg.	Deg.	DEPTH(KM)	MS
17	3	1937	9.00 N	83.40 E		
10	9	1938	6.00 N	77.00 E		
10	9	1938	7.70 N	79.20 E		
10	9	1938	7.50 N	79.00 E		5.60
7	8	1939	4.00 N	78.00 E		
7	8	1939	4.00 N	77.50 E		5.50
28	11	1949	8.10 N	83.20 E		
7	12	1949	3.59 N	83.00 E		
29	1	1953	6.70 N	82.50 E		5.00
15	12	1956	6.50 N	78.00 E		
13	6	1961	8.70 N	83.20 E	43	
28	8	1964	10.37 N	83.44 E		
8	1	1966	11.60 N	84.93 E		5.20
5	4	1967	12.30 N	83.00 E		
3	4	1971	10.50 N	83.00 E		
24	11	1972	11.67 N	85.34 E		
30	8	1973	7.10 N	84.31 E	33 ,	5.90

NOTE: DATA ACCORDING TO LIST OF REFERENCE NOS: (18), (21)

TABLE: 7.2 HISTORIC SEISMIC EVENTS (ACC. FERNANDO, 1986)

Remarks			MM scale V , seismograph put out	of action	-			•		MM scale II	Tremor felt by many, MM scale III	Felt at mahailuppallama	0657 h,R.F.scale II -III	1756 h, felt at many places	MM scale II-III	0505h ,felt at Badulla	Record only 2033-2040 h	2107 h. felt in hill country	MM scale II (no seismograph charts)	0121 h(local time), epicentre-350 m.	MM scale II exact epicentre 7 LM.	84.3E	13.47 h local time . felt Agrapatana ,balangoda ,	Gurutalawa	0344 h local time, Bogawantalawa	1826 h local time . Query by press seismograph	record.letter of H.B.Senaratna of Galewela	gives date as 6 July 1975	2100 to 2230 h local time . Tangalle	1617-1618 h. felt in Spring Valley estate	Badulla Passara , recorded on seismograph.	intensity II -III
Date	4 JAN 1936	7 SEP 1938	11 SEP 1938		23 SEP 1938	2 FEB 1939	21 MAR 1939	8 AUG 1939	26 JUN 1941	29 FEB 1944	25 JAN 1951	4 OCT 1962		6 MAY 1964		29 NOV 1966	24 APR 1967	22 JUN 1968		31 AUG 1973			28 JUN 1974		29 JUN 1974	7 JUL 1975			23 NOV 1976	9 OCT 1979		
No	(33)	(34)	(32)		(36)	(37)	(38)	(39)	(40)	(41)	(42)	(43)		(44)		(45)	(46)	(47)		(48)			(49)		(20)	(51)			(52)	(23)		
Remarks																																
Date	APR 1891	3 APR 1891	AUG 1892	NOV 1892	2 NOV 1892	3 NOV 1892	781 VON 1) FEB 1900	SEP 1900	MAY 1904	MAR 1907	1990 MAR	OCT 1911	JAN 1913	MAY 1916	3 APR 1917	AUG 1917	DEC 1917) DEC 1917	, AUG 1919	FEB 1920	5 FEB 1920	APR 1921	1 AUG 1921	FEB 1928	MAR 1928	JAN 1930	FEB 1930	JAN 1931	JAN 1935	APR 1935	3 SEP 1935
No	(1) 7	(2) 25	(3)	(4)	(5) 12	(6) 23	(7) 17	01 10	01 (6)	4 (10)	(11) 4	(12) 14	(13) 6	(14)	(15)	(16) 18	(17) 11	.(18)	(19) 20	(20) 27	(21) 11	(22) 26	(23) 5	(24) 23	(25) 7	(26) 9	(27) 5	(28) 6	(29) 5	(30) 20	(31) 2	(32) 23

TABLE: 8 POINT LOAD STRENGTH OF KUKULE ROCKS IN RELATION TO ROCK MECHANICS PARAMETERS

OF OTHER SRI LANKAN SITES	KAN SITES										
	POL/ LAX	VICTORIA	SAMANALA	KOTMALE	IALE		UPPER KOTMALE	MALE			KUKULE
ROCK TYPE	P.L	uniaxial	u (PO)	P.L.,MPa	uniaxial	Σ	0/0	uniaxial	∑.	(PO)	P.L
	MPa	MPa			MPa	kg/cm		MPa	kg/cm	כ	MPa
CHARNOCKITE	6.5	•	0.27	7.1	125.1	65.6	1.51/62.7	165	2.26	0.33	
	(8.4 - 4.1)										
CALC SILICATE				11.5	115	,		,	,	-	
	(8.4-1.5)										
QUARTZITE	4.3	,	0.2	5.1	60.2	,	,	132	0.71	-	
	(6.4 - 2.4)										
BIOTITE GNEISS		106	0.26	7.05	93.2	95.2	1.84/50.1	65	1.42	0.23	
	(7.7 - 1.5)										
GARNET GNEISS		159.2		7.1	105.6	,	36.3/70.8	130.65	2.11	0.36	
	(6.1 - 3.5)										
Quartz Feldspar gneiss											6.9 - 12.3 (14.0)
Garnetiferous Biotite gneiss											4.9 - 11.8
Biotite gneiss -quartz rich											5.4 - 10.8
Hornblende Biotite gneiss					ı						9.4 - 12.3
Charnockitic gneiss											5.6 - 12.1

ABBRREVIATIONS POL-POLPITIYA LAX-LAXAPANA

TABLE: 9 GEOMECHANICAL CHARACTERISTICS OF SOIL AND ROCK

WEATHERING		SHEAR ST	rength	E-MODULE	BEARING	SLOPE
GRADE	RQD	~			CAPACITY	INCLINATION
	%	Ø	C (KN/m ₂)	GPa	MP,a	
TALUS(BLOCKY)	0	30-35°	10	0.02-0.1	0.02-0.1	1V:1H
TALUS,						
(RỊCH IN MATRIX)						
RESIDUAL SOIL (vi)	0	25-30°	10-30	0.01-0.05	0.1-0.3	1V:1.5H
ROCK Gr. V						
ROCK Gr. IV -V	0	_. 30-35°	10-50	0.5-1.0	0.5-1.0	1V:1H
ROCK Gr. IV	0-25	35°	150	1-2	1-3	1V:0.25H
ROCK Gr. III - IV	25-50	40°	150	2-5	3-6.5	1V:.0.33H
ROCK Gr. III	50-90	40°	200	5-10	6.5-15	1V:0.1H
ROCK Gr. II	90-100	45° ·	300	10-25	15-25	1V:0.1H
ROCK Gr. 1	100	≥45°	≥400	≥ 25	≥ 25	1V:0.1H

NOTE: 1. PARAMETERS ARE BASED ON ESTIMATE AND LITERATURE

- 2. WEATHERING GRADE -RQD-RELATION IS ACC. GEOTECHNICAL CONTROL OFFICE HONG KONG ,BUT SLIGHTLY MODIFIED
- 3. RQD BEARING CAPACITY -RELATION IS ACC. PECK AT AL. 1974 BUT SLIGHTLY MODIFIED

HYDRO POWER PROJECT "	SS DESCRIPTION AND CLASSIFICATION SHEET SHEET NO 1	M FOUNDATION	OF WEATHERING 9.1 ROCK I	MEATHERED 0= 800	CONDITIONS ALONG MEATHERED 9.2 ROCK ANDS	RMR= 12+15+20+12+7+(-2) RMR= 64	•	ROUGHNESS ALTERATION LENGTH(m) ENDS LENGTH(m) ENDS	MITS MAX. 29m	6 -10(JRC) LOCALLY OXIDE 3: LIMITS MAX.25m LIMITS	8-10(JRC) LOCALLY OXIDE 5 NOT VISIBLE MAX.13m VISIBLE		B. RELATIVE JOINTING ORIENTATIONS	
GANGA	ASS DESCRIPTION	DOMAIN: DAM	5. DESCRIPTION	ິທ	6. GROUNDWATER CON MODERATE INFLOW ALOI OR TECTONIZED BANDS	7. BLASTING		SPACING No/	3.5 0.3-1 2	5.0 1-3 1	0.7 0 1-3 0.5			N (if any)
KUKULE	ROCK MA		GNEISS	STRENGTH	SCHMIDT HAMMER, REBOUND VALUES ⁽¹⁾ POINT LOAD INDEX ⁽²⁾	1	INUITIES	ORIENTATION DIP DERECTION / DIP	060-076%59-76° 0.15	168-180% 40-58° 0.20	305-3247.34-49° 0.30	-		ORT INSTALLATION
		LOCATION : DAM SITE	TYPE BIOTITE	MATERIAL	SOFT ROCK	ROCK HARD ROCK <u>80 -150MB</u> MELY HARD ROCK	MASS DISCONTINUITIES	TYPE	FOLIATION	TENSION	TENSION		ROD(EQUIVALENT) AVERAGE 90 (-100)	IENTS ON SUPPORT
		SITE LOCA	- ROCK	2. INTACT	SOILVERY S	HARD ROCK VERY HARD EXTREMELY	3. ROCK	SET Nº	FOL	ısı	JS2		4. ROD (EQL	IO. COMMENTS
KUKUI Governm Ministry of Ceylon E	ent of S Power a	ri La	anka Energy		nt Venture NK, EW	R PROJECT Kukule Gar VI & LI EAMS, RDC		TABI	_E	RC		M	DESCR	

								7		· · · · ·			· ·					
		SHEET NO 1/2		9. CLASSIFICATIONS 9.1 ROCK MASS QUALITY,0	SRF 4TED	9.2 ROCK MASS RATING, RMR RME = 10-18		CONTINUITY STRIKE						2	· ·	<u> </u>	<u>}</u>	co
				CLASSIFICATIONS I ROCK MASS QUA	JA JAS SRF NOT APPLICATED	CK MAS = dc + Rob+ SP = (0-2) + 3 ·								NS		*		
	1	ET	-	9. CLASSIF 9. I ROCK M	FON TON	9.2 ROC RMR=d		DIP LENGTH(m)		w	:			ORIENTATIONS	,			
	R PROJECT	DESCRIPTION AND CLASSIFICATION SHEET	10.00			·		ALTERATION						JOINTING ORIE	·			•
	HYDRO POWER	IND CLASSIF	DOMAIN: ELEVATION 0.00 TO 10.00	5. DESCRIPTION OF WEATHERING SOIL AND DECOMPOSED ROCK	6. GROUNDWATER CONDITIONS	EFFECTS (if any)		ROUGHNESS						B. RELATIVE J				
		TION A	I. ELEVAT	ION OF	VATER	j								80]		KK - 42
	GANGA	SCRIF	OOMAIN	CRIPT	NDN	STING		=					•			7)		HOLE K
	9	SS DE		5. DES	6. GRC	7. BLASTING	•	SPACING MAX. AVE								(if any)		DRILL H
·	KUKULE	ROCK MAS				NS E		MIN.										OF DE
	X X	ROCK	I	ED CHARNOCKITE	STRENGTH LANNER	SCHINDI NAMMERI REBOUND VALUES ⁽¹⁾ POINT LOAD INDEX ⁽²⁾ ESTIMATED ⁽³⁾ UNIAXIAL COMPRESSIVE STRENGTH ⁽⁴⁾	VUITIES	ORIENTATION	1							ORT INSTALLATION		O ON RESULTS
			TION : SURĞE SHAFT	ROCK TYPE RESIDUAL SOIL, WEATHERED	MATERIAL	102 1	MASS DISCONTINUITIES	TYPE	1					ROD (EQUIVALENT)	%0	ENTS ON SUPPORT		SCRIPTION IS BASED
			SITE LOCATION :	I. ROCK TYPE RESIDUAL SO	—	SOIL SOFT I VERY SOFT I SOFT ROCK HARD ROCK VERY HARD EXTREMELY	3. ROCK	SET NO	1					4. ROD(E		IO. COMMENTS		NOTE : DESCRIPTION
K	UKU	ILE C	GAN	GA HY	DROP	OWER PROJ	ЕСТ	TAB	LE	:10	(2/	3)					· · ·	
	Governi nistry o			Lanka Energy		'enture Kukule G NK, EWI & LI	anga			RC	CK	M				IPTIC		
C	eylon l	Electri	city I	Board	CE	CB, TEAMS, RDO	= 1			** 1	\	٠,	-5	٠٠٠,٢				

	SHEET NO.2/2		NS UALITY,0	ע ע	81 _	9.2 ROCK MASS RATING, RMR RMR-6c+Root SPACING+COND+GW+ORIENTEN	= 7 + (13 - 17) +(10 - 20) + 12 + 4 + (-2) = 44 - 58		NUITY STRIKE LENGTH(m) ENDS			ı			z (
			9. CLASSIFICATIONS 9.1 ROCK MASS QUALITY,0	0 = ROD x Jr x Ju Jn Ja x SRF 66-100 15-3 0.66	3 1-2 x 1-2	ROCK MASS	= 7 + (13-17) + = 44 - 58		DIP CONTINUITY	·					rations	
PROJECT	CATION SHEET					6			ALTERATION LEN	WEATHERED	WEATH; OXIDE	WEATH, OXIDE			JOINTING ORIENTATIONS	
HYDRO POWER	DESCRIPTION AND CLASSIFICATION SHEET	DOMAIN: ELEV. 10.00-20m	DESCRIPTION OF WEATHERING	STNIOU NO	GROUNDWATER CONDITIONS		EFFECTS (if any)		ROUGHNESS	JRC=2-4	JRC = 6-10	JRC=6-10			8. RELATIVE JO	
GANGA		DOMAIN: EL	5. DE SCRIPTION	WEATHERING ON JOINTS			7. BLASTING E		SPACING NO/					•		
ULE	ROCK MASS		- CJ		9	- 6	SIVE		MIN.							
KUKULE	ROCK	ЅНАҒТ	·	STRENGTH	SCHMIDT HAMMER		 	DISCONTINUITIES	ORIEN FATION OIP DERECTION / DIP	-/45-60°	-/65°	-/704.85		,		
		SURGE	SOCK TYPE	MATERIAL		SOFT ROCK ROCK ROCK ROCK FO-100 MPA(3)		MASS	TYPE	FOLIATION	TENSION	TENSION			ROD (EQUIVALENT)	% 001-99
		SITE LOCATION :	- ROCK	2. INTACT	SOIL	SOFT R	HARD ROCK VERY HARD EXTREMELY	3. ROCK	SET No	FOL.	JS1. ⁽³⁾	JS2 ⁽³⁾			4. ROD(E	9
OVERNO DOVERNO DISTRIBUTED OF	nent of f Powe	Sri L	anka Energy		int Ve Ni	nture (, EW	R PROJE Kukule Ga I & LI AMS, RDO	anga	TABI	LE	RC		MA		DE RGE	

TABLE 11 (1/4) S.P.T. VALUES VERSUS DEPTH-KK 205 (NEW) DAM SITE

TABLE II (2/4) S.P.T VALUES VERSUS DEPTH - KK 205 (OLD) DAM SITE

drill hole KK1 47 drill hole KK3 SPT VALUE 27 35 22 26 56 56 3.03 1.45 2.90 4.35 5.80 7.25 8.70 KK 230 DAM SITE
DEPTH M.
FROM TO 2 SPT RESULTS 2.58 4.03 1.00 2.45 3.90 5.35 6.80 8.25 TABLE II (3/4) S.P.T VALUES DEPTH - KK 230 DAM SITE drill hole KK3 □ drill hole KK1 SPT values > 50 9.00 KK 230 DAM 8.00 7.00 SPT VALUES Vs. DEPTH 5.00 6.00 **DEPTH M**. 4.00 3.00 2.00 1.00 0.00 50 0 SPT VALUES 10 40 20 5A - T - 17

drill holeKP-3 drill hole KP-1 SPT VALUE 33 27 18 15 14 46 40 46 54 34 31 54 35 53 67 67 9 13 17 9.96 11.26 12.56 1.30 2.65 3.95 6.59 7.80 9.10 10.40 11.70 13.00 14.30 16.90 8.40 7.10 1.30 2.30 3.41 4.71 T0 DEPTH M. S.P.T RESULTS **KP DAMSITE** 14.00 15.30 16.60 17.90 10.10 11.40 12.70 5.81 6.80 8.10 9.66 10.69 2.00 3.11 4.41 FROM 1.00 1.00 2.35 3.65 6.28 7.50 8.80 drill hole KP-1 drill hole KP-3 00.81 00.91 **KP DAM** 14.00 SPT VALUES Vs. DEPTH 15.00 DEPTH M. 00.8 00.9 SPT values > 50 00°¢ 2.00 00.050 40 10 20 0 5A - T - 18

- KP DAM SITE TABLE II (4/4) S.P.T VALUES VERSUS DEPTH

TABLE: 12 PIEZOMETER INSTALLATION

		ELEVATION OF		MEASURED WATER	ATER
DRILL HOLE No	COLLAR	FILTER SECTION M.S.L	N M.S.L	LEVEL M.	M.
	M.S.L	тор	BOTTOM	FROM	T0
K-P DAM SITE	1	,			
KP1	223.220	195.220	173.720	13.91	18.35
KP3	217.120	195.820	167.620	8.46	11.49
K-K230 DAM AXIS					
KK1 (PZ 1)	229.622	221.950	196.950	8.47	9.38
	0	0	0		,
KK1 (P2 2) 	229.622	191.650	1/9.650	9.80	21.00
KK3	197.920	150.920	147.920	ARTESIAN	
				CONDITION	
K-K205 (OLD) DAM SITE					
KK11	211.580	209.580	181.480	12.34	13.74
KK9	211.210	200.710	190.760	7.56	11.40
KK18	205.960	200.960	185.800	6.20	8.80
K-K205 (NEW) DAM SITE					
KK33	210.762	198.262	190.613	10.00	12.65
KK35	204.348	201.348	184.148	0.50	2.30
KK37	212.878	208.878	192.628	2.80	4.80
K-K WATERWAYS					
KK6	242.552	240.552	202.352	06.0	1.14
KK29	254.637	243.637	154.777	08.0	3.13
KK 205(OLD)/230 SURGE TANK					
KK7	301.487	298.487	126.377	23.40	40.03
KK 205 (NEW)SURGE TANK					
KK42	230.900	220.900	0.830	15.65	18.48
KK 205 (NEW)POWER HOUSE					
KK43	**				
KK 205 (NEW) OUTFALL					
KK8	40.568	3.568	0.518	9.00	9.25

- HOLE TO BE COMPLETED

										_B	0	REF	10 	LE	L()G F(JK 	E	AG	INEERING P					D. 13		HEFT
		F	E/	λT	UF	RE	– . K	K	23	ο ;	, [MAC	Δ	XIS	3												HEET .
						DAT						HOL				JOINT R	SUG HR		⟨Ε	JOINT SEPARATION	WEATHE		G		ROCK	STRE	NGTH
١						MP(F1		U1. Z	٧.	- כסחי	9 1016	IATE IS	5085	9 486	:	VR=very ro R =rough SR=slightly				V Every Hight < 0.1mm T = Hight 0 1-1 0mm M0=mderat open 1.0-5 0mm	material completely				weat	A •	< 1.00 1.0 - 5.0:
1			, 116 18 m i		י מכ	ROTAR	,			ĘVAS	IDN	1 0 0 1	TOM	1 179.	1	S = smooth Stasticken RE	OVER	Y	_	O topen > 50mm OTHER SYMBOLS PL.S.I spoint load strength	moderately					C ty strong	5.0-25 00 25 0-50 0°
			ARRFL Antid			(ED 87:			,	NAI GH'N		TH 50	0.231	M.		Same	CORE RECO	VERY	(%)	U.C.S Bunidvial compressive	slightly fresh			Ž	strong		50 0400 t
			100F			\1 F ·			P	7 A 9 IN	G	lare rig		1						T zfirst ground water B vrock sample W zwater sample	<u> </u>		Ш	Ш	extremely	strong	> 759 .
ľ		D	RILL	IN	G	TES	TS	J	OIN	TS		PE	RM		BILIT	Υ		OVE	RY	GENERAL DESC				EN	GNEER	ING A	SPECTS
	-		T N	200	_			٥				ř.		(BARS) reading)	ing.	2007	RY %			texture and structure	(massive, led , flow			T DE MOTO			
	OEPTH (ADVANCE	ATERICOLOR	DRILLING	LEVELS	183	RESULT	SET	ROUGHNESS	0.00		401	2 I	ž ž	Loss res/m		RECOVERY		*	banded, gneissone, po scale as for joint spa weathering, alteration	ing),	APHIC LO	WEATHERING			RE MAR	lo
	ě	ا ج ا	CASING / CEMENT	RATE OF		-	ž	JOINT	200	0.00	20	91		PRESSUR! (manometer	WATER (total Lit	LUGEON	ORE	Ž	0	lithological characteri strength, joints	stics ,	SR A P	WEAT	8	perm etc.)	ation, g eability,	rock qualit
-		֡֡֡֞֜֞֜֞֜֞֜֞֜֞֜֞֜֞֜֞֜֞֜֞֡֓֡֡֡֡֡֡֡֡֡֡֡֡֡	. 8	\ - -	 -			-)*8°	! <u>^</u> ! []	_}-	-	Ē		<u>K</u>	ь ПП	59 	100	TOP SOIL DARK BROWN CL	AVEY SAND	ō ō	 F.[T	hi	•	==:-	
																E=1207+10				COBBLE (AMPHIBOLITE) RESIDUAL SOIL REDDISH SAND	BROWN CLAYET	0 o					
ľ	. 28		2	:1						$\ \ $		0.0 1.3	28.			K=5.53×10 ⁶				COM WEATHERED ROCK RE		~~~					
[2.58	2.58 1404	2			SPT	47					28 2.	58							WHITISH TO YELLOWISH	BROWN KAOLINE	~-					
1	5.03		2 2	1		<u> </u>	4,		-													~					
ŀ	.03		٥	Ì		SPT	>50		İ			2.58 4.	03			K=29fa10f				REDDISH BROWN POCK		~					
ľ		4.94 0705	ME	1				- 1	R OOR	\parallel		4.03 4	94			K = 5 85 v lÕ ⁶	#	7		CHARNOCKITIC GNEISS, GRE -ED GNEISSIC, MAIN COMP		~					
ļ,	3 15		100 E					101	RO	Щ						<u> </u>		1	1	Py WITH HORNBLENDE-EN		~					
			GREY	il				1	RO			6.15	ļ		39.0	737				AT 5.3, 5 4, 6.35 FJ/70		n.					
١			-	1	B.2				ĺ	Ш			ļ		54. 0 63.5	27.6 36.1	#	44		AT 5.2, WEATH, J/60° AT 5.29 WEATH, J/15° WHIT ISH, MEDIUM GRAIN	D WEAK TO	2					
Ī		8.37 0466	LLOWIS						R MX				1		55.2 39.5	44.8 74.7	44			MODER ATELYSTRONG OF	EISSIC ROCK.	~~					
Ì.	.67		ļω	1						191			.67	PRES		OULD NOT		+++		FROM 8 37 TO 9 O7 WETH	F/J CLOSLY	~					
F		10 <i>2</i> 7	<u>}</u>						RM	Щ		9 75		1	9.5	18.1	47	Ш		AT 908,9.20,929,938,9 9.87FJ WETH CHARNOC GREY TO DARK GREY.MED IN PATCHES WITH BLACKISH	RITIC GNEISS.	~					
ŀ		a Ca			7.79				R M			Ì	-	3 6	11.5 14.0	6.8				-LENDE-RICH LAYERS.	THIN TORNS	~					
1					OLGE					\coprod				3	11.9	10.4				AT 9 67 TO 9 88 WEATH,J/							
Į,	2 77							"	RT			12.77	77	1	6.4	16.7	11	#		AT 9 68,994 WFATHJ/10° AT 11.85,1210,1287, 1356 . FROM 13.8 TO 14 25 WFA	いはり。	*					
l	Ì				7.79			"	RT					3 6	7. 3 8. 8	8.7 6.5				AT 14 09 WEATH,J/85°(OF		*	100	Ш			
Ī								ı	R M	$\ \ _{k}$			D4	3	8.3 6.8	9.9	$\parallel \parallel$		1	CHARNOCKITIC GNEISS AS AT 15 04, 17.08,17.18,	-	~	$\Pi \Pi$				
! "	04	200						, ,	SL T			5 04	7	1	143	25.4			1	AT 17.05 FJ/60°							
ŀ									SL T					3 6	16 I 18 9	13.6 8.9				FROM 17.08 TO 17 25 J/6 AT 17.34,17.82,17.88,17 18.82,18.88,18.92 J/50	94,1804,18.60,	78.					
ŀ		- [7 79 000			" [SL T					3	17.2 14.6	14.5 25.9				FROM 17 95 TO 18 15 J/8		r.					
ļ.,	1.15				•	- 1			SLT				.15					П		AT 17.91,18 15 J/20°		-e					
	- 1	906				j		111	SLIT			7.76		,	17. 2	31. 1		게		AT 18.92, 18.93,18.95 J	/40°	-sL					
		ONO	EYISH		8.1 n(/1)				SL T				1		25.6 36.0	15 6	#	44		FROM 19 50 TO 21 28 TEG	TONIZED ZONE	XX	<u> </u>				
ľ			GRE					1	SL T	\mathbf{H}			-	3 I	26.2 178	20.8 32.2				CL. SPACED CHL SLJ/	70 °AND 30°		}	Ш			
12	.2A	1/10						1	SL T	Щ		21 53	28				-		4	AT 21.44, 21 66,2216,		XXX]				
ŀ								ıv	SL T					3	7.8 9.7	14 I 7 7 5 4				SI (SILICA FILLED Inven) . AT 21 40, 2410 J/60°	/30°	74					
					8 34		•		S T					3	10.2	8.1				AT 22.35, 22 53, 23 24,	23 44 CHL.J/10°						
					hva				S					١	8 1	14 7			件	AT 22 96 SLWEATH.FJ/6 AT 23 68, 23.80,24 4		*					
		24.45						124	S	H									-	CHL.J/10P AT 23.58 SL WEATHJ/							
7	05							1 I	RT	111		21 61	5 05	1	6.0	10.7		HH	ff	AT 25 44 , 25ER , 25 7 26 60 , 26 50 , 28 66 , 27	0 , 2505, 25 18	ļ					
-									R T					3	7.4 9.2	5.8 4.0				27. 68,27 70, 28.0 J/1	0.0	4					
					0 42 01-14			1	R T					3	7.5	5 9			$\ \ $	AT 26 87, 26 95, 27 08 27.92 J/60°	, 27 19, 26 27	æ					
L		777 3V11							ו ז	出	Ш	70	, , 3		6.2	110						4.			11		

KUKULÉ GANGA HYDRO POWER PROJECT BOREHOLE LOG FOR ENGINEERING PURPOSES TAB. 13

	FE	Α	ΓUI	RE	- · ĸ	:к	230	ο,	DA	VI	AXIS	3										E	3H	KKI	HEET F	02
				DAT			- 🕴	•			DAT		JOINT	OUG			ΚE	Y JOINT SEPARATION	WEATH		G		ROC	CK STREE		
				5) 04	7 F D 92	01 24	1				152 69 159 48	ε	VR=very r R =rough	ough				V avery tight < 0 lmm T alight Cl 1-1 Omm	sail :uneansak material	dated	2.96 870			MN/m²	<1.00	-
) name	-			ROTAR			1				R) 229	655	SREelighii S = smooti SLeelichei	ħ				MO=mderat apen 1,0-50mm O=apen > 50mm	completely highly						1 0 ~ 5.00	
7		EL, BI			•			AL CI			M1 179 3M	425	RE	COV	ERY			OTHER SYMBOLS PL.S.I spoint load strength	moderately				-	C decately strong	5 9-25 00 25 0-50 00	
		10 170 #		ED BY				N VER	TICAL	•			(: -41 (: <u>-1</u>)	RE	ĉōv	ERY	(%)	Index U.C.S #uninsigi compressive strength	lresh]	ong	50 0 40 0 00	·Ì
			D. D	7 E ·			1	ATION	lsee	٠,				R.	9 0	(%	,	V Stirst ground water R Srock sample W Swater sample				n		ry strang 1 Iremely strang	00.0-250.00 > 250.00	
(DI	RIL	LIN	G	TES	STS	10	TMI	s	F	ER	MEA	BILIT	Υ	RE	CC	OVE	RY	GENERAL DES	CRIPTION			EN	GNE	ERING AS	PECTS	
		3						9	Ē	•	SS C	9	į	;	*			rack type, colour, gra texture and structure				Ţ.				
ADVANCE	CABING / CEMENT	DRILL WATER (COLOR, LOSS)	רבאברם		5	일 :	ATION	SPACI	۳	•	(BARS) reading	/minute	· -		> E	,		cleaved , finlated, linea banded, gneissose , po	ted , flow	90		RENGTH	ļ	RE MARK		9
ě	2	2 2		1637	A E SULT	MT SET N	A A	# # # # mooo! moo!	è	BOTTOM	SURE Deter	a Lo	2 4			ٔ و		scale as for joint spa- weathering, alteration	cing),	¥	EATHERIN	5		with respect to		H b d H
DAILY	3		WATER		-	THIOL	1 3	*800 *800 *800 *800 *800 *800 *800 *800	9	TO B	PRESSURE (manometer	WATER (totalLit	LUGE		, O.		9	lithological characteri strength, joints		GRAP	WEAT	80 CK		excavation, gra permeability, r		30
*	4	8	11		l .	 	+ +	-00				5	- £	6	5	o .	100	CHARNOCKITIC GNEISS AS AB	OV F		771	١,,	, '	etc. 1		
.	-					II R	7	 	27.78		,	7. 6	13.5	П	1	П				4						- }
8	-		B 47			III 13	T				3	9.2	7.3	Ш		Ш		AT 28 04, 26 10, 28 13,29 03	CHE 1/10- 500	*			П			- 1
<i>'</i>	-	- [2/15			II R	╁	₽	1		6 3	94	4. 9 7.4	И		Ш	\parallel	AT 28 64, 29 65, 28 82, 29 29.15, 29.50 J/60°	94, 790 8, 2909,							-
.						III R	т				1	7.7	13.6	H	11.	111		23.13, 23.30 0760				Ш				
† <u>08</u>	- 1					II S	┰	╁╃┼┤	30 87	31 3				扣	H	╫	4	AT 20 06 31 36 97 70 1	. 42 4 . /2			Ш	Ш			31 OF
`						III S	1 1	$\ \ $	30 67		1	8.2	12.6		$\ \ $			AT 29 96, 31.28, 33 30, 3	3 42, 33 94 1/20	$^{\prime\prime}$		Ш		•		·
	-					ıs	+	₩			3	10.2	7. 5	H	إل		Ш			\otimes		Ш				- 1
۱.,			9 56 DV/6			II SL	1 1				6	12.6	5.2 7.6		Ш	Ш	Ш	AT 30 41,30.44,30 74,31 3 33 89, 34 06, 34.22,34				$\ \ $				
10			$\left[\cdot \right]$			III S	1 1				1	8 4	12.19	Ш		Ш	Ш	SILICA FILLED J/60°		4		$\ \ $	П			3412
1/16	-	1		l	Ì	III SL	╁┯╽	┩┼┼┤	34 02	34.39				Ш	Ш	Ш	Ш	FROM 31 50 TO 35.20 T	ECTONIZED ZON	\boxtimes		$\ \ $	Ш			
					[ı s		Ш			3	8.4 10.8	13.0 8.0	M	排	H	\mathbb{Z}	CLOS. SPACED CHL J	ECTOMIZED ZON	*			Н			1
33.1	ļ		9.38	Ì		II S	MO	Ш			6	13.4	5.6	\mathcal{H}	H	H	╢	AT 33.15 CHL FILLED	FJ/50°	4						* i
717	1	ł	5 47	j		II R		Ш			3	8.6	8.1 13.3	И	\parallel	Ш	14	FROM 34 39 TO 34 90 ZONE CL. SPACED	TECTONIZED	*		$\ \ $	11			- 1
	ı				- 1	III R	1 1	ШН		37. 54					11.	$\{\}\}$	排	AT 35.44,36 10,37 30 J/	50°	J.						1
10					ļ	=			37.28					111	11	111	44	AT 35 26, 36.10, 36 64, 37		* *			Ħ			380
∕ 18	-					I R	T				3	8.8 11.4	12.9 8.1	И	扑	捌			·	ar.		Ш				
						" 17	T				6	14.8	6.0	И	$\ \ $	捌		AT 38.53 FJ/60° AT 38 13, 38 23, 39 24, 3	8 64, 39 26,	4			Н			
	ı		9.8		Ī	I S	1 1				3	9.0	8.4 13.2	M	1	Ш	$\ \ $	39.62 , 39.66, 39.88, 39 9 CHL FILLED J/50°-60°	2,40.35	4		Ш	Ш			ļ
껾	-				- }	II S	.LL	┦┼┼	4. 21	40.8				H	化	Щ	₩	AT 39 55 CoCO3 FILLED	(2mm) J/05 ⁶	٠,٠		Ш				40.8
39 720				1	ļ	ii R		1111			1	2.8	4. 2	Ш	Ф	H	\mathbb{H}	FROM 40 52 TO 40 68 CL	SPACED FJ/65	, dr			Ш		:	41 38
720				ļ	į	11 R	,				3	3.6	2.6	W	11	111	Ш	AT 41 05, 41 18, 42 50, 42		4		Ш			İ	1
`	-				- 1	III R	1 1				6	4.6	1.9	H	1		Ш	FILLED J/500 600	33,44 42 CHC	2		Ш			i	l
	ļ		2072 0V2		Ì	" "	1				3	3.6 2.9	2.6 4.3	捌	∜	$\{III$	Ш	AT 43 24, 4332, 44.46, 4 45.0 CHL FILLED J/40		~		Ш	П			1
.	-				-	1								Ш	H	H	Ш			2		Ш	Ш			1
				ŀ	}	+	++	╫╢	44.43	44.4				$\left\{ l\right\}$		1	-					Ш	H		1	1
- 1	-					III SL		ЩЦ			1 3	3.1 4.9	5.0 3.8	W	\parallel		Щ	AT 46 63 , 46 77, 48 10	40 5 00 53	- L		Ш			;	1
	-		21.0	İ	I						6	6. 2	2.7	W	\mathcal{H}		$\{ \} $	49.54, 49 62, 49 65,49	79, 49 88							
5 e					1	\dashv	╁╏	╁┪┼	-		3	5.1 3.3	3.9 5.3	M	11	H	\parallel	CHE FILLED J/509 60	,•	*		Ш			į	40. 45
1	1		П		1	II R				47.65			0.0	И	11	Ш	拊			*		Ш	П		1	-
•						\top	\sqcap	† 	47.85		1	2.9	6.8	扪	\prod	$\ \ $	11	AT 46 60, 49 96 CHL FIL	LED FJ/60	- sh		Ш	Ш			
	Ì		21.0			II R					3	3.7	4. 1	H	41	1.11	Ш			*		Ш			ļ	İ
	1		0/22			_ _		Щ			· 6	5.6 4.3	3.5 4.7	Ш		$\ \cdot\ $	Ш			5			$\ \ $! : !	
		_				1 1 15	T			50 23	,	3.1	7. 2	扣	11					5						
	1	\top	\Box	на	LF	1	:DN	MP.L.	TF	5	ΑТ	THE	DE	Ш	1	T/)FI	50.23m.				Π	\parallel		:	
l									1		' '	' ' '						30.23m.								
1							$\ \ $																		ŀ	
															$\ \ $	$\ \ $										l
	•							<i>}</i>																		-
	- 1									1		ŀ														
																				-					į	
	.	-									<u> </u>													•	ì	i

																JG 1	<u> </u>			-	JIVLETTITO 1				TR	нк	K2	SHE
	 .							KK	. 2					DAT						ίE		WEATH	RING	3			STRE	
	 : 1 A R	-	-			DAT		. 03	- 1	x - c	OORD	INATE	152	13 · 43	N	JOINT VR=very	rough				JOINT SEPARATION V Every tight < 0.1mm T stight O 1-1 0mm	sait : unconsolid material	aled				MN/m²	
i		19:1P			AAY	5); 21	đơy	•	- 1			NATE N (C		, B13 · ;		R zrougi SRzelight S zemon SLzelick	ly to				MOmmderat open 1.0-50mm O sopen > 50mm	completely highly		Í	÷ (1)	·	•	110 5.0
		ING RAR				ROTAI N X	RY		- 1			N (B				R	ECOV	ERY			OTHER SYMBOLS PL 8.1.=point load strength Index	moderately				moderal	ely strong	25 0
•	ORF	MAN	•	1,1	naaı	ED BY:					H'NAT RING	ION 3	10°				:JRE	cov	ERY		U.C.S Runiasial compressive strength 8 #first ground water 8 #rock sample	fresh				strong very st		100.
	ORE	nis	CAR	DFD	, n			1	_]	roc	ATION	1 -							(%)		R Brock Sample W Ewater Sample GENERAL DES	CRIPTION		Ш	ENG		RING A	SPE
	-	DRI		INC	١	TES	18	屵		T N		+			BILIT	1	-	<u>:</u>	JVE	KI	rock type , colour , gra	in size ,				1		
			OTRO	DRILLING	ובאנופ			ě	38	0 2 2	SPACING	P P P	3	(BARS)	WATER LOSS	2		/ E B /			texture and structure cleaved, foliated, linea banded, gneissass, pa	oled , flow	8	9	STRENGTH		REMAR	K8
	DEPTH ()		DRILL WATER (COLDRILO	OF DR		1237	RESULT	T SET	US HNE	SEPARATION		100	BOTTOM		or ites	LUGEON or		RECOVERY	د د چ		scale as for joint spo weathering, alteration	ciny), , minor	APHIC I	WEATHERIN	1		respect	
'	5	1 3	PELL WAS	RATE	MATER		-	LOINT	2	38	20 00 00 00 00	1 0 1	٤	PRESSURE (manometer	WATER	SAME A		Š		nc	lithological characteri strength, joints	istics ,	SR A	WEA	BOCK		neahility,	
	+	†-	8	-	-			卜	-								ľ		١١		TOP SOIL.SILTY CLA	 Y	° 。					
	16	3																	Ш		RESIDUAL SOIL TELL TO REDDISH BROWN	OWISH BROWN	0			.		
	12.	15	ļ										ļ										0					
																				11			0 0					
-																							00					
İ		}																		11	,		0					
İ																							°°					
	8.	o O															1				WASH SAMPLE, COMP	PLETELY	~					
i																							~					
																							_					
1	İ												ļ	B									~			l i		
														ERFORMED									~					
														PERF									~					
																							~				,	
	12													W.		'				\parallel			~~					
	ŞÜ	2	HSIN											¥						$\ $			~					
			8																				~					
İ			80										١.	STS									~					
														ä		1							~					
																							~		$\ \ $			
l														Ş														
																							~					
				٠					7	R		-							Ш	1		·	_~		Ш	Ц		
18 - 75	314	2						11.	т ма	R		18 85		,	4.0	11-1			Ш		GARNETIFEROUS BIOT LIGHT GREY MEDIUM G COMPONENTS QU, Fd, BI		~					
19-8	19 (4	МО					3	7.0	6.6				#	INTERCALATION OF D HORNBLENDE - BIOTITE	APX COLOURED GNEISS	~					
		1						'	1 1	R				3	9·6 7·8	7.4			Ш	1	18·50 21 50	TO 18 9 21-5	~			.		
								"	T	R				1	6.2	17.2					26 27 27 · 13	25 48 26·40 28·93	XX					
21.5	22:							1	T	SL										II	51.05	52.70	\bowtie					
İ	25/							-	-			21 98	22 35			 	-hl:		11	+	AT 18-34, 18 46, 18-50 AT 18-65 , 18 72 J/60	,18-70,18 7 FJ	XX					
								1	r r	SL SL				3	8·1 10·7	22·5		:∐.			AT 18 8, 19 5 (3mm St		-					
1														6	13.5	6.4					FROM 19 30 TO 19 3: AT 19 39, 19 50 (SL.W) 19 63 FJ	~					
24 85	25		EYISH					1	Ţ	SL. R	'		25 48	3	8·9	10·5 24 7		扎		$\ \cdot \ $	SL.W J/70" FROM 18 1912 TO 19-4,19 5 TO	19 80(3mm	-					
	50/	2	ar I						т	R		25 20		1	h .			1		1	AT 19 93, 19 95 ,20 25, 20 82 ,21 08 FJ							
26 27					-			1		s				3 6	NIL	NIL.		11	捌	1	FROM 21 32 TO 21 50 C1 FROM 20 35 TO 20 55, 2 20 70 TO 20 96, 21 0 FROM 21 5 TO 22 55 TEC .CL 3P CHL, SLS, SLIGHT		~					
27 73								"	T	S				3	ļ						1 LINOW SS 37 to 54 15	TONIZED ZONE LY WEATHERED	_					
L		Ш	Ш					Ŀ	Ţ	s	Ш	1	L	L	<u></u>	<u> </u>	-[] 57	dJ.	낸	IJ	TECTONIZED ZONE		\sim	للداد	Ш	Ц		

FI	EΑ	Τl	JR	E	- +	Κ	230),	DA	M.	AXI	s						В	H KK2 SHEET OF 04	02
DF	RILL	IN	G 1	DAT	Α		В	ORE	HO	LE	DAT	Α	TAILS I	KE		WEATHERIN	G		OCK STRENGTH	
31FD.							1				813 · 43 , 813 ·		VREVery r		JOINT SEPARATION Vavery light < 0 trus T stight 0.1-1 Ores	sait : unconsolidated material			MN /m²	
MAR	, , , ,									OLLA		-	SRuelighth S = smooth Stasticker		MOxinderat open 1.0-50mm Oxean > 50mm	completely highly			weah 8 1.0 - 5.0	
I LING			F	ROTAR	łY					100.0			RE	COVERY	OTHER SYMBOLS PL S.I spoint lead strength	moderately			C 5.0-25 0	
* F WAN		-	. G E (94.					ON .					CORE RECOVERY (%)	Indea U.C.S Runiosial compressive	slightly fresh			strang 50.0400.0	٠,١
-1 STO			DAT	₹:			LOCA	DMI						R O.D (%)	T strength T strength B stack sample F same	7700			very strong 100,0-750 (
DR					TS	JO	NT:	-	1	•	MEA	BILIT	Υ Υ	RECOVERY	GENERAL DESC	CRIPTION		ENG	NEERING ASPECTS	
IT	2830		1			П	Π	•	ž	-	3 .6	3	:	*	rock type, colour, grav	n size·,]	1 [
DAILY ADVANCE CASING/CEMENT	DARL WATER (COLOR, LOSS)	DRILLING	רבאנרפ		-	ğ ,	5	PAC	-	3	(BARS)	mmute	1	È	texture and structure cleaved, foliated, lineat		.	8 8 6 7 16		3
A DVANC	QU E			5	REBULT	ROUGHIE	SEPARATION Q.Q.S.		è	BOTTOM		res/	3	2	banded, gneissose, par scale as for joint spac	ing)	5	1 5	REMARKS	X L
DAILY	N N	PAST 0	MATER		•	F NOW	8		100	1 1	PRESSURE (Manameter	WATER (totalLit	TO SE		weathering, alteration lithological characteris		WEATHERING	ROCK	excavation, grouting, permeability, rock quality	, 8
ن م	ă		-				1_15	96,	<u> </u>	ç	E E	• 8	PERME	0 50 100 0 70 100	strength , joints		*		etc.)	
5.7			1			I T		Ш		28 - 7					GARNETIFEROUS BIOTI GNEISS AS ABOVE				<u> </u>	
7/12						ı T	s	\prod	28 24		1	h			AT 24 87 (GRAPHITE 24 89, 25 07 (SLS), 25	TRACES 1	1111	HH		1
			1								3 6	NIL	NIL		SILICA FILL)		$\Pi\Pi$			1: 1
,]								$\parallel \parallel \parallel$			3		1	[]]]]]]	FROM 24-87 TO 24-9 25 24 AND FROM 2567 TO				}	'
74						I T	R				, i	ľ	.		AT 26 42 , 26 67, 26 76, AT 27.0 , 27.25 , 27.56				1	, 1
174		-	1			-	111	₩	31 67	31 74				 	AT 27-34, 27-65, 28-4	5,27·85 J/30°	1111			: }
						T	R	$\ \ \ $!	1			FROM 28-35 TO 28 46 AT 27-8,27-92,28-3		$\ \ \ $. 1
	$\ \ $						_	+ + +			3 6	NIL	NIL		FROM 28 7 TO 28 85					! 1
1		ı		- 1		IT	S	$\parallel \parallel \parallel$			3	(11.2			THICK .	1				
	П			į		1 T	R				,	1		IIIIII W	AT 28-02, 28 28, 28 3 29-43, 30 65 FJ	5, 29-16,29 27				: 1
717 57				ł		_ _	╀	- -		3517				HIIHH		-	1111		,	1 1
12	1 1	Ì		-		I T	R		3469		1_	Ì			AT 51-20, 31-42, 31-74 32-68, 33-3, 33-70, 33					1
	1 1										3 6	NIL	NIL		34.5,35.17,35.52,35 35.95,36.15 FJ/35	1-37		1111		;
						пТ	1 11				3			11111111111	FROM 86 22 TO 36-4	42 J/70°				' 1
		1				T	8					,	,	[]][]	FROM 36 42 TO 36 36-71 TO 36-92 J				'	4
Ϋ́Z				Ī		1 7	SR	##	38-39	38:39		1		rff1 ff 		.				.
175	11	ļ		l		. .	["]				3					~				1
6	$ \ $							$\dagger \dagger \dagger \dagger$			6	NIL	NIL		AT 39-46, 39 49 ,39	36, 39.54				`
	$ \ $	- [' T	SR				3]			40 18, 40 68, 41 41,4					1 1
<u>p</u> e		-				T	R		41-7	41 86				HHHH1						
`7						n T	R				<u>.</u>	1			AT 42 30 1/50°, 43					1
, ; e				- 1			 	\mathbb{H}			3 6	NIL	NIL		FROM 42 82 TO 4	3-8 J/80°				.
."	1 1	-				T	R				3				AT 44 54 J/20°					
•				-		III T	111				'	J				~				1 1
Ť l						- -	1-11	┦ ┠╟	45-1	45-2				HHH1114		_				
<u>:2</u>						- -	╁╌╫	┪┼┼			3	4·8 6·3	13·3 5·9							1
					Ì	1	SR				6	8.2	39	1 114 1 1 1411 1 1	AT 46 26, 46 50, 46 62 47 5 , 47 75, 48 6, 48 3		[[[]]			
		ļ				" T	R				3	6.6	6.2	M (1.141.11)	49 29, 49 66, 49 83,6 50 66, 50 98,59 02 FJ	0 06,				
45			ı		Ì		Ш	Ш			'	5∙1	14-1		30.00, 00 aa, 00 02 F3.	-				1
(OI		١		1			SR								FROM 49-90, TO 50 0 , 50	0-86 TO 82 O2 ~				1 1
jl		-	ı				╁╌╂╽	$\parallel + \parallel$	4852	18 6					J/70* -					
						1 7	1 11				3	l·2 l·4	3·3 1·3			-				1
1		-		- {		" †	SR				6	1.6	0.8		_	 ~				1
. 8		1	1	- 1		-	1-11				3	1-4	1.3	H111111111	•	-				
.						1 T	R				1	1.1	3.0							
: 8										52 OZ					AT 52 64,5280,54-4				,	
.]	$ \ $			1		1 7	1 11		51.73		1	1.6	4.4							
B]		B T	R				3	2 5	2.4	1511111111	AT 52 81 J/60°	-				1
83				l			 -	" 			6	3 6 2·7	1·7 2·5		AT 56 68 , 56 77 ,56 (88,58 98.				i 1
				1		1 7	R	11			١	1.9	5.3	 	57-85, 58-04,58-08,56	R 14				
, <u>2</u>				1			1-44		 	55 23					58·30, 58·58 FJ/2	-				1
,"	\sqcup	\perp	\perp			1 7	R	Ш.							tt .	. ~	Ш	Ш	·.	
							_								F 22					

DRILLING DATA
STATE D. 91/2.19 COMPLETE DP: 02:14 T CORDINATE (1028) 43 N T CO
The state of the
DRILLING TESTS JOINTS PERMEABILITY RECOVERY STATE State St
COME STOPPO ATE COCKING COCKIN
DRILLING TESTS JOINTS PERMEABILITY RECOVERY GENERAL DESCRIPTION Section 1982 Section
Took type, colour, gram size, testure and structure (mossive
1 1 1 1 1 1 1 1 1 1
1 2-1 5-8 3 2-8 2-6 4 3 3-9 1 5 3 3-9 1 6 3 3 3 3 3 3 3 3 3
1 2-1 5-8 3 2-8 2-6 4 3 3-9 1-6 3 3-9 1-6 3 3-9 1-6 3 3-9 1-6 3 3-9 1-6 3 3-9 1-6 3 3-9 1-6
3 2-8 2-6 3-9 1-8 3 3-0 2-8 3-33, 39-42, 59-35, 59-26, 59-26, 39-33, 39-42, 59-31 FJ/30° I R T
3 3.0 2.8 39-33, 59-42, 59-51 FJ/30° AT 98-86, 59-26, 59-55 J/60° FROM 59-80 TO 59-99 MYLONITE FILLED (2mm) J/83° AT 59-759-83, 59-98, 60-02, 60-24 AT 59-759-83, 59-98, 60-02, 60-24 AT 59-759-83, 59-98, 60-02, 60-24 AT 59-759-83, 59-98, 60-02, 60-24 AT 59-759-83, 59-98, 60-02, 60-24 AT 59-759-83, 59-98, 60-02, 60-24 AT 59-759-83, 59-98, 60-02, 60-24 AT 59-759-83, 59-98, 60-02, 60-24 AT 59-759-83, 59-98, 60-02, 60-24 AT 59-759-83, 59-98, 60-02, 60-24 AT 59-759-83, 59-98, 60-02, 60-24 AT 59-759-83, 59-98, 60-02, 60-24 AT 59-759-83, 59-98, 60-02, 60-24 AT 59-759-83, 59-98, 60-02, 60-24 AT 59-759-83, 59-98, 60-02, 60-24 AT 59-759-83, 59-98, 60-02, 60-24 AT 59-759-83, 59-98, 60-02, 60-24
Sec Sec
I R T
3 8-8 6 12-8 3 9-7 1 SR T II SR MO I SR T II SR MO I SR T II S
BO-89 I SR T I SR MO II SR MO II SR MO II SR MO II SR T II SR MO II SR T II SR MO II SR T II SR MO II SR T II SR MO II SR T II SR MO II SR T II SR T II SR MO II SR MO II SR T II SR T II SR T II SR MO II SR MO II SR MO II SR MO II SR T II SR T II SR MO II S
Big Big
III SR MO III SR MO III SR T II SR T
200 11 SR T 3 2·7 2·2 62·85, 62·66, 62·77 FROM 62·85 TO 63·96 Ct. SP. (2-3 cm) J/15° FROM 62·98 TO 63·95 J/65° 3 3·0 2·5 7 7 7 7 7 7 7 7 7
3 3·0 2·5 FROM 62-98 TO 63-95 J/65°
1 []
65-52
I R MO
6 1-8 0-8 1-3 1-2 1-3 1-2 1-3 1-2 1-3 1-2 1-3 1-2 1-3 1-3 1-2 1-3 1-
I R T
88-77 AT 69-60 J/45°
7 738 W
TRT
73-22 I I R T I I I I I I I I I I I I I I I I
TA-59 II R T
TIRT TO THE TOTAL
1 1 1 2 3 · 3 3 3 4 74·10,75·20, 75·44, 76·72,76·26, -
1 SR T
7766
□ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □ □
I SR T
79-98 0051 6 40-2 19-1 FROM 76-60 TO 76-80 J/70° 77-5 J/80°
3 31-4 29-9 FROM 77-86 TO 77-65 03 No. SLS
81-46 T 79-46, 79-59 J/15° ARTERIAN CONDITION REACHING THE DEP
AT 81 72 OPEN FJ FROM 83 7 TO 84-05 03 Nos. OF
5A. T. 24

KUKULÉ GANGA HYDRO POWER PROJECT BOREHOLE LOG FOR ENGINEERING PURPOSES TAB. 13

										<u> </u>					•									SHEET	04
خ				DA		K K	. 2:			AM.						K	<u></u>	,	WEATH	EDIN	C.			H KK2 SHEET OF 04 OCK STRENGTH	
1	TED	91 1	2.15	COMPL	170 9	5.05	14 17 -			16 19			JOINT		HNE			JOINT SEPARATION VEVELY light < 0.1mm	sail : unconsolio				77	MH/m²	
·	0 P 11P			v \$ 1 2	i de	y•	- 1			TE IBI		35 €	R grough SRusiight S gamou		gh			T stight 0.1-1 Omm MO#mderat open 1,0-5 Omm	completely		建			A <1.00	
, ·	L146	MET	400	ROT	ARY		*1	EVAT	ION	1 8071) M)		Staticte	COV				OTHER SYMBOLS	highly moderately					C 5.0-25.00	
ľ				N X GED 81	,.		- 1	NAL Sh'Wi		H. 100	0 m			CO	EOVE	RY (9		PL.81=point load strength Indee U.C.8 =uniasial compressive	slightly					maderately strong 25 0-50 00 strong 50: 0-00 00	
	570			ATE .			86	ARIN	G					R. 0	. D	(%)		strength Stiret graund water Brack tample	fresh					very strong 100,0-250 0 extremely strong > 250 0	
	DRI			→	STS	IJ	OIN.			PER	MEA	BILIT	Y	RE		/ER	w '	GENERAL DESC	RIPTION	\Box	111	EN	IGI	NEERING ASPECTS	
	Т	7 = 1	T	1	T	\Box	Т			H (T -	1					7	ock type, colour, gram	n size ,	1					1
1		WATER (COLOR, LOSS)	DAILLING			è	88 o	1			(BARS)	WATER LOSS (total_itres/minute)	1	1			c	texture and structure cleaved, folioted, lineal	ed , flow	901			A C M C T	RF MARKS	3
7	CABING / CEMENT	S S	- 1 -		E BULT		ARATION			# 10F	2 5	1 2 8	F a	70,50		*	s	oanded, gneissose, po scale as far joint spac	ing),		WEATHERIN		5	(with respect to	14.00
i J		LE	PATE O		-	LOIMT	ROUG	000-00		21	PRESSURE (manameter	WATER otalLit	PERMEABULT			•	- [6	weathering, alteration lithological characteris strength, joints		GRAPHIC	VEAT		MOCK	excavation, grouting, permeability, rock quality	
١,			_ _	<u> </u>		\sqcup	\perp	00		- P	, E	\	\	0	50 711 T	- € 10 TII	9		-======	1	711	ļ.,	-	etc.)	<u> </u>
	64			ļ			SR T			!	3	10:8	33·9 16·9	M	Ш	Ш	114	GARNETIFEROUS BIOTITE ABOVE FROM 84-04 TO 84-87 TO 86-10 J/80°	84-12.	~_		Ш			İ
90		$ \ $				l i	SR T) F ~	6 3	19·0 12:3	18·7 38·6	1	扣	117	7					$\ \ $			84 07
	71 De							- 47	85	85·7 ·3i	1+			拑	愲	拑	и.	AT 84-9, 85-10, 85-48, 85-98, 86-12, 86-43, 86		~-					
						'	SR MC				3	2·7 3·9	8·5 3·8	H		H	1	86-92 FJ/10°-15° AT 85-28, 87-42, 88-19	, 88.93,	-~		$\ \ $	Ш		[
,	9 6						SR T				6	5.7	2.8	川	111	煝	Π,	89-42,89-70,89-80 J/ AT 87-52,88-10,88-21, 88-64,88-75 FJ/15°		~-		$\ \ $			
1						111	SR T				3	4·0 2·9	3·9 9·1	H	粓	\parallel	ш	AT 89-08, 89-43, 89- FROM 89-50 TO 89-86		┥~│		$\ \ $			רו מפ
•							SPR T		88	88-8	-		 -	벰	₩	H		2 2 20 00		~ -					AA AI
j'd	9					"	SR T				3	0.8	2.5	团		$\parallel \parallel$	11	HORNBLENDE-RICH LAYER	ıs	-~		$\ \ $	Ш		
j g	6 2					1	SR T				6	2.1	1.0				11	FROM TO 89:55 90:25		~		Ш			İ
	ı			İ		iI	RT			İ	3	1.5	1.5	$\ \ $		$\ \ $	ш	97 · 38 97 · 86		~	$\parallel \parallel \parallel$	Ш	Ш		1
	I	11	İ	l	1	"	RT			İ	'	1.0	3 · 1	Ш	Ш	#1		FROM 91-41 TO 91-66	03 No. J/70°	.~			Ш		ŀ
11	2		İ		•	Н	- -		11_	92.2	-			Ш	₩	Щ						$\ \ $	Ш		l
ų.	2		1	1		1 1	RT		52	-19				忛	W	HI.	П				111	Ш	Ш		l
].	1	H	- -		╢		3			111		111		AT 90-18 , 90-32 , 90- 91-22 , 91-41 , 92-92 , 9				Ш			77 77
	,			1		Ľ	RT				6	NIL	NIL		Ш		<u>ا</u> [ا	93-72 FJ / 15° AT 90-06, 90-08, 90-11							ł
i)2		1	}		$\lceil \cdot \rceil$	RT			95-6	١				$\left\{ \left[\left[\right] \right] \right\}$	Ш	KI 4	AT 90.06, 90.08, 90. AT 90.55, 98.55 3/60°	18,90·40 J/20		$\parallel \parallel \parallel$	Ш			
		Ш		1		-	R MO		95		7	3.8	11.9	11		悄	4 ۲	AT 94.58 , 94.77 , 94. 97.82 , 99.12 , 99.48 ,	80,96.60,			Ш			35 69
			İ	}		m	RT			1.	3	5-1	5.0		Ш	111		99-58, 99-68,99-77 99-90 FJ/15°	, 99-88,			Ш			
	22		1	1	İ		RO		H		6	6·8 5·6	3.3	H	H	HI		AT 96-02, 96-12, 96- 96-23, 96-42, 96-57, 1		l		Ш			
			1	ſ			RT	Ш			ı	4.6	5·5 14·4		$\ \ $	们		97-90, 98-0 J/30° WETH. J AT 98-12, 98	·16 ,98·19 J/25	, - ~	Ш	Ш	Н		
٠,						片	R T R MO		₩	98-9		1				41	Н	FROM 98-16 TO 98-32 FROM 98-46 TO 98 74	C1.8P &	~-	\prod	$\ \ $			36 40
Š	98) DZ		1	1		텕	RT		-		Ĭ		ļ -	M			П	OPEN J/50° (LEACHE AT 98-95, 99-10, 99 4		~	Ш		Ш)
						117	R T R T R T		Ħ	1]		W	fΗ	111		J /60°		~-					97 45
1.							T		#	CDM	PIF	TED	AT	П		DE		TH OF 100-0	m			Ш			
1					ļ		'	ТП	11	۳.۰۰			~ '		Ш	111	'	111 01 100 0	***	1	Ш	$\ \ $		•	
			1	[\parallel		}				Ш	Ш							Ш		1
j			1		1													4]]			П]
1			1							-	ł					Ш									
À				1	1						1				Ш	Ш						111	П		
Ì			1	1	1	П		Ш	Ш							Ш						111	П		
											· ·				Ш								Ш		
	1			ł		П			Ш					Ш	Ш	Ш				1 1			Н		
					ŀ				11	İ			}			$\ \ $		·							
			1			$ \ $									$\ \ $										
				١.									ļ. 									$\ \ $	$\parallel \parallel$		
				'		$ \ $							1		$\ \ $										
																$\ \ $		•							
					l							•]]					
·.																$\ \ $									
3						$ \ $									$\ \ $			A							
0	\perp						_[Ľ	Ĺ	\prod	[]]	\prod							\parallel	·•	
1															51		Т	- 25					den 60		

								•							on Ng Fi					INEERING PURPO	SES	;		Τį	AB. 13
-				T 1	יטר														_						KK3 OF
					RE DA		K	230					DAT	Δ		<u></u>		K	E,	Y WEAT	IERIN	G			CK STRENG
	TART	ED:	17 11.	91	COMPL	TED 06	5.12.9	- 1	- c o	ORDI	NATE	15277	5.15		JOINT R		HNES	8		JOINT SEPARATION soil :uncons V =very tight < 0.1mm material V = very tight 0.1-10mm	lidated				MR/m²
1	N T E RI				CKER CYB): D	2		- 1			NATE		57.25 R) 197	92	R arough SRaciightly S samonti Stablicker				-1	Tstight 0.1-10mm MOwnderat.open 1.0-50mm Completely Deopen > 50mm highly					reak B
1				1400 817: I	ROTAR	٧					N (8: PTH		M) 147 'm	55	RE	COV	ERY		-	OTHER SYMBOLS moderately P.L.B.L.spoint load strength slightly				Π.	noderately strong , 2.1
	098				GED B	' :				INATI ICAL:	0 N O	FRON	•						%	Index U.C.S Syningsial compressive strength First ground water		וווו		11	ery strong ty
					DATE:		-		OC A	TION	(400		,							R Brack sample W Bwater sample		Ш			IEERING ASP
1	1	RI	LLI	NG	TE	STS T	IJ	OIN	T					BILIT		RE		/EF	7	GENERAL DESCRIPTIO	<u> </u>			Т	EERING ASI
;	. 5	1	SOLAS	DRILLING	:		ě	2	5	SPACING		3	(BARS)	s minute	*				Į	texture and structure (massiva, cleaved, foliated, lineated, (low	8		a to a		
7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8,	ADVA	1/08	IN CO.			RESULT	38	ROUGHNESS	2 B 1	2-1-00# SPACI	ğ	BOTTOM	eter n	t Los	NO NO		9 6	%	- 1	banded, gneissone, porphyritic, et scale as for joint spacing), weathering, attenation, minor	ں ا	WEATHERING	STREM		(with respect to
'	\$ \$	CASING / CEMENT	DRILL WATER (COLOR,LO	RATE OF		-	JOINT	2		- 7	a o a	ę e	PAESSURE (monometer	water Loss (total Litres/minute)	LUGEON .	1	AND	~		lithological characteristics, strength, joints	GRAPHI	WEAT	800		permeability, rol:4
0.18	∤	-	Š	+	+-	┼	╁	+	-li		-	-	5		ļ. —	ÎII	ΠÎ	Щ	00	TOP SOIL RESIDUAL SOIL	 	1111	\mathbf{H}	I	
1.0											0.0	1-45			44 £ 10 ⁻⁵		Ш			RESIDUAL SOIL YELLOWISH BROWN CLAYEY SAND	.::				
1 49	•											2.90			28 8 10										
P 45	1				SPT	39	-																		
3.90	11/	,									2.90	4-85			-899 x 10 ⁵	111									
4 - 31	1			Ì	SPT	22	7				 	-		-	 	$\{ $				•					
8 - 3 5							_				4-35	5-80			1-22 x10-5	111	Ш					1]]]			
5.80	١				SPT	26	1				-		 	-	l	<u> </u>				GARIETIFEROUS	1				
6, 80					SPT	56	-				5·8	7 - 25			3-109×10					ROCK, WHITISH, BROWNISH	1	$\ \ \ $			
7 -20	'										7-25				1-55±10 ⁻⁸]]]					1-				
8 - 21	1				SPT	>50						_	L			411						.		il	
9 - 70	20/								\parallel		8.7	9 -7			6-84×10					CLAY BLACKISH GARNE TIFEROUS ROCK,	<u> </u>	1]]]			
1	١	1	П								P; 7	10.7			5-86±10	1				WHITISH (FROM 9-7 TO 10 7 WASH SAMPLE)	\- \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \				
10 70	ł	1	-		1											\parallel				GARNETIFEROUS BIOTITE .	<u> </u>	1]]]			
11:40		1				İ											${ m III}$			MEDIUM GRAINED PREDOMINANTLY GNEISSIC, MAIN COMPONENTS Qu. B	- يا .	$\ \ \ $			
12.9		_		-	-	-	1	- -	\parallel	\coprod	12-13	_								GA	_				
	234								\parallel				, .	lı			H								
14-0		1		2.0	٦								3 6	NIL	NIL						\ <u> </u>				
18:07	24.												3]]					1	AT 15 07 F/J 30°					
18.08				1	"	1		1	\parallel	111	15:03	15 65		1	ļ ,	11	H			AT 15 22, 16 23 J/60*					
16-96	•												3	NL.	NIL	Ш			ŀ		-			\parallel	
					1								3		İ					AT 19-70 J/70° CHLORITISIZED	_				-
18-88	27/			+	┼	 	+	-	$+\!\!+\!\!\!+$	₩	19:03	18 85								CHARNOCKITE, DARK GREY, MEDIUM		$\ \ \ $		\parallel	
Ī													<u>.</u>	1			$\ \ $		H	TO FINE GRAINED, MASSIVE, IN PAR GNEISSIC, MAIN COMPONENTS Fd. C					
20.04	•		RAYISH										3 6 3	NIL	NIL	Ш			H	Go.	-				
	29,11		GRA	1								21:55	,	ļ!	<u> </u>					HORNRLENDE - BIOTITE GNEISS, DART GREY, MEDIUM GRAINED, GNEISSIC.	- -				
21 -88	'								\parallel		2106	2100						$\ \cdot\ $		MAIN COMPONENTS, HO, RI, GA AT 20 04, 20-10, 22, 70, 24-38 F/J40- FROM 20-85 TO 20 90 J/85°	- ^o				
l				İ					11				3	NIL.	NIL.	团	Ш								
23 00													5								-				
24 - 51	F3,1											2457					$\ \cdot \ $			AT 25-02,28 80 CM FILLED J/S					
"											24 IR									AT 27:88,27:70 J/40°					
28 9¢	,												3	, NIL	NIL		$\ \ $	$\ \ $			\ - -				
26 - 62													5	-	~~ '				10	GARNETIFEROUS BIOTIFE GUEISS.	†∽ '.		$\ \ \ $,
	93,											27.7		,		$\ $				SNEISSIC					•
27 70	· F · ·	L	لــا					<u></u>	Ш	Ш	Eros		i	L	L			للا	ئد			Ш	Ш	11	

BOREHOLE LOG FOR ENGINEERING PURPOSES

TAB. 13

. ;						<u> </u>																	AB.		HEET	12
·_						K 2				M A								, 	IAUE ATTU			Y-^-		K3 SI		
18				DAT		.12 21				OLE		A	JOINT R		HHER	K	T	JOINT SEPARATION	WEATH		٠	K	OCK	STREN	GIH	
	8 UPT			491-02			1			TE 1507 COLLA		92	R traugh SRzelighti	, ,,,,	gh		1	Vilvery tight 40 tmm Viztight 0 1-10 mm MQ amderst open (0-50 mm	material completely					A .	< 1.00	18
, 'LL	1 N G	MET	H 0 D	ROTARY			e.	EVAT	ON		M) 147		SLusticker	COV	ERY		1	O SOPER SYMBOLS	highly moderately					c	5. 0-25 00	·
			LDGG	((D 07)						0 FR01			Electric Co.	RE	OVE	R Y (9	6	PL #1.speint land strength Index U.C.S #unigzigl compressive	elightly				mederat		25 0-56 00 50 0400 00	- 1
	970 DIS		AT: ED, D	ATE:			9.5	ARING	•		,		51035515A	R. Q		(%)		strength E Strest ground water E Scock sample	tresh				very str	ong ((ly strong	00.0-250.00 > 250.00	- 1
-`	RII			TES	STS	JO	ראוכ				MEA	BILIT	Y	RE	CO	VER	M	GENERAL DESC	CRIPTION			ENG	NEEF	ING ASI	PECTS	
	7	108SJ	9					9		(a)	(BARS)	ute)	m/ses	8				rock type , colour , gram texture and structure				Ŧ				_
VANC	SHE	WATERICOLORLO	רב אבר 8 משוררושם	181	ונ	SET	AT104	SPAC				Loss S/minut	1 2	3		*	t	cleaved , foliated , lineal banded , gneissone , poi	rphyritic, etc ·	Log	9	RENGTH		REMARKS	ı	E
1	CABING/CE		MATER L	F	RESULT	JOINT S	ROUGH	2000		BOTTOM	ang sound anometer	WATER	E A BELL	200	940		١	scale as for joint spac weathering, alteration lithological characteris	, minor	APHIC	WEATHERING	*	exco	respect to vation, gro		0 0
: 3	2	OBELL OB	3 3			١٩		0000 0000 0000 0000 0000	٨	TROM TO BE	PRG (man)	MATER (totalLit	LUGE	6	50	E 10	1	strength, joints	,	5	*	ROCK	etc.)	eability, ro	ck quality,	
r —						П					3				\prod		14	CHARNOCKITE, GREVISH, MED GRAINED,	NUM	~						
É											6	NIL	NIL				14	MASSIVE AT 27-68, 27 70 J/40° FROM 28-25 TO 28 45 J/	700	~ ~						-
			ļ								'				Ш		KI.	DUARTZ-FELCSTAR PEGMATITE, LIGHT COLOURED, MASSIVE, M		-						29·7 79·1
V	2						11		30	30-55						$\{ \} $		COMPONENTS Ou, Fd.								30 55
•											3				$\ \ $			GARNETIFEROUS BIOTITE		~ -						
	l								ij		6 3	NIL	NIL			$\ \ $	П	GNEISSIC, MAIN COMPONEN								
		ĺ									1	J			Ш		1.1	AT 33-86, 36 07, 37 45	3 FJ/50°	-						35.63
20	2								33.	33 86 53			ļ		$\ \ $					- [j			13.86
•												1					1			-			1		. 4	34 7
:		-									3 6	NIL	NIL		[]]		11	HORNBLENDE-BIOTITE GNE GREY MEDIUM GRAINED, GNE	EISSIC,						`.	35 38
		-									3		""	M			[]	MAIN COMPONENTS Ho, BI		[-						1
•	Н								L	37-05		, 				}	1				$\parallel \parallel \parallel$					37 05
•		-							36	65		1				111	1			<u>-</u> ا						1
3/											3 6) NIL	NIL		$\ \cdot \ $					~ -			Ì			38 43
											3		, ,,,,				1						l		Ì	1
		ļ						111		40:37	'	J	ļ	H				AT 41-1, 42 2 FJ/40°		~ <u>-</u>			1			
-									10											ے [_]						40 37
		S									3						1			_						41 -77
i,		≻						$\parallel \parallel$			6 3	NIL	NIL		$\ \ $		41.1	AT 43-0 , 43-64 , 43-60	6	~ -						1
٠.		۵								41.65	1	J					H	FROM 46 60 TO 46 78	AND	~ _			İ			ł
V									43 :	43-65		· · ·		HI.	}	骬		47-60 TO 47-85 J/70°		^ _		$\ \ \ $				43 65
i								$ \cdot$			3					$\ \cdot\ $				^ _						44 6
											6 3	NIL	NIL			111	1			<u></u>		$\ \ \ $				1
!						7					1	J						£		~ _						46 43
1/1									46	85 47 03					}	泔		-					•			47 03
Ą													[<u> </u> ; :	111.				- ₋						
Į													{		il i	1	1	MYLONITE LAYER FROM	48-40 TO	K.				IAN CONDIT		48 4
												E DEVE						48-95 LIGHT GREEN, SILT AT 48 4 , 48 95 J/50°					48 9 8		,	49 2
.11										50 3	MORE 0-5	1HAN 21 - 4	D-5 BARS			$\dagger \dagger$	Ħ	AT 49-35, 49-55 J/55°								49 86 50 37
. 1	\forall	+	\dagger		ΗΟι	E	C	MP	E	\dashv	AT	THE		H	 	FI	\$ 0)·37 m			\prod					
																										1
										.					$\ \ $											Ì
	1										-															
; ;													. •					c	,							
, -	لِـــــــــــــــــــــــــــــــــــــ			لـــا		LL	لــــــــــــــــــــــــــــــــــــــ	Ш	Щ.				<u></u>	Ш	Ш	Щ	Ц	rn og		لـــا	Ш	ШЦ	<u> </u>			

KUKULE GANGA HYDRO POWER PROJECT BOREHOLE LOG FOR ENGINEERING PURPOSES TAB. 13

1											D(<i></i>			<u> </u>	<u> </u>	L. I	- V	SHAFFILIAO I			<u>.</u>		Γ_		SHEE
ĺ.			FE	Λ	TU	RE	_	K	K							AM -	QL	AF	R	Y		<u>-</u> .				ΙB	HKK4	OF
						ĎΑ								DAT		JOINT	iõua	ÀNE!		〈Ε	JOINT SEPARATION	WEATH		G Edir	:-	. <u>R</u>	OCK STR	ENGTH,
l						/S/		6 02	92					64 38 95 03		R grough	ough				7 stight 01-10mm	material completely					Α	5.1.1
ļ					AC#	ROTAR	Y							M) 198		SRalighti Samool Stasticks	h nside(O zopen > 5 Omm	highly moderately					c	1 0 - 8.(° 5 0 - 25 _j .
	co	ME 1	4 H A	it i , 8	it N	×				FIN		P	20.				COVI				PL.B1=point load strength Index UCS #uniarial compressive	elightly					maderately strong	25 0 -81 50 0 -8
				1D		GED B	v			BEA	HING	ON F									strength # #first ground water	fresh	1		A		very strong	100 0-3
-	<u>c o</u>	Τ.			10 _: 1	r .	STS	ſ.		1 oc NT		 			BILIT			0			GENERAL DESC	RIPTION	<u> </u>	-1-1-	F	LL.	NEERING A	SPECT
		۲		ILI.	1	'-	313	十	T	ΪŤ	<u> </u>	7		_	г	T	1		V L	IXI	rock type, colour, grain	size ,			F			
	3	Ş	10.0	DRELL WATER (COLDRILOSS)	DRILLING		.	ğ	2	8	SPACIN		T	(BARS)	WATER LOSS	1	1				texture and structure cleaved, foliated, lineate bunded, gneissone, por	ed , flow	907		ı	STRENGTH	REMA	: : : : : : : : : : : : : : : : : : :
ĺ	DEPTH	ADVANCE	CASING/CEMENT	200	OF DRILLIN	1	RESULT.	JOINT SET	ROUGHINESS	ARAT	3.05-0.30 m 3.30-1.00 m SPAC 1.00-3.00 m	2	801108	2 5	R LOSS	UGEON .	2000		اد ء ر		scale as for joint spaci weathering, alteration,	ng),	¥	WEATHERING	ł		(with respect	
	ŏ	DAILT	CASIM	T I	MATE OF		"	ğ	2	3			ē.	PRESSURE :manometer	WATER total_itr	LUGEON	3		•	•	lithological characteris strength, joints	tics ,	8	1		ROCK	permeability etc.)	
-			-	ă			-				רוחו בניני	}		- 5	:		 	11	Ш	100	TOP SOIL BROWNISH CLAYEY	SAND	<u> </u>	1.1	i . ₁	Ш		
1												ľ									COBBI ES: CHARNOCKITE	/	~ ~		$ \cdot $		ł	
	1 77	1.72		-			<u>L</u> .										$\ \ $				GARNETIFEROUS ROCK, REC TO YELLOWISH BROWN	ODISH BROWN	~	[]].				
	2	29/1				SPT	37	-											$\ $,		J.	.				
l	•	3 5	3 6 7 Ô	Ì		-	>50	-										Ш			,							
1.		26/0	-			SPT	122											Ш	$\ $		GARNETIFEROUS ROCK YE BROWN TO DARK BROWN	Liowish	1				nt):	
١.				i													$\ \ $									Ш		
		5 55 28/3	05 00															Ш	H		GARNETIFEROIS ROCK REI	DDISH BROWN						
١	۱ ا		-	N.															$\ $				· .					
١,	,			DRILLING																	RESIDUAL SOIL REDDISH B	DOWN		.				
١,	.			.												1					CLEYEY SAND	NO 11-1				Ш		
ľ		e o buta		2																								
ľ								1										$\ \ $			RESIDUAL SOIL DARK BROW WEATH COBBLES UP TO 3	N WITH					}	
ŀ		9 /4 12 /5	ε'n	-	-		11	R	Т							l			\prod		CHARNOCKITE DARK GREY, N GRAINED, MAIN COMPONENT	S OU, FD, PY,GA]	
١,	.		j				## ."	R	Ţ Ţ								$\parallel \parallel$		Ì.		AT 10 08,10 18,18 26,18 32 J/70°		.,					
	1	II 7 IEKI		ľ	#12 2.62		."	R R	1		4	11 26	-	 3	7 2 8 9		$\ \ $			#	AT 10 4, 10 65 J/15°- 20° AT 10 BI FJ/30°							
ľ	2						1 !!	R	т					6	11.4		$\ \cdot\ $	H			AMPHBOLITE DANK GRET TO MEDIUM GHAINED, MAIN COM		2					
	3					ļ	11	R						3 I	10 Z		$\ \ $				HO, FU WITH INTERCOLATION COARSE GRAINED CHARNON		4					
. [1			R	1 1	-				'	7.1		$\ \cdot\ $	h	#	#	CHARNOCKIFE, DARK GRET, ME COARSE GRANGED, MAIN COM	DIUM TO	1: ~	$\ \ $		$\ \ $		
١.	,	120			85	i	!!! -	R		+		1478	1478						∦	-	OU, FD, PT, GA WITH INTERES	ALATIONS OF	-		$\ \ $	Ш		
ľ				ב ה				 SLS	,	- -				1	NIL.	h			İŤ		AT 10 82,10 84,10 85,11 14,11 11 38,11 62,12 15,12 80 J		4					
'	6			# 5] m	R	т					6	NIL	0.0			ŀ		AT 15 07, 13 10, 18 82 FJ		.,					
	,	101			2 (6		-	-		 				3	NIL.				1	-	AT 14 05,14 5, 14 64, 14 AT 14 53 DXIDIZED J	/25°	.,				}	
١.		***			1]								'	NIL.	1					FROM 1525 THE U AND FU RICH CHARSE SKANKU	PEGMATITE			$\ \ $			
١							i	R	7	1	h		16 36						1	1	FROM 1/9 TO 18 10 Muz cl J.		.					
'	•						п	R	7											1	AT 19.15,19 18,19 21,19 2							
2	ņ	20:		1	įż							-									AT 9 46 J / 55°		-		Ш		-	
ļ,		200										НО	LE	C	DMP	LETE	9	$\ \ $		\parallel	THE DEPTH (OF 20.2						
																					1		1					
							ļ										$\ \ $											
																	$\ \ \ $								$\ \ $		1	
																1	$\ \ $											
L		Ц					<u> </u>	\perp		Ш			<u> </u>	<u>L_</u>	<u> </u>	<u></u>	Ш		Ш				<u> </u>		Ш	Ш	<u></u>	

F		٠. ١.۲	 11 16	ΣΕ. 	K	ĸ	20)5	(N	 FW	/OI	 D) .	P. I	1 Q	UΑ	RF	 ?Y						B	SHEET OF OI	01
				N. DΔ1		•				_		υ Λ Ι	_	1	-	-				WEATH	ERIN	 G	ĪĒ	ROCK STRENGTH	
	13.1	7 71		un r	ren in	ור כו			רייים ק)*1 * * *	ins.	10201	•	VP TV077 7					JOINT SEPARATION V svery tight 40 imm T stight 0 t-1 0mm	roll unransalid	aled		PROPERTY.	MN /m²	
	1 11		, A ⁹ 1.1	5) (1. †()	NF		- 1					1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		# -rough Bravlighti B *smootl					MORM for ht open 1 0 300m					B 10-51	
			**************************************	Y FANTE			- 1				ntt 1 105	Mi lir	17		coż	7 7 7			OTHER SYMBOLS PL Strpoint lend strength	cinderately				mederately strong 25 0 50 t	
44		-		FD RY			- 1			I I N O					E O	R E C D V	ER'	r (%	index UCS Funiavial compressive strength	-tightly Iresh				strong 50 0 100 0 200	· · · · · · · · ·
	17771 4787		! r, n/	17 .					4 2 1 C H	1	. ,					9 10	(7	دا 	# uferet genund weiter # venes einente # senter immple		,	Ш	[[extremely strong 1.237	00
OR	ILL	111	G	TES	STS	J	110	J T	<u>s</u>	1_[ER	ΛΕΛ	3ILI I	ΓY	RE	CC)VI	ER	GENERAL DES				ENG	SINEERING ASPECTS	의
	. 8	2				اا		1	9	1 2	Ĵ	.gama:	. (2)		1	.° ►			tack type, colour, gra- feeting and structure	(massive)			1 5		
	9	DA11-1196	LEVELS	-	5	ş -	200	100	SPAC	-:	'r		8801 7.7/24	1		20		٠	cleaved , foliated, lines bounded, unnissese , po	orphyritic, etc	104	11116	Ě	REMARKS	2 2
	1	8	=	1687	AE SULT	JET THIO.	POUGHIE	PAR.	1.20m space	E :	BOT TOW	PAESSURE THEFT	MATER LOSS	LUGEON		4500	Q	0	weathering, attenution lithological characteri	, minor	APHIC	WEATHERING	5	with respect to excavation, growling,	è
	DRELL WATER COLORADOSS	AASTE	WATER			é	1	7	555	NO.	٤	2 M C	TAN DIC!	3 4.		K 0 1	0	700	strength , joints	,,,,,	3	3	ROCK	permeability, rock qualit etc.)	"
i.	o o											- <u>-</u> -	• • •						TELLOWISH BHOWN_CLAYEY		: .: .: : . :				0 1
	DRILL:NO																$\ $		RESIDUAL SOIL REHINGLEROWN CLASTY SHIT/CLASEY SAND						
.	1						-								Ш	\parallel	$\ $		VMEDIUM DE TOMMES		· •				3.3
<u>'</u>	DRY.		$ \ $														$\ $		PESHINE SOIL BROWN CE	NE Y SAND	<u>;;</u>	-	$\ \ \ $		3 65
7.5	, 7														$ \cdot $	$\ $	$\ \cdot\ $	$\ \cdot\ $	- AVI HUROLITE MEDIUM TO		1	HIII]]]]		111
	8														$\ \ $	\parallel	II		GRANETE, BACK CONTENT		, '.				4 67
4							İ											11			~ +				
1							İ								Ш	\parallel			FROM 4 R9 TO 5 GC WE CLOSELY SPACED, FRACEU J/20°		1				
1															Ш	11			3250	•	4				n a 1
														İ		11	H	М	İ		. ~ 1	411			• 70
, l																	ij.]						7 23
ŀ											3EEN					$\ $			_		, +				9 12
}							ı				li					11			COLCURED, THE TO MED						" "
•			2 2								YOY					\prod	-		SNEISEIC, MAIN COMFOR	FN14, 81, Co		4			10 82
		1 1	. ?								m A				[]	\parallel									111-45
											'.'AV			}	$\ \ $		[]		AMPHIONITE , DARK COE	TO PLACE,	+ ~			}	10.75
	i,										STS				Ш	$\ $			MEDIUM TO COARSE GR GNEISSIC, MAIN COMPONE		1.5				12.3
	LOSS										Ė	JUC					N.		Qu, He, Fd						'73'
ì											滋	j				\parallel			OCCASIONAL GARNETS A	3111018 98					14 10
ì	WATER										PRESSURE	CARRIED				•			THICKNESS OF TO 2 CO						
ı	13										ñ	उ]]]				GRAINI'D, MAIN COMPONE						15 11
ľ											15					11		$\ \ $							15 25
	1								$\ \ \ $		¥A.	l				$\ \cdot\ $		$\ \ $					$\ \ \ $		
	JRIL															$\ .$		$\ \ $							17 37 18 00
																									18 83
1												İ						$\ \ $			- '-				17 17
	L	_									.										-	111			2013
,									바이	E	co	APLE	TED	AT	hþ}	E			TH OF 20-13 m.					•	4
•																									
,																									
				Ì																					
												ļ								i					
																$\ \ $			_	,					
																					.				! !
															$\ \ $										
Υ								J	Ш	١	ا . ا			١		 57	11	 	† F- 29		<u>L</u> J			1	11

																						B B	HKK6 SI	HE
									K	2			-				1	EADR.	ACE			WEATHERING R	OCK STREM	• •
1		-					DAT		12						-	DAT.	^_	JOINT R				JOINT SEPARATION seil :uncansendated	WH /m²	
1					100					-		nnai	7111	\1 F	1400	ויי הי		A standy Bussidushili				T Blight O I - I Omm MOsmdernt coen I O-5 Omm completely	A	1 (
١			f () 46 (1001 - Parior			- 1						11 717 11 777		S stmont			_	O TOPER SYMBOLS moderal-ly		3 (
ı					117						FIN	יו יו	f F	T 11	40.5						1%	PL.Blapent load strength indes in the strength stightly	mederately strong	73 %
			AN 11			G F	D RY					TICAL		T FIS	OI N				ROD			strength strength fresh # River ground water # Ench sample	very strong	100
			-		FD.	٠,٢			١",	,	roc NT	ATIO!	ì			. ' . AE A I	 31L11					M anuter sample	INEERING AS	SPE
		U	RIL		1	+	TES	15	-			3	╁	Ē	~		1	1 .	8		• • • •	rock type, colour, grain 5129.		
	7	ICE	FR	SCOTHOTO	2				ġ		NO	ACIN	-	-		(BARS)	water coss		2		_	texture and structure (massive, cleaved, foliated, lineated, flow bunded, gnaissase, parphyritic, etc. 9	REMARK	ł S
١	H	ADVA	/ (28	a COL	OF DARLING		12.	RESULT	2	ROLGHNESS	RATI	-0.30 a space		9	BOTTOM		t coss	1 2 2	RECOVER	د ه و		scale as for joint spacing),	(with respect t	
١	8	DAILY	CASING	L WATER (C.	RATE			•	COINT	õ	SEP	0000 0000 0000		ROM	10 80	PRESSURE Inquoineter	*ATER	LUGEON		₹ ,	o K	lithological characteristics,	permeability,	
			1	5		1			-			1000 	<u>?</u>			, E				111	100	LITOP SOIL - BROWNISH CLAYEY SAND		
			35	N. S	0 8 0	71							\parallel									ALLUVIUM - BROWNISH CLAYEY SILT		
	3	17/11	1 35	ě	o N	3			I	R	T	Hh								++-	+	ALLUVIUM - COARSE SAND CHARNOCKTIC GNEISS DARK GREY FEDIUM		
1					3	7			11	1												GRAINED, PARTLY GNEISSIC MAIN	1	
	3 0								ш	R	T		#	, 0			 		1111			AT 28,588,8.25,945(SIW)		
		ijΛi														1 3	1			11,		FJ /20°-30° FROM 1 67 TO 185 J/80°		
	# Uit								L	_		Ш				6	NIL	0.0	WIII			AT 185 CHL, J/407	11	
1	5 4	19/11							ı	R	T					ĭ)		tili					
1	50								L				١.	3.0	6 0		ļ	 	-1111	H		[] - [, ~]		
	6 B	SUA!														3	h					FROM 9 43 TO 9.58 CI Spn	.	
۱									I	R	۲					6	NIL	0.0				FROM 11.5 TO 1190 J/90°		
1																3						<u> </u>		
	9.0	21/1							L	L			-	0.0	9 0	 -	[<u> </u>	 	111			<u> </u>		
1																	0,45					HORNBLENGE-BIOTITE GNE-SS, GREVISH,		
									п	R	0			ı		3 6	0,9.5					MEDIUM GRAINED, GNEISSIC MAIN		
l							İ									3	0,13	1 4				AMPHIROLITE - DARK GREY, MEDIUM TO+		
-				Ì					}_	-	-	-	4	120	.5 0	ļ	-		-{}}}			COMPONENTS OU, Fd.		
	12.8								I	R	т					,	1,3	4.0				FINE TO MEDIUM GRAINED, MAIN		
١				Ì					1.	R	MO					3 6	2,2	2 4			ľII	COMPONENTS QU,Ho, BI		
1	4.0			-												3	2,3	2 · 5	Ш			13 70, 14 58 CHLF.1/30-40"		
	5 0	23/1t		1					-	-				15.0	15 0	1	1,4	4 3	1111			CHARNOCKITE BARK GREY, MEDIUM		
1																1	h					GRAINED, MAIN COMPONENTS QU,F1,Py		
			1	RAY			Ì									3 6	NIL	0.0						
1.	, .			5												3				1		AMI'HIROLITE - DARK GREY;MEIJJM +		
ŀ	7 8	24/1		H					-		ļ	HH	۱,	e 0	18 0	<u> </u>	 					TO COARSE GRAINED, MASSIVE, MAIN		
ŀ				5					1	R	МО					3	1.4	4.3 2.5		H		AT 19 32, 22 65, 25/5, 28 O(SL.W)		
									π	R	т					6	3.2	1.8				Fu/3n24cP		
	l														2	1	1.4	4.3		•	[]]	AT 18 95, 19 36, 20 45,24 75		
ľ	. 0	יייצרי							-	-	†-			710	21.0			1	Ш			+ ~	.	
										R						3	1					+ -		
,	2.8								I	"						6	NIL	00				CHARTICCKITE-DARK GREY, MEDIUM GRAINED,		
1 2	15					-										3	Į)					GAPNE LIFEROUS BIOTILE CHEISS,		
1	"" [741							-		L .		<u> </u>	240	740		 	 	1111	k		GRAINED, MAIN COMPONENTS OU, BIGA		
1	** *								I	R	r					3	h				捌	MASSIVE, MAIN COMPONENTS OU.F4, PY		
									r	ß	T					6	NII.	0.0		11		[~		
1,	95	7711														3)		M			ADMITTEROUS BIOTHE CHERS, FINE TO		
-		7	+	+	+-	+					-	$\left \left \left \left \left \left \right \right \right \right $	1		h 15			 	 [[] [] [CANTONENTS QU, BI, GA		
1	1									_						L	l		11111 5A	- 1	$\mathbf{\Gamma}^{ }$	-30	<u> </u>	

KUKULE GANGA HYDRO POWER PROJECT BOREHOLE LOG FOR ENGINEERING PURPOSES TAB. 13

																		:	SINEERING I	- OKF O	<u> </u>		H	3. 13		
						KK	2							EADR	AC	E			LUKIRI)				E	нкке (SHEET (02
				DΛ			_					DA.						۲E		WEATH		G		ROCK STRE		_
			I C		- TFO C	2 12	- 1					99 4A P49 77		VRE			55	-	JOINT SEPARATION Y Every light & O limit	sail intenses	da:•a			MH /m²		
					- NE - FO	ic i	- 1					P47 77		SREELIGHT!		190		- [T ziight O I - I Orem MO3mdernt zoen I O- 1 Orem	i				^	< t.00	
146		F 7 14		ROTA								M1 202		Stanicae	11180	1		_	O topen > 50mm	Pighty				8 8	1 0 - 5.00 5.0-25 00	•
9 A 9	AF L	, 81	τ .	v x			-		DE	PTH	40	2 10			COV			-	PLSImmer and Prengin	moderately				mederately strong	23.0-30.00	
M A 4	. 6 5	50	000	ED 81	r		V	N C L I	NAT	ON F	MOR				RE	COVE	ERY (%	UCS Tomistics compressive	\$1.ghtty				strong	50 0 00 00	
511			, t D, D					FAR		,						0	(%)		Etrengen Etrest ground water	****		\prod		-077 1"ong	100 0-250 00	
				1		Τ.				1,00					_				# segle varges	L		Ш	111	estremere creme	> 250 0	<u> </u>
PRI	-	-	G	IE	STS	13	IOIN	ITS				MEA	BILIT	TY	RE	CO	VE	M	GENERAL DES	CRIPTION	1		EN	NEERING A	SPECTS]
_	(580)		.			1			9		(•	(SH2)	1	***	4	•			rock type, calpur, grai fexture, and atricture					1		
/cenent	9	9	3	1	-	2	2	8	3 PAC	-	1	(BAMS)	LOSS Cs/moute		:	Š		1	cleazed fourted nec	ed , Now	ی	_	A T G M ST	1		3
15	3	ā		1	AE SULT	12	H.	2	-		80TT04	l '	10 .	1 . 3		Ś	*		borided, (neissank. 19 socie as for eint spec		100	1	STRE	REMARI	r g	Ξ
	1	à		-	=	THIOT	ROUGHNE	SEPARATION -0 SSR	888	3	2	PAC SSURE	WATER	HOUR				' 1	weathering, aiteration (Thological characteris	, חוחסר	A P HIC	FEATHERING	I	excavation, g		4 30
CABIN	DARL WATER COLDA LO	PAN	1	l	1	۱۹	1 1	1.8	20,		2	PRESSUR!	WATER (total_itr	Lua Lua	3	5	•	.	strength, joints	,,,,	5	Ē	20 CR	permeability,	rack suchty,	1
ļ_	1 3	1-		<u> </u>	<u> </u>		<u> </u>	ة (111	0 -	<u> </u>	<u> </u>			\	0	50 1 1 T 1	יז ד דיד די	iool frr			41	7.1.	Į., ,			ļ
1						1_1][[\mathbf{III}	270	1	١,	1.1	3.3		111		1.111	GARNETIFEROUS BIOTITE AS ABOVE	GNEISS	~	111	1111		1	
		1			1	I	RM	٩Ш	111			3	1.8	1.9	Ш	111	14	.		· · — · · · · · ·						28
1		-			1	11	RT					6	2.6	1.4	Ш	411	11	1111	CHARNOCKITE PARK GRE GRAINED, MAIN COMPONE		1.		$\ \ \ $		1	
												3	1.8	1.9 3.3		444			Qu, Fd, PY, GA		-					
					1			Ш			30.0	<u> </u>					H	Ш			100			1		
1						П	\top	Ш	\parallel	30 0						$\parallel \parallel$	-				1 4		H	1	1	10
						II	RT	$\ \ $				١,	1.2	3.7	ŧΠ			1	AMPHIBULITE , DARK GR	EY 10	- <u>*</u> -		$\ \ \ $	1	1	30
			1		İ			$\parallel \parallel \parallel$				3	2.0	2.2		111		11	BLACKISH, COARSE GRAN	ED MASSIVE	1,00			1	1	
					}							6	1.9	1.5	团	-		Ш	MAIN COMPONENTS Ho, Qu, BI		h-+			1		
									$\ \ $			ĭ	1.2	3.7		111	$ \cdot $		FROM 10		1	$\ \ \ $		1	1	
	1						_ _				330		-		111		-		32 - 60 32 96	L C'IL	h~ +			1	l	
	¥									33 0				1		111	-	1	33.25 33.52	40° - 85°	+ ~			1	1	**
	SR/					п	RT	Ш				1 1	0.5	1.5	Ш	111		113	33:57 33 60 34:15 34:38		^ +	Ш	Ш		İ	3.
	١	l				m	RT	.			1	3 6	0.8	0.9	111	111		Hi	CHARNOCKITE, DARK GRET GRAINED, MASSIVE, MAIN	, MEDIUM	-		$\Pi\Pi$,
	GHT	ł					"['	Ш				3	0.8	0.9	Ш	111	11	Ш	Ou , Fd , PY	Com onch S	1		Ш		-	•
	100	ĺ	1 1				j	Ш			İ	ı	0.4	0.2	Ш	111	11	Ш			1,		Ш	į.		35
						1		-	4	36.0	36 O		-			111	11	Ш	AMPHIROLITE - DARK GR	EY. MEDIUM TO	1	$\Pi\Pi$	Ш	j	1	35
					l	11	-		Ш	36.0		1 .		1	H	111		111	COARSE GRAINED, MAIN		+ ~		$\Pi\Pi$	1		
		l						Ш	Ш			!]	 	111		11.	Ш	Ho, Bi, Ou		/ +	Ш	Ш	1	İ	37
					1	11						3 6	NIL	ĺ	Ш	Ш		H			+ ~	Π			l	
			1 1					111	Ш	,		3	1	ĺ	Ш	111		Ш			" +	Π	Ш	1	ĺ	
}			1		1			Ш	Ш			1			Ш	Ш	Π	Ш	AT 39-8 FJ/50°		+ ~	111	$\Pi\Pi$			
		ł			l	-	1	HH	-	 39 0	39 0	1			Ш	111	11	Ш	55 6 147 50		\^ +		Ш		l	39
			1 1				RT	Ш			1	<u>3</u>	NIL	i	111	111	Ш	Ш			+ ~	111	Ш		Ì	
						П		111	Ш		40-2	3	J			Ш	Ш	Ш	CHARNOCKITE DARK GRET MEDIUM GRAINED, MASSI	VE.	100	$\Pi\Pi$	1111			39 40
	Г	Γ			ноі	F	r	٨٨	Ы	ETE	0	AT	71	HE D	Ed	TH	Tr	6								
					' ' ' '	7-1		Υľľ	Ή	- ' '				0	Ш	Π		Ш	10 2 111,		1	111] [-] [
		ļ					-		Ш								Ш	Ш				$\Pi\Pi$	Ш		ł	
						1 1		Ш	Ш	١.,]		111						111	$\Pi\Pi$	1	}	
		l			l	1 1		Ш			1				111						1 1	111	$\Pi \Pi$			
		i	ll			1 1		$\ \ $	Ш			1						Ш				Ш	Ш	1	}	
								Ш						}	Ш			Ш			1 1		Ш	Į.		
		ĺ						Ш	Ш					}		111		$\ \ $				\prod	\prod		1	
ĺ		l				11		Ш	Ш					1	Ш		11	111			} }	111	$\Pi\Pi$	1	}	
		l			İ	1 1		Ш	Ш					ļ			Ш	Ш	.			111	Ш	1	1	
	1	ļ				+		Ш							111		Ш	Ш	•		1 1	Ш	1111		i	
		ļ				1 1		Ш	\prod				İ		Ш			111			1 1	Ш	Ш	1	1	
		1				1 1		$\parallel \parallel \parallel$								111	Ш	111			1 1	\prod	Ш		ĺ	
		İ	1			11		111				1			Ш	Ш		111]]			1	1	
	ł											ĺ		}		$ \cdot $	$\ \ $	$\ \ $					Ш	1	l	
	1										1		1	1	$\ \ $			$\ \ $				111			1	
							1					1		1	$\ \ $		Ш							1		
					1				$\ \ $	1			ŀ	1		Ш		Ш			[]	111				
	1	1			1	11		$\parallel \parallel \parallel$	$\ $		1		}	1			$\ \ $				j	HI		1	}	
			1		1						1			1		Ш	Ш	$\ \ $							1	
					1					1	1	1	1	1		$\ \ $	$\ \ $	Ш				111			ł	
		j	1		1	$\ \cdot\ $					1	1	[1		$\ \ $		$\ \ $			1 1					
		Į	1		1				11	ļ		1]					
			1					-{}}						1				$\ \ $				111	111	.	1	
	-									1		1	1.					11								
										1		1	Ι΄				$\ \ $							1	ļ	
													ļ	į	$\ \ $.	
	1			l	}	11								1	$\ \ $	\prod	$\ \ $				1 1	111		1	j	
				l							1		1	1			$\ \ \ $	11	,	٠.					1	
		i	1	l	1	1 1	1	- 11	111	1	1	1	1	1	11	ш	111	11	1		1 1	+11	111	1.1		

KUKULE GANGA HYDRO POWER PROJECT BOREHOLE LOG FOR ENGINEERING PURPOSES TAB. 13

-				٧.	T-1 1	DE		- K		20	15							RGE					,			E	 31	1 KK-7 SHEET OF	
-						i D				7					 		,					Ē			IG			OCK STRENGTH	
	DRI COI COI	ARTI ERR CHIN ILLII RE B RE M	D D UP I E T VG ARRI AN :	6 / 12 IUNS YPE MET EL, B GSD	LOG	OMPI YS)	ARY		/ai/1		K-C /-C FLE FIN /	OOR OOR VATI VATI AL C	DINAT DINAT ON I ON I PEPTH	E 15 E 14 COLI BO7 F 17	55621. 16981 AR) TOM) 5 (Lm	922 722 301	487	JOINT A	ough rough sided COVE	RY E OVE	RY (*	%'1	JOINT SEPARATION Vary tight Common noticing transport to the Common noticing to the Common noticing transport to the Common notice transport to the Common	dare d				A	
				LI		1	EST	rs	J		VΤ	•	-				BILIT	Y	RE	CO.	VEF	13	GENERAL DESCRIPTION			EN	GIN	NEERING ASPECTS	
	DEPTH (8)	DAILY ADVANCE	CASING/CEMENT	2	MATER LEVELS			AE SULT	JOINT SET NO.	ROUGHNESS	SEPARATION	0.30-1.00m SPACING	8000 F	g 3	, ŝ	rneter	WATER LOSS (totalLitres/minute)	PERMEABILITY m/sec	O CORE RECOVERY %		•		rock type, colour, grain size testure and structure 'massion, cleaved, foliated, linealed, flow banded, incissees, porphyritic, etc. scrie as for joint spacinal), weathering, attention, minor lithological characteristics, strength, joints	GRAPHIC LOG	WEATHERING	-: ROCK STRENGTH		REMARKS (with respect to excavation, grouting, cermectally, rock quality, etc.)	:
0	.6																						TOP SOIL-DARK BROWN CLAYEY SAND RESIDUAL SOIL- REDDISH BROWN CLAYEY SAND	000				· !	1
3	,	2612	5. O		3 4 6A	1			111	Ð	г		3.35	3	ł	- 1	16.3 9.0 5.8 7.7	40 5 9 0 3.0 7 7					BIOTITE GNEISS. LIGHT COLOURED, MEDIUM GRAWED GNEISSIC MAIN COMPONENTS OU,Fd, B: AT 272, 274 WEATHER J/45°	01 ~ 1 ~ 1 ~ 1					
l	62				306				1	R			, G. 3	5 5	1	1 1 3	13.2 16.4 14.3 14.0	32.8 40.4 13.9 7.2					FORMELENDE - BIOTITE GREISS CARK GREY, MEDIUM TO COARSE GRAINEU MAIN COMPONENTS Ho, DI, GA CARNETIFEROUS BIOTITE GNLISS, LIGHT COLOURED: FINE TO MEDIUM GRAINED, GNEISSIC MAIN COMPONENTS Qu (50%) BI, Fd, GA.	~~					
8	6	2/42							IV	R	r		9.4	3 9 4	13	<u> </u>	13.0 15.2	12.7 37.5					AT 770, 7.9 FJ/65° AT 8.7, 9 4,11.55, 1195 J/5 ² 10°	2 2 2					
12		9 12			8/12				ıv	R				124	3	3	NIL	0.0				И	FROM 11 0 TO 12 34 CONCENTRATIONS OF 110 AND BI AT 14 84, 16.13, 16.50, 17.93 J/15°	1 2 1 2					•
					2 9			-	IV I	-	- - - - - -		12 4	15 5	3	3	NIL	0.0				1	FROM 1572 TO 1585 CONCENTRATION OF COARSE GRAINED GA FROM 1585 TO 15.96 : LAYER RICH IN 16,81	~~					
16.	D.	MS.						}	IV I	R	-			18.5		3 3	>NIL	0.0					FROM 16 52 1019 BZ GARNETIFEROIS BIDTITE GNESS AS ABOVE WITH COARSE GRAINCO GARNETS MAIN COMPONENTS OU, Fd, BT, GA	2 1 2 1 2 1 2					
21	3	A2			2.9	•		- 1	- !	R	- [[19.5	21 :	1 1		NIL	0 0					AT 18.04, 20.28 J/15° AT 20.14, 21 25 J/35° FROM 18 10 TO 18 58 DARK COLOURED LAYER RICH IN Ho, Bi	1 3 1 3 1 3 1					
24		/12								R			215	24		3 5 3	אור	00						· · · · · · · · · · · · · · · · · · ·					•
					5.7				10	R			24	re l		3 6 3	21 9 25 0 29 3 28 6 29 4	56 I 24 4 14 8 27.9 75 3					AT 26 N2 J/15° CHI	~				-	

BOREHOLE LOG FOR ENGINEERING PURPOSES TAB. 13

·									<u></u>											·		J. 13	CHEET		-
						K							RGE	TA	NK	, 	·					3H KK-7		2 7_	
				DAT					REHC							ΚE	4	WEATH			,F	ROCK STE			<u> </u>
				S) 02		/01/9			DINATE			2	JÖINT I VREVELY R Trough	.0000			JOINT SEPARATION Vavery light #01mm Talight 01-10mm MOEmderat open 10-50mm	sail uncensend material completely				MH /	*		
CHINE				00140			- 1		ON 1 C			467	SREELIGHTE S Eemont SLEELICEE	h			0 #004n > 5 0mm	nianis					10-50		
			א זוי	ROTAR'	•				104 LB 16914			177	R1	COVI	RY		PL 812point lend strength	moderately				mederately stre			
			LOGG	ED BY				RTICAL		FRO	•			RE	OVER	Y {%	UCS Buningerni compressive	treet.				strang	. 20 0 +00 0		
RE D			AT ED, D	176			- 1	A RING C A T I D	, M. (see] = a	o (9	%)	8 Stock towns water W Swaler towns					**** ***********	100 0-750 c		
DR	ILI	LIN	١G	TES	STS	J	OIN.		-		MEA	BILIT	Υ Υ	RE	COV	ERY	GENERAL DES	CRIPTION			ENC	INEERING	ASPECTS		
\cdot		2	\top			П	Т		2	-	2 6	9	:	1			rock 'vne , talour , gra		1			1		1	
ij.		DHILL MATERICOLOR LO	1 8 L			è	E 8	A C I M	-		(BARS)	MATER LOSS	***	1			terture and structure cleaved, fahated, lines		J	_	2			3	
NO.		9	רבאנו	5	Sur	1	ROUGHNESS EPARATION		9 40	10		, 0	1 2	3	;	*	barided, inersient indiscrete as for reint apar		67 0	B 18	STREN	iwith respec	RKS	I I	
5	CASING / CEMENT		RATE OF	-	7	JOIN T	P A	2000 1.		100	PRESSURE:	1 2	LUGEON S	580	-	0	weathering, alteration lithological characters		APHIC	EATHERIM	ROCK	excavation.	groutina ,	20	
DAILY	5		MATE					.00	8.	2	a u	¥ 10.		6	50	100,	strength , joints	,	5	3#	2	etc."	v rock nuality	1	
Ì	1	1		j		<u>ו</u>	ľ		Ī	27 55	Į	Ì		ĺИ	ΉΉ	HĨ.	GARNETIFEROUS BIOTIFE		[~~]	Ш			•	j	1
·		1					Ī		2755					1//			OF HORNBLENUE BIOTIFF	GNEISS, LAFERS	-						1
ļ		ł		İ							3	II	00	111]}[]		UP TO 15 cm THICKNESS	COM ENDAMENT	~ ~						
				l					Ш		3	NIL	00	111	1111		1		~~						1
2/2	İ			1		_ .	-		Ц		1	1]	$\ \ $			AT 31 63 31 63 57 57	33.64 (000	_						ļ
.									70 4	30 4	ļ		<u> </u>	4]]			AT 31 93, 31 93, 31 99 AT 32 05 FJ / 55°		~~,						
			23	ļ	ļ	, }	R T		""	}	1	<u> </u>		111	 				~-,						ł
		!	च्य			ıv	S L				3			; }	$\{[]\}$	111	CHANOCKIFIC GNEISS, DAR	K GREY, MITDILIA						31 77	
						- 1					6 3	MIL	იი		$\Pi\Pi$		GRAINED, MAIN COMPONE GA WITH INTERCALATION	NIS OU, 14, Py,	₹.						
					}]]					H			GRAINED QUARTZO-FFLO AND DARK COLOURED H BIOTITE GNEISS	OPHILE NUE -						ĺ	
3/12									1	33.64	<u> </u>			}]}	1111	Щ	BISTILE MARISS								١
,	-				-				33.64		۱,	h		111	掤				"						1
		ĺ					RT				3	MIL	00		111		AT 34 85, 38 28, U/15	•							
				1			` '				3			H	Ш		AT 3485 TO 35 O SU		40						
				1							1	}		11	H		JOINTS		*-					35 85	۱,
					ł				36.6	36 6				111	1111	##			~		$\ \cdot\ $				1
- -			14/2	-	-						1	h		11	HH	414			7"		Ш	į			1
					ı	ıv.	RT]]		3	NIL	0.0.	H	HH	111			[~ ~]	Ш			ͺ.		1
ļ				Ì					'		3		0.0.	111		11/	AT 40 10, 42 28 J/	150	~				•	ŀ	
-						- 1					ı	י		H	XX	1111	1		-a.						1
4/2					1	.	-			.19 74	ļ		<u> </u>	H	111	111	AT 39 74, 47 16, 47.2	6,47.33 J/80°	** **.						1
				l					39 74		,	,	,	TH.	1111	111			٠٠					1	1
- }				İ	- 1	- 1					3 6	>NfL	٥٥	111	11/1	HH]		-w		Ш				
			2 3	1		14	7 7				3			捆]{{}	1117			-	111					ı
			15/2	- 1	į	-					1	ν.	:		414.1		1		٠. ٣			·			1
				1		-			42 79	42.79				₩	批計	111			.*.		$\ \ $				
3/12				j	İ				""		3	h l		拊	1111	肶	AT 43 35, 45 56, 48 42	, 48 49.	18. CB.						
\dashv				1	}	, ,	R T				6	NIL	0.0	泔	栿	:} }	48 48 FJ/65°-70°	· •	.%.					}	
				1	}						3			排	排	111	1		-nu						
			2.3		ŀ						'			仳	1111	111	FROM 4710 TO 4738 FE GRAINED PEGMATITE LA		n	$\ \ $				1	1
			16/12			_ .			11_	45 96			_	批		111			* The						
					Ì				45 96		1	16.3	410	[1]	1111	111			~ .					1	
rΛ2				}	1	1 1	7 T				3 6	15 1	14.5	H		-[][[•	192						l
7						11	דן ו		11		3	14.2 15.5	7 I 14 9	[1]	1111		FROM 49 90 TO 41	9 \$6 J/80°	- %. - %.	$\ \ \ $					
									11		1	159	400	团				_	-#.						
			2.3							49 19			<u> </u>	\prod	1111		AT 4980, 5070 J/I	5 °	.4.		-				
			7/12				_ _		49 19		1	lì		\mathbf{H}		111	QUARTZO - FELDSPATHI	IC GNEISS.	-37					43 47	1
						"	RT				3			刖	1111	批	LIGHT COLOURED, MET	DIUM GRAINED,							1
				ļ		IV	RT				6	NIL	იი	11	1111	116	GNEISSIC, MAIN COMPONE	CH 13 ANTHUK LD	~~						1
MZ				1							1			$\ \ $			1		. ,						
• -															1111		FROM 50 02 10 50 10							į I	
									52 20	52 76		-		111		. 6	AT 50 70,51 40,5161,525; 53 70 4/200								
Ì							R r				3			$\ \ $		11!	AT 5202,55 12 FJ/60	۱,0			<u> </u>				1
:	1		2.3	ł		- 1	n T	j j			ĸ	in .	0.0				Ì								
			19/12)							3	!]	}	捆	Ш	H	AT 54703/50°							i	ľ
	1	L						Ш	11_	<u> </u>	l'.	Ľ	l			1111	<u> </u>			Ш				l	1.
														~ A		i - 3	22								

5A - T - 33

KUKULE GANGA HYDRO POWER PROJECT BOREHOLE LOG FOR ENGINEERING PURPOSES TAB. 13

								•	·													•		1	R.	H K	K-7 OF
									K	2					DAT		RGE	TANK	E	· · ·	WEATH	ERIN		ᅮᆚ.			STRENC
	IN 1	ERR	ED C	6 /1	2/9 S ()	DAT	DAT	IED 21	/01/	′9 Z	X-0	POOR	IRATI	155 146	DA1 6621 922 6801 722 481 301	467	VABVery / R rrough SRaciigntin S remoch Spanicker	ondy Quenages	_	JOINT SEPARATION V usery right = 0 inon T utignt 0.1-1 0 mm UC=+44741 spen 1 0-5 0 mm 3 soom > 5 0 mm	sail 'unconcalid' material completely highly maderately	red			4.	wes	MH /m ² A B 1
	60 60 60	RE I REN	BARF IAH STO	GEL, GSD RED	BIT LC	4) 0 G G I					FIN VER BE	AL DI TICAL	EPTH 10 N	175 FR	11 m			CORE RECOVERY (_	BL.Blapoint load strength indes JCS Bijningsigl compressive estength 8 Bigg appropriate Barrel ground woter Barrel sample A awder sample	siightiv Iresh					mederale strang -ery stra extremely	50 ne 100 strang
		D	RIL	_	NC	;	TE	STS].	101	۲N	s	+-	<u> </u>	MEA	T -	7		7	GENERAL DESC				EN	IGIN	NEER	ING ASPE
	DEPTH (a)	DAILY ADVANCE	CASING/CEMENT	DRILL WATER (COLOR, LOSS)	RATE OF DRILLING	MATER LEVELD	1811	BESULT	JOINT BET NO.		SEPARATION	005-0 300 030-1.000 SPACING	200 L	10 00TTOM 1	1 2 2	10	PERMEABILITY PERMEABILITY	CORE RECOVERY %		terture and structure tleaved, foliated, lineal banded, incissore. Do table as for joint spot weathering, alteration lithological characteristrength, joints	fmassive, ted., flow irobvritic, etc. tion), , minor stics.,	GRAPHIC LOG	WEATHERING	;	HOCK STRENGTH	ex cov	REMARKS espect to ation, grouti
	55 3 55.72	19,12							-	R	,		95 3	55 3	3					FROM 55 72 10.55 85 AT 55 66 J/55° AT 55 85,56 24,57 72 GARNETIFEROUS BIOTITE	J/15°	? : ? : ? ; ? : ? : ? ; ? : ? ? ?					
									1	R	1		79.5	59.5	3 6 3 1	NIL	00			SREY, MEDIUM GRAINED, N Ou, Fd , BI WITH GAPNET UP TO 30cm	IAIN COMPONENTS	1					
	59 8	19.12							IV	R	т			61.5	1 3 6 3) NIL	0.0			43, 60 0, 60 5	J/15°	3 - 3 - 3 - 3 - 3					
					2 3				1	R	т		6154		1 3 6 3	NIL	00			AT 63 23,63.37 FJ/	63. ²	1 2 1 2 1 2 1 2					
	644 6495	2012											544	64.4	9 1 3 6	MIL	00			HORNBLENDE - BIOTITE DARK GREY, MEDIUM	GNEISS,	3 1 3 1 3 1 3					
ŀ	65 60 67 4 67 9	21/2								R	Т		67 4	67 4	3 6 1 3			-		CHARNOCKITM GNEISS, GRAINED OUARTZO - FELDSFATHC MEDIUM TO COARSE G	GNEISS,	جا جا جا					
	68 96 70 4	53 /13							-				70 44	70 4		NIL	00.			COL DURED, GNEISSIC, MAII OU PINK FD AT 68 82, 68 86 FJ/70°	N COMFONENTS						
-		24.42				0.0			١٧	R	Ŧ			733	3 6 3	NIL	00			FROM 7185 TO 73.53 GRAINED DARK GREY CH GNEISS LAVER ;	COAPSE IARNOCKITIC	5 : 5 : 5 : 5					
	73.3	24/12		-		918 10.15				R			73 35		1 3 6 3	NIL	0.0			AT 755, 755e	J /70°	<pre></pre>					
1	77 1	EMZ											76.40	76 44	3 6 3	NIL	0.0			AT 76 30 J/05°		? ? ? ? ? . ? . ?					
									ıv	R	т		79.43	79 4	1	NIL.	0.0					, , , , , , , , , , , , , , , , , , , ,					

					 -																		-, -		· '	
F	EΑ	T	UF	RE	– ĸ	K	20	05	(oL)/2	230	, SU	RGE	TA	NH	(•	•				В	HKK-	7 SHEET	7
DF	₹IL	LIN	IG	DAT	A			E	301	EH	OLE	DAT	Α					E		WEATH		IG		OCK ST		
RUP INE ING	TION TYPI WE REL,	\$ (: E JQ THO :BIT:	DAY!	8). QS		/01/ ¹		FLET FLET FINA INCL VERT	000 V416 V416	DINATI ON (ON (EPTH	(145 COLLA		. 487	(A. 19.3)	COVI	OVE IRY	RY (*	_	JOINT SEPARATION Y stight — 0.1-1 Own MOunderel open I 0-3 Own OTHER SYMBOLS PL,Sizpont Islad strength Index UC S Thingsist compressive strength F Stight steand water	east : uneanable material completely highly maderately slightly	late d			MN / A weab B C maderately streng	* 1 0 - 5.00 5.0-25 00	0
019	CAR	0 € D					_	LOC	ATIO	4 (500			}		τ	0		إ	# Sfirst ground water # Brack sample # Swater sample		,	Ш	ДШ	extremely stren		 -1
ORI	-	NC	;	TES	TS	J	Ol	NT	<u>s</u>				BILIT	Υ	_		VEF	_	GENERAL DESC				ENG	NEERING	ASPECTS	
CASING / CEMENT.	DRILL MATER (COLDRILDES)	RATE OF DRILLING .	MATER LEVELS	1837	RESULT	JOINT SET NO.	ROUGHNESS	∙	0.30-1.00m SPACING	100	12	PRESSURE (BARS) (Monometer reading)	waten Loss (total Litres /minule)	LUGEON or PERMEASULLY m/soo	7. 20000000		=	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	rock type, colour, grant feature and structure cleaved, foliated, lineat banded, gneissose, por scale as for joint spac weathering, alteration lithological characteris strength, joints	(massive, ed., flow rahvritic, etc. ing.), , minor	GRAPHIC LOG	WEATHERING	ROCH STRENGTH	RE MA (with resper excovation, cermechili' etc.)	t to	DEPTH (a.)
_										กรว	932								QUARTZO-FELDSPATHIC (ABOVE AT 82 39 J/20° GARNETIFEROUS CHARN'' DARK GREY, MEDIUM TO GNEISSIC, MAIN COMI'ONEN AND CONCENTRATIONS OF	CCARSE GRAVIEN	~					82 45
			5.25 270)III V	1	т			86.25	3.63	NII.	0.0					30cm. AT 650 J/30° AT 66.07 J/20°		12 14 14 14 14 14 14 14 14 14 14 14 14 14					
						- 1		T T		00.7		3 6 3	11.7 12.8 10.8 15.1	23.0 10.9 5.0 12.8 33.9					AT 86.52 CHL FILL D BIOTITE GNEISS, LIGHT TO COARSE GRAINED GN COMPONENTS OU, FA, Py, G	CREY, MEDILIM	~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~					g7 45
						1	R			<u> </u>	89 59	1 3 6	NIL	00					AT 87.25 FJ/70° FROM 87 25 TO 87 30 SUE GARMETIFEROUS QUATIZO GNEISS, COARSE TO MEDIU COLOURED, MAIN COMPONE	- FELOGPATHIC	- 				•	ένο
							-			02.6	92 83	3	J 						AT 9283 FJ/75"	GREY, FINE TO	~ : ~ : ~ : ~ : ~ : ~ : ~ : ~ : ~ : ~ :					92 93
						1	R	T			96.0	5 5 3 1	NIL	00					MEDIUM GRAINED, CHEISS COMPONENTS ON, Fd. BI, Fd. WITHI INTER CAL ATION O BIOTITE GNEISS LAYERS 2 M J AND GARNET-ENRICH 2cm	IC, MAIN LOCCASIONAL LY OF HORNBLENCE - LTHICKNESS UPTO	~~					
			3.2			=	R	т		96.0		- 36 % -	NIL	იი					AT 95.5, 95.7 CHL F	፡፡Ll. J/65 ⁶ 7 ም	1 2 1 3 1 3 1					
						141	7	, T , T		79.1	99.16	- 3 6 3	NII.	0.0					AT 98.67 J/15°		3131313					
										ing i	102.17	- 37 66 47	ZII.	00					AT 100.96,10176,102 13 AT 102.0 FJ/60°	, 102 17 J/3n ⁰ নপ্র	1 3 1 3 1 3 1 3 1					103 5
			5.2 70.7							1051	IO514	1 1 33 K		00					GARNETIFERDUS PIOTITE		5 1 5 1 5 1					IOG 28
												3	J						MAIN COMPOSENTS Qu., Fd		; - - - - - - - - - - - - -					

-	·					· 							. _			JG 11				_					I _R	НK	K-7 SH
_								K	20					30 , DΑΓΑ		RGE	IAI	VK	KI	F	· · · · · · · · · · · · · · · · · · ·	WEATH	RING	3	r L		STREN
-		_				DAT		/01/	97	x - 0	001101	MATE	1556	21 92 2		JOINT 4		1668			JOINT SEPARATION Vavory tight 40,1mm Tutight 0.1-1 Omm	soil (uncansolide naterial					MM /m²
	INTER Machi					\$1 02			- 1		004 DI			1017.2 1) 371 4	87	R erough SResignity S semanth		•		1	MGCmaterat open I O-50mm O sepen > 50mm	camplefely highly					• 1
1		IN G	MET	100	, ,	ROTAR	•				VATIO			M) 126 3	77	RE	COVE			-	OTHER STUBOLS PL.Stapoint load atrength	moderately slightly				mederal	elv strong 24
	PORE	MAN	:GSO	ι0	GGE	ED 84.				IN C	LINATI		FRU			:: (1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.				•	inder Strangth Strangth Strangth	'rash		111		strong	51 100 pag
	CORE					TE:		-			ATION									-	M sedies rombie	001071011		Ш	ENG	ــــــــــــــــــــــــــــــــــــــ	ING ASPE
1	1	RI	LLI	NG		TES	TS	-	101	N٦	rs			MEAB		T	REC		ER	-	GENERAL DESC				2140	- VEEN	ING ASPE
	- -	1	SREL WATER (COLDRADSS)	2	-			ė		æ	NC:NG		3	(BARS)	WATER LOSS (1910) dres/moute)	1	È			- }.	texture and structure cleaved, foliated, linea	ted , flow	907	•	REMOTA		
	ADVANCE	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1600	DRILLING	LEVELS	1837	RESULT	31.1	ROUGHNESS	RATIO	8 8 8 8 8 9 00 Pr	9 6	BOT TOM		100		RECOV	•	*	Ì	banded, innissose, pa scale as for joint spal weathering, alteration	cing),	APHIC LI	MEATHERING	S I		respect to
	DAILY	1	WATE	RATE OF	MATER	-	=	THIOT	8	SEPA	0000	T ON	1	PRESSURE	BATER	LUGEON	CORE	3	0	- }	kthological characteri strength, joints	stics ,	44.60	WEAT	ROCK		ration, groutir eshili'y, rock
_	- 3	3	Sect	· *	_		ļ	-	ļ.,			ı'	in in] * £ }		K	.11	э о И Ц			GARNETIFEROUS RIGHT	E GNEISS AS	ر اردان	Ш	1111	-	
												ne 19		3			\parallel				A BOVE		~·~		$\ \ \ $		
109.	, ne	2									$\parallel \parallel \parallel$			1 1	NIL	0.0	,						~~		$\ \ \ $		
Ì														3				$\ \ $					J. 101				
ł								-		-	+ +	111 3	111 3				$\{ \} \}$			Í	AT 114.22 J/25°		~ ~				
112.3									R	т				3			-				CHARNOCKITIC ONEISS . COA	DSF TO MEDIUM	2.2				
								101	R	+				1 11	NIL	0.0	$\ $				GRAINED, DARK GR Y, GNE COMPONENTS, Qu, BI,F4,G GARNET LAYERS	ISSIC, MAI'I	J ut				
Ī		1												3							*		·#.				
114.	4 28	9			5.2			-			444	114 4	114.4				$\ \ $	111,		I	AT 114,3 J/60°						
ŀ					٦									8		į							*				
1									ŀ						NIL	0.0	\parallel		$\ \ $	-		•	.,,			1.	
1		1			ł									3			排			1			1				
117.	3 04									$\ \cdot\ $	1111	117.3	11 7, 32				₩	$\ \ $					•				
t														3			\mathbb{H}	}					*				
-												١.		6 3	MIL	0.0		$\ \cdot\ $	$\{ \ \}$				-				
120.														'			州	$\ \ $	$\ \ $, A				
120.	"				١			-	-	-	+111	20 4	120.44	-		 	111				GARNETIFEROUS BIOTITE GREY, FINE TO MEDIUM G COMPONENTS Ou,Fd, Py	RAINED, WAIN					
121.	3 054	*						,	s	-				3			111				GARNET LAYERS		~~~				
t								111	s	7				6 3	NIL	0.0		Ш	Ш		AT 122.05, 122.54,122	1.55 FJ/55°	-~				
-	ŀ				8 5 60								123.4		I						AT 122.93 J/15°		٠. ٠				
									-			123 4	F	,	 I		111	$\ \ $	111				2				
									1					3	NIL	00	\parallel		I	1	AT 124 75 FJ/60°		2				
125	, be <u>v</u>	9						1	Т					3			\parallel				AT 124.72, 124.76 J.						
ŀ								"	T	R			126 45			<u> </u>][].				FROM 12480 TO 124,97	SUBVERTICAL J	~~				
												126.4			}			$\ \ $	$\ \ $	1			متم				
127 (9			·	8.5 87			-		-	++4+				VIII.	0.0	$\ \ $	$\ \ $		ŀ			~~				
			П											3									~~				
129	1 280	4	П					_			Ш	129 41	29.40				W.						.5:~				
ŀ												1.94		3			H		$\parallel \parallel$				~~~				
					1	l								3	MIL	0.0				1			\ \ \ \ \ \			İ	
				3	1.0									1									2.5				
ļ	9,60			ľ	10	Ì					4441		132.50				$\ \ $. ~				
132	العراد											137 -4															
		-												3	NIL	0,0	$\ \ $			ŀ							
						1		111	T	R				3							AT 134.79 1/20°		 				
1																									$\ \ \ $		
L		<u>L</u> _				J		1			1111	١.,	1	.	-	1	삤		IJ,	1)	76	.	"	111		1	
																	ЭA	7 -	ı	-	36						

BOREHOLE L	OG FOR ENGINEERING PU	RPOSES T	AB. 13
FEATURE - KK 205 (OLD)/230, SI	JRGE TANK		BH KK-7 SHEET 6
DRILLING DATA BOREHOLE DATA 'ED 06 /12/91 COMPLETED 21 /01/92 x - COORDINATE 135621 922		WEATHERING	ROCK STRENGTH
RUPTIONS (DAYS) 02 Y-COOR DINATE 146881 722	VRavery rough V avery tight ~ 0 1mm mat R arough Tatight 0 1-1 0mm	teriot notetely	4 <100
NE TYPE JOY ING METHOD ROTARY ELEVATION (COLLAR) 301 487 ELEVATION (BOTTON) 126,377	S semanth O zopen > 5 Orom Nigi	Alv	1 0 - 5.00 C 5 0-25 Ca
BARREL, BIT' NX FINAL DEPTH 175 II m	PL.S.I zpoint loed strength	decalain	mederately strang 25 0-50 00
NAN :GSO LOGGED BY INCLINATION FROM VERTICAL STORED AT: BEARING	strength from		strong 50 0-00 00
DISCARGED, DATE: LOCATION (100)	# Regist tompte		estromely strong > 250.00
RILLING TESTS JOINTS PERMEABILI	and two solers are		IGINEERING ASPECTS
RATE OF DRILLING WATER CEDURALOSS RATE OF DRILLING WATER LEVELS TEST ACT OF DRILLING ROUGHHESS SEPARATION OSS. OSS. OSS. OSS. OSS. OSS. OSS. OSS.	texture and structure 'mi	assiva,	TE MARKS
TEST LEVELS TEST ASSULT RESULT RESULT ROUGHHESS ROUGHHES	banded, inersected parable	` ''' - - - 	TEMARKS T
CASING/CEMENT RATE OF DRILLING WATER CEVENT TEST ACTOR ACTOR ACTOR TO SOLT TO	banded, meissose, parchy case as for joint apaciny a weathering, alteration, mi a lithological characteristics a strength, joints	mor E E	excavation, grouting,
4 1 1 2 2 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	strength, joints o so 100 GARNETIFEROUS BIOTITE GO		etc. 1
35.86	AS ABOVE	VEISS _~_	135-8
135-86	AT 137 45, 138 32 J/60°	~ ~	
II T R NIL	00	~~	
	CHAPNOCKITIC GNEISS, DARK	-	137-72
	MEDIUM GRAINED, GNEISSIC	MAIN].]
359-78 359-96	OU RICH BIOTITE GHEISS V	ж итн — _ 	13A 76
	GARNETS, LIGHT COLOURED	[-][][][]	140.0
	0 0 AT 139-3 , 0-5 mm THICK	1 - 111111	
31-0 12/X	AT 159-66 IRON PYRITE STA	/10° -	141-40
		E BANDS,	
	OO MEDIUM GRAINED	\-\-\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
	AT 142 3, 143-62 CHL J/H	o• ~~	
39-8 12-0 143 98	 	~ ~	143-78 143-9
IV S T	38.6 30.5 AT 144-0 , 144-32 , 144-86 144-98 PYRITE		
1 1 3 46.5	21.5 ON JOINT SURFACE J/20°	~~	145 57
46·21 1 47·2	42.5 AT 145.0 , 145.07, 145.13	145-16, ~~	146-2
	3.0 111111111111111111111111111111111111	~~	
3 44	1,2	. ~-	
	2.2 3.8 AT 145 19 2 Nos. J/80° FROM 145 57 TO 148 04		
	1 1111111111111111111111111111111111111	\~ <u>-</u> ~	
49-58	AT 146-18, 146-22, 146-38 SLS J/20°	<u>~</u> ~	149-5
1 4.7 3 5.9	3 AT 146-52, 146-93 PYRITE	- STAINED	
11 R T 6 5.2	1.7 AT 147-04,147-82, 147-94	• ~-	
	2.8 4.1	\\\ \	
52 56	AT 147-14, 147-38, 149-18	[]]]]]]	152-5
	AT 150-63, 150-76, 151-0,15 FROM 15195 TO 152-52 J/85 BIOTITE GNEISS, LIGHT GRE	9 -	153 08
1	0.0 MEDIUM TO COARSE GRAINE	D, MAIN	
	FROM 152 80 TO 153 44 J/	65° ~~	154-7
35-54	CHARNOCKITE, DARK GREY, M		155.5
	AT 153-54, 153-96, 154 O J/2	20°	
99-3 II T R	O.O	*	
F6/0	PYRITE - STAINED J/60°	**	
	AT 157-72, 157 80 FJ/60°		
		*	158 6
		J	
6 NIL	0.0	<u> </u>	
898 3		4	
16187	4		
		,."	
	5A - T - 37		

STARTED 06 /12/91 LOMPLETED 21/01/92 x - COOR DINATE 155621 922 YREvery rough T original transfer of the control of the contro	Emderat open 1.0-50mm completely	ROCK STRENGTH
STARTED 06 /12/91 LOMPLETED 21/01/92 X-COOR DINATE 155621 922 YREVEY / Sugh Traight Horsesty / Sugh Horsesty /	very right 40 limm right 0,1-10 mm denderationen 0,0-50 mm open > 50 mm highly	CO
. IMPORTON !	Stapaint lood strongen slightly	C 5.0-19 maderately strong 25.0-50 ittong 90.000
CORE STORED AT	Efret ground edter erack vamer erack vamer	extremely strong > 2!
DRILLING TESTS JOINTS PERMEABILITY RECOVERY GEN	CITCHIAC BEGGIN	NGINEERING ASPECT
T ADVANCE T ADVA	gie as far joint spacing),	REMARKS (with respect to excavation, growing, cermechility, rock nucleic.)
162.8 SOLUTION STATE OF STATE	IARNOCKITE AS ABOVE, MEDIUM TO AN ARSE GRAINED	
200	T 165.65 OZ Mos J/60° T 165.7 J/10° ROM 166.0 TO 167.75 QU RICH IDITE GREISS WITH GARNETS, IEDIUM GRAINED	
189.58 198.01 1 3 NIL 0 0. 171.08		
3 6 ML 0.0	ROM 174.50 TO 174.50 COARSE RAINED QU Fd PEGMATITE	
HOLE COMPLETED AT THE DEPTH O	OF 175.11 m.	

KÜKULE GANGA HYDRO POWER PROJECT BOREHOLE LOG FOR ENGINEERING PURPOSES TAB 13

<u> </u>											- 1 1		·					Olive El Milo				7		
	E	Α	TU	RE	- K	K.	2(05	(N	EW	/OL	D),	TA	ILRACI	E (Ų	ŤΕ	ALL				E	H KK8 SHEET OF	02
	DRI	LL		DAT			\perp					DAT	Α				ΚE		WEATH		G	R	OCK STRENGTH	
PHIN	UPTI	ION B YPE. MET!	4DA	OMPLE1	reb:		ľ	4 - C:	OOR E	DINATE DINATE DIN CC	: Olla			JOINT ROVERS OF SECOND	rough			JOINT SEPARATION V avery tight < 0.1 mm T stight 0.1 -1 0 mm MO≅mderaf.open 1.0-5.0 mm Q sopen > 5 0 mm OTHER SYMBOLS	completely	date d			MN / m 2 A < 1.0 wrah B 1.0 - 5.0 C 5.0-25.0	•
	ARR	EL,8		ED 84:	:					EPTH:							r (%	PL.B.f.spoint load strength index U.C.S Suniasial compressive	stightly			H	moderately strong 25.0-50.0	
16 1	TOR	te D						BEA	RING			,		V CONTRACTOR OF THE PARTY OF TH	R. Q. D			strength F stirst ground water R sinck kample W swater sample	fresh				very strong 100,0-250 (extremely strong > 250-	00
T		LIN		TES	STS	JO		NT					BILIT	Y	REC		ER	GENERAL DES	CRIPTION		111	ENG	INEERING ASPECTS	
DAILY ADVANCE	CASING / CEMENT	<u>وا ۽</u>	MATER LEVELS	TEST	RESULT	JOINT SET NO.	ROUGHMESS	SEPARATION	0.05-0.30 m 0.30-1.00m SPACING 1.00-3.00m	_	TO BOTTOM (#)	PRESSURE (BARS) (manometer reading)	WATER LOSS (total Litres/minute)	LUGEOM or Permeablist m/sec	Ö		% 0 = 100		e (mossive, aled , flow orphyritic, etc : icing), i , minor istics ,	GRAPHIC	WEATHERING	ROCK STRENGTH	REMARKS (with respect to excavation, grouting, permeability, rock quality)	A HT G B C HT G B C B C B C B C B C B C B C B C B C B
										-								TOP SOR CLAYEY SAF RESIDUAL SOIL, REDDI BROWN CLAYEY SAND	ISH) MATERIAL					2 5
1/12	912					12	R	MO MO										FROM COMPL. WEATH, R. GARNET IFEROUS BIOT MEDIUM TO COARSE G DISCOLOURED, GNEISS ME COMPONENTS	ITE GNEISS.					3 0 4 0
2	,					п	R	MO		6.0			15.2	50.7				Qu, Fd, GA AT 3:24 (w) 3 45 (w) 6 AT 3 07 w J/45° AT 3 38 w 1/05° AT 3 7 w J/20°	3 23 PJ/ 60°					5.3
312	- 0 - 0 - 0 - 0					IZE	R	MO				3	23 9	26 · 6				AT 4 I (w) 4 23(w) 4.2 4 49(w) J/15° AT4-IR CLAY FILL J/ AT4-5 50 wJ/55° AT8-00(w) 5 I(w) 5 23(FROM 5-0-5-1 wJ/80°	25*	-				7.0
						1	- 1	7 7				6 3	22·0 15·0	17· 7 24· 4 50· 0				FROM 5-0 - 5 WJ/80° GARNETIFEROUS BIOTIT MEDIUM GRAINED WITH O PLUM PUDDING GARNET FROM 6-3 TO 7-0 CLOS WITH SUB HOR J. FRO	E GNEISS, DCCABIONAL TS, LIGHT GREY BELY SPASED					7 2
712						127	R	7		9 0	9.0	,	13.0	43.3				6 65 CACOS FILL J F 7-25 AND 8-20 TO 8-82 WEATHJ/10" FROM 7-0 TO FROM 9-0 TO 9-4 AND IC HORNBLENDE-BOTTTE GI	ROM 7 0 TO CI SPASED O 7:15 WJ/85° D:5 TO 10:9	~ _				9 O 9 IS
						m	R	T		,		6 3	18·0 28·2 22·4	20·0 15·7 24·9				GARNETIFEROUS BIOTITE	E GNEISS,					10 9
7/2						127	R	T	J	12 0	12 -0	'	17.6	58 · 7				LIGHT COLOURED, MEDIL WITH OCCASIONAL COARS PUDDING GARNETS, GNE COMPONENTS QU, Fd, B AT9-15 WJ/20 OPEN	SE PLUM ISSIC, MAIN I,GA AT 9 15	~ _				12 0
712			10·0 25/									3 6 3	NIL	o ⊹o				WJ/20° OPEN AT 9-88 81 WJ/15° FROM 10-16 T 11-9 TO 12-2 J/80° FROM 13-0 TO 13-30 AN 14-9 HORNBLENDE — BIO BANDS FROM 16-10 TO 11	1,10-0 TO 10-35 AND ND 14-7 TO ITITE RICH	-				135
F12			9·6 27/12			r		T	H	15 0	15-0	1 8	<u> </u> 					TO 16 48 AND 18-65 TO	16 85 FJ/65°	-				150
						ш	- (т				6 3	NIL	0.0						~				16-0
712			9·3 26 ₀₂					-		IB·O	18-0] 					÷		~ _				18.0
7/2												3 6 3	NIL	0.0				GARNETIFEROUS BIOTITE UGHT COLOURED, MEDIU BUT WITH OCCASIONAL COLOUR, COARSE GRAINE	PINK	- - - -				19-94
										21-0	21 · 0	1 3 6) NIL	0.0				LAYERS GNEISSIC, MAIN Qu, Fd, BI, GA AT 25:77 J/25	COMPONENTS	~				21 0
72			9·6							24.0	24-0	3												240
712							TR	_				3 6 3	NIL	0.0						~ 1				25 0 .
	$\frac{1}{2}$		-				~	+			27 0]							~				27 0

KUKULE GANGA HYDRO POWER PROJECT BOREHOLE LOG FOR ENGINEERING PURPOSES TAB 13

-		- F	۸٦		 ?F :	<u> </u>	K.	20) 5	(1	uF'	w/	OL 1	n) .	TAI	LRAC	 E	OŲTF	FA	LL					B.	H KK8 SHEE
-	_				DAT									DAT	Α			K	E		WEATH	RIN	G]_	·	OCK STRENGTH
ł					S1 02		-01 · E	- 1						36. 67 26. 9 2	' .	JOINT R	, e n d	h		V avery tight < 0 fmm T atight 0.1-1 0mm MOxingeral open 1.0-5 0mm	material					A <1.61
119	C H I N	, , 46	, F 5		L - T			- 1						il 42	568 (Rusiightly Businesth Businesen	M Neve		, j.	O BODER SYMBOLS	h-ghly moderately		Î	100		week 8 1.0 - \$.0x C 5.0-15 ()
		APD	F1 , P1	1 N	IX ED RY			-	F (N)	. (T ++	40 · 0	5	100				%	P.L.S Lapont load strangth Index U.C.S Municipal compressive	slighHy		Π			mederately strong 25.0-58 () strong 50.0-30()
50	RE	\$10	FD /					İ	REA	RIN	G	AL:			. [THE A].	a.b -(%)		etrongth Thret ground water arock cample swater sample	lresh		Ш		Ш	very strong 100,0-250; extremely strong > 25 1
	T		• •		TES	TS	J	4	ΝT	• •				MEAE	BILIT	Υ	F	ECOVER		GENERAL DES				Ε	NG	NEERING ASPECT
_		٤	10807				9.			CING		N 6 6 7 W	3	(BARS) reading)	irule)	/=		* *	į	rack type, colour, gra texture and structure cleaved, fallated, linea	(mossive,				1	· '.
	ADVANC	CEMEN	6000	LEVELS	1887	REBULT	SET NO	ROUGHMESS	ATIO	1		40	BOT 7016		LOSS res/m	: :		MECOVE 0 0 %		barded, gneissose. po iscale as for joint spoi	orphyritic, etc.: cing.),	וכ רספ	WEATHERING		STRENGTH	REMARKS (with respect to
ă	DAILY	CA8186/	3	MATER	=	=	JOINT	MOU	SEPARATION	×	88	FROM	TG B01	PRESSURE (Indudue)er	waten (toto!Litr	LUGEC		ONE NO		weathering, atteration lithological characteri strength, joints		GRAPHI	WEATH	l	ROCK	excovation, grouting, permeability, rock audit etc.)
	l a	3	100		l					11	i	7.0	-	* 5	, ž		- -		100	GARNETIFEROUS BIOTITE		~ -		1	ıır	erc. /
	0/61			0/0										1	h					GNEISS AS ABOVE		- 2 - 2		$\ $	$\ \ $	
				70	1		1	R						6	NIL	00				AT 27-32 FJ/60		~~				
	Dec.													3	}											
30-1	-		+	02,	-		+			╫	3	0.0	30.0				-{				•		$\ \ $			
}														8								~ -			$\ \ $	
-												ĺ		6 3	} mL	00				f		~~				
33.0	-		\dashv	+	 	├	\perp	-	\sqcup	╢.	Щ	53-0	<u>33·0</u>		'		_{					~ ~				
														i 3	h							-~			$\ \cdot\ $	
			İ											6	NIL	00						- ~	$\ \ $			
	04		l											3)				*	·						
36-0	61	H	+	04/0		-	\dagger		$ \cdot $	$\dagger \dagger$		38·O	36.0	ļ	 	 	-{					~-				
-															8.0	20.0	, [FROM 38-08 TO 38-22 CHL FILLED FJ/70°		~ -				
-			ļ				п	R						5 6	11.2	9 3	Ľ					- ~ -				
39.0	09 ₀		_	10·4			1	_		ŀ		_		3	10 0	9.3	, }		#			~-				
40.05	oe _k			0.4									40.05	'	7.8	19.5						2-				
				06,			T		П	\parallel				HOL	E C	OMPL	E	ED A	1	HE DEPTH OF	40.05m		$\dagger \dagger \dagger$	#	$\parallel \parallel$	
ŀ							l									}										
}			-											·										$\ $		
-																			\parallel	·				\parallel		
			Ì																				$\ \ $	Ш		
					-																				Ш	
ľ																			$\ $					$\ $		
-																	1							$\ $		·
ŀ																	1									•
L	.																		$\ $							
																	1		$\ $							
		į		1.4	-							Ì]		1									
t																		[[[]]]]								
ŀ																										
															ŀ											
															<u> </u>											
																								$\ $		
است						·		L		لل.	سلسلسا			L	L	J	!. 5	A - T	-	40		٠		Ll.	.1. L. L	

KUKULE GANGA HYDRO POWER PROJECT BOREHOLE LOG FOR ENGINEERING PURPOSES TAB 13

\								_													7	J. 1J		
				_	ΚK	2						R A	XIS				•		-		E	BHKK 9	SHEET OF	01 01
			DA				. B	OR	EHC	LE	DAT	Α					EY	WEATH		G	F	ROCK STR	ENGTH	
				1 6 0 04	03 9	- 1					48-97		VREUTY		HNEŜ	8	JOINT SEPARATION V Soory light < 0 jmm T stight 0.1-1 0mm	sail 'untercend material	a10d			MH /		
- 1-4, 40 ·			45) O:	2		- 1					612·97: A) 211		R trough	rau	ēv.		MOEnderst open 1.0-50mm	completely				^	. 4100	
			R ROTARY			- 1					M) 190. M) 2((S sameon	COVE			O sepen > 5 0mm	nighty				B	1.0 - 5.00	
, 6444			NX			- 1	FINA	L D	EPTH	20.4	5 m	. •		COR			PL.Stapoint land strongen	moderately slightly				meder 01011 1110		
			60 B1						ION F	RUM C	۰,۰		<u> </u>	ÄĚČ	ÖVE	R Y (*	MCS Simple commission	l-esh				strong	50 0 -00 00	-
570A 6 50			AIE			- 1	8 E A R	IING	1 1,,,			i		R. G	. D ((%)	B Brech graund water	1				estromety strong	100.0 750 o	
RILL				STS	1.1		NT:		_		MEA	BILIT	ΓΥ	RF	COV	/ER	M GENERAL DESC	RIPTION			FN	SNEERING		
		Ť] 	+	Ü	Ť		_				T	*			rock type , solour , grain					JINCERING	ASPECTS	-
SING / CEMENT	2 2	-		l	ě					3	(BARS)	1	1	1			taxture and structure	mossive.			¥.	•		_
Man 30/	DRILLING	1.6 ver 8		1	, ,	16.38	ATION	SPACIN		2	1	10 \$3 LO \$3	1 : :	RECOVERY		*	cleaved , foliated , linear bunded , gnessere , por	rahvrilie, eta	100	3	RENGTH	75 44	RKS	T T
7 0 7 0	8		1631	A C S ULT	ä	ROUGHNESS	SPAR		9 0	801 TO M	Sua		0 3			۵	weathering, alteration.		AP HIC	3	5	(with respec		
CASING	3	WATER		-	MIO	ž	# F		2 5	٩	PRESSURE (manutneter	WATER LOSS	LUGEON PERMEABILLE	00	AND	•	lithalogical characteris		GR A P	WEATHERING	0CK	excavation, sermeshie's	grauting , r. rock audlity,	5
¢3							٥	90	^;		<u> </u>	ءَ ا	Ľ	6	50				,	3	•	erc. '	• •	
I						T	\prod	Ш	00					Ш	Ш	Ш	TOP SOIL DARK BROWN C	LAYEY SAND	5 0	$\Pi\Pi$	Π		· Tambillian Company	0 25
i :							П	Ш					K =1-92±10		Ш	Ш	CLAYEY SAND WITH CO		. 0					
3 1	!		SPT	31	1		Ш	Ш	1.45	1 45			 		Ш	Ш	 	, -	0 0	1111	Ш			
.	ļ			<u> </u>]								к =ө-бөх іб				RESIDUAL SOIL YELLON	WISH BROWN/	<u>- </u>					20.
8 !	į		SPT	37]		11			2.9			1		$\ \ $		REDDISH BROWN CLAYE TRACES OF GRAPHITE.	Y SAND WITH	•					
1	į						11		2.9										l° 。					
	!				11	-	- [[Ш	i				K =5-78xi0			111			<u></u> 0	1111				3.9
NG			SPT	47	1		11		4.35	435			ļ				RESIDUAL SOIL YELLOW BROWN CLAYEY SAND W	YELLOWISH	°°					"
	ı						\parallel						K=399×10			$\ \ $	GRAPHITE		°			1		
DRIL			SPT	550	1			$\ \ $		ا ۽ ا							11		°			1		
	ļ	:	<u> </u>		1				5.8	2. € .			ساسه سا م	Ш			WHITISH TO LIGHT E	BROWN WEAK	<u>۾</u> ~					5.0
خ ا اه ا	i		SPT	> 50				$\ \ $			-		K =3 66×10	Ш			III THACES OF	WORFFILE.	~~		$\parallel \parallel \parallel$!
0	1		JF 1	1.24					7.0	7.0				Ш					~~		$\ \ \ $			-
	1	5.8							L	7. 8	- 1		K=5 04x10			$\ \ $			~		$\parallel \parallel \parallel$	l		78
ī								$\ \ $	7. 8	1	-		K =4-38≥10			$\ \ $	FEROUS, GRAPHITE	UWM GARNETI-	\sim_{\sim}		$\ \ \ $			
WIS		!							8 8	8. ē						Ш	FROM 7 B TO 9 B WEATHE	ERED JOINTS	~ `	1	$\ \ \ $			
HSIMOTIE	!	8.7				Ì		!]]		9 8			K =3-32+10			Ш	11		~		\prod			
4 E	'	2802			\vdash	_		4						Ж	+	#			~_~					ם מו
	1	$\ \cdot\ $				RI											GARNETIFEROUS BIOTIT	S, LIGHT	~ _		$\ \cdot\ $			
.07					111	R	2				Ì			111	11	41.	COLOURED MEDIUM TO GRAINED, MAIN COMPONE	COARSE	~ _	7			i	
(02	1	95 3802				R		111	11 57		-	-		111	1			, -, -,	~ -					11 57
:		as02					-		"		,	1.6	2.2	414			FROM 9 8 TO 10.2 CLOS	ELY SPACED		$\{\{\}\}\}$				
					\vdash	+	-11	4			3	2 1	1.5			4	AT 10 2, 10.65 J/60°		-	1111				
i		10.7			m	R	r				6	2.8	1.1	41		$ \cdot '$	AT 10.44 J/30° 10 84.	1/10°	~]	1111				
i		nsc			$ \cdot $	1					3	0.5	1.4	+11	$ \cdot $	$ \cdot $	AT II.40 SL WEATH J/6	00	~ -			<u> </u>		
;					\vdash	RT	41	الم			.	14	1.9	4.11			AT 1210 SL WEATHFU		-	1111			l	
1		;			111	R	r []			15.09	ļ						AT 11.46, 11 50 J/20° AT 12.96 J/30°		~ _]]]]			ļ	3
	-				m	R	0		14 58		١, ١	1.2		111		. •	AT 14 63, 17.24 F J/60	, .	~ [][]]				15.09
HSIAHBU	2				,	RI	-	$\ \ \ $			3	1.2	1 G	111	1	Ш	AT 148, 16.07, 16 56		~ -	$\ \ \ $				
		03/0	}		1 1	R T	11				6	2 2	09	[[[]			AT 15 35 J/30°		-			1		
.		.		1	$\sqcup 1$	1.	41				3	15	1.0	11	ŀ		H		~					
		!		l	111	R i	T				'	1. 2	1.6	111			AT 18.06 J/70°		-				l	
		!		1	-		-		16.93	18 10				FII	-		AT 19.64 FJ/70		~ _			1		18 10
	ţ	. 42		1	1	R.	1				<u>.</u>	1.8	2 4	111	$\ \ $		FROM 19.8 TO 19.94	J /65°	~	1111		'	ļ	
!	Ì	040		l				Hill			3	2.4 3.2	1.6 1.3			:	1		~ -	1111		1	İ	
	į	1				R	7				3	2.2 1.6	1.5		1.		! {					1		
1.	+			00-	_			ڙڙ	 	20.45	<u>-</u>				丗	Hť	20.45		-	 	†#	 	·	
	H	ÒL	E	COM	ħΡ	LE	- [EC	' F	T	TH	. D	EPT	{	PF		20.45 m							
:	İ			l] [ĺ	- []																}	
1						-	\parallel				İ													
!				1			Ш						}							1111				
1											l			Ш							111			
'.			1						1															
•			İ	1					1									i						
1	1		1			1	Ш	$\ \ $									[]				111			
	1			ĺ			-]]		1					
	1		l				Ш]]				Ш]]			$\ \ \ $				
				1				$\ \ $		l									. }					
		-		1		ļ	-							Ш			11		1					
				1			\parallel											l	· .	HH		1	1	
L	۰	⊥_		L	ш	_		Ш		لسا			L	Ш	Ш	Ш	<u> </u>			Ш	ш	1	1	

BOREHOLE LOG FOR ENGINEERING PURPOSES

TAB. 13

										<u> </u>)KE	.HC	ルヒ	L	JG F(JH 	. E		_	SINEERING F	0111 01			-		B. 13
	- 1	E	ΑT	UF	RE .	- K	(2	20:	5 (OL	D)	, W	EIR	AXI	S		•							ل		1-KKIUOF 02
					DAT			Ţ					DAT		JOINT AC	UGH	NES	K	E	Y JOINT SEPARATION	WEATH		3 ****	+	RC	OCK STRENGTH
ı					S): 03	FED:26	·12·91						00 · 401	,]	VARVery ro A grough	ndy					material completely	1				A <1.0
1			PE I					- 1					R) 199	ᅄ	BRuslightly 3 semooth 3Luclickens	ided				O sopen > 50mm	highly			n.	3	weak B 1.0-8.6/ C 5.0-25 m
l			L,017		ROTARY K			- 1				30 - 5	M) 168. 36 Pr	45		COR			1	OTHER SYMBOLS PL.B.Espaint load strength Index	moderately slightly					moderately strong 25.0-tou
1			D L		ED 84:	:			ROM		TICAL	°°			Same 1				"	strength	fresh					strong 50-0-100 t ² very strong 100.0-256≠
			ARDE		r	·		يار	OCA	TION	1100	<u> </u>						_	4	T Stirst ground water R Srock sample W Swater sample	<u> </u>	_	Ш	Щ	Ш	exfremely strang > 25 :
	10	RIL	LIN	G T	TES	STS	14	OIN	115	3_	_			BILIT	Y		0	/EF	Μ	GENERAL DESC				E	NGI	NEERING ASPECT
۔ ا		Ė	ğ :				اه			CIRC	1	3	(BARS)	inute)	**************************************	*				texture and structure cleaved, foliated, lineal	(mossive,				4 1	ľ
2	ADVANC	CENE	PRILLING DRILLING	LEVELS	1637	1		¥)	2	BPAC:	Γ.			m/sa	- 4	RECOVERY		×	1	banded, gneissose, po scale as for joint space	rphyritic, etc :	3	RING	1	STRENGTH	REMARKS :
à		CASING / CEMENT	E 8	MATER	=	100	JOINT	ROUGHINE	3	000		80TT0M	PRESSURE Manometer	WATER LOSS (lotal Litres/minute)	LUGEON of		ş	0	- 1	weathering, alteration lithological characteris	, minor	GRAPHIC	WEATHERING		BOCK	excavation, grouting, permeability, rock quality
	DAILY	3	PATE PATE	1	١.				l.a	98	1	٤	Par (man	TAN (total	3 8	000	50	e c		strength , joints		8	*		ě	etc.)
	2.42				•		П		\prod		0.0	0.82			5-355×10					TOP SOIL YELLOWISH BRO	OWN CLATEY					-
0 01	1								$\ \cdot\ $	Ш						Ш				BOULDER- CHARNOCKITE G DARK GREY	NEISS	5 \$	$\cdot \cdot $			
2-03					SPT	29					1 - 55	2.68			2·045±10 ⁶					RESIDUAL BOIL - YELLOW BROWN CLAYEY SAND			₩.	$\ \ $		
2:53	4/2					48	$\ \ $				-	-	-				$\ \ $			RESIDUAL SOIL: REDDISH CLAYEY SAND COMPLETELY WEATH GARNE ROCK YELLOWISH BROWN		-	$ \cdot $	$\ \ \ $		
3:38 3:50	1	1			SPT	1		-				4-11			2.787110		$\ \ $			RESIDUAL SOIL LIGHT BR	OWN BROWN SANDY	<u> </u>				
4-11					SPT	22	11		Ш			1	<u> </u>	<u> </u>						DARK GREY, PLASTIC SILTY COMP. WEATH GARNETIFERO		\sim				
4 - 5 0					-		$ \ $	- (Ш	Ш	4-11	5.56		l	2-02x10 ⁻⁶					ALLUVISM - CLAYEY GRAVES (ROUNDED GRAVEL)		1	[].		\parallel	
5.86			1		SPT	46		1	П	Ш	\parallel	+	<u> </u>	-				$\ \ $		ALLUVIUM - GRAVELLY SA	IND, LIGHT			H		
6-50		-					11	1			9.86	7.00			2-844±10 ⁶					GARNETFEROUS ROCK,		<u> -</u>				
}	16/2	١			SPT	22			\parallel	Ш					ļ					PINKISH GREY. WEAK FI	ROM 6-7 TO 7-0	_ ~		1	$\ \ $	
								1			7.0	8-45			020110		111			BILTY CLAY VERY LIGHT WHITE (MYLONITE)	GHEENISH	_~		1		
	Н	Ì			SPT	25		-			-		-	 -			Ш					ا		ØI		
9.00		1						Ì	\parallel		8-45	9-90			2-186=10					KAOLINERICH COMP. WEA	ITM ROCK -	-		11		
-		-						1			-	-								YELLOWISH, WEAK (BR				10		
	17/12										9-90	11-35			1-457×10		$\ \ $					~		Ø1	$\ \cdot\ $	
11-15			-		SPT	48				Ш		 			ļ	Ш				COMP. WEATH, FELDSPATHI	C ROCK.	ケᇪ		ØI	11	
12 - 60			1								11-35	12.8			2·76×10 ⁻⁶					WHITISH , WEAK		-		1		
					SPT	>50			\parallel		-	├-			ļ			Ш		GARNETIFEROUS ROCK ,		L~		1		
•	9/₹	-						ļ			12.0	4-25			4-87=10	Ш				WEAK, YELLOWISH BROW	M,	~		10		
14 -55		-			SPT	>50		1			-	┼	-					Ш				_ ~		11		
		-						1	П		14-2	13-55			4-45110				$\ $	GARNETIFEROUS ROCK. BROWNISH	COMP. WEATH.	<u>ا</u> ـــ		10		
	9/2										-	-	-		-6				$\ \cdot\ $			~ T		И		
16-55								1	\parallel	Ш	15-55	6.55			4-24 x 10											
16-90 17-27		-							\parallel								H	#	-	GREVISH GNEISSIC RO		-		111		
17-92	20/tz	1						1	\parallel	Ш									ľ	COLOURED, GNEISSIC. M MAIN COMPONENTS: Qu		·		Ш		
18·72											10.3		-	7.2	14.3					AT 17-10, 17-15,17-19 F	1/600	<u>_</u> -		Ш		
19-38										Ш			3	9∙8	8-1					AT 17-53, 17-57, 17-65 W	YEATH, J/80°				\parallel	1
									Ш	Ш			3	10.2	5 · 6 8 · 5			11		AT 17-92, 17-93, 18-72 FJ/60°	(SL, WEATH)					
20.73	5/45				į					Ш			1	7.4	14 · 7	#	1	H	₩	AT 18-10, 18-12, 18-18, 16	3-26,18-27,	ζ-		Ш		
21-45					.						21-39	21-82	 	ļ		1		\coprod	μ.	AT 19-38, 19-92 , 20-05 FROM 22-92 TO 22-98		<u>~ _</u>				
21.82													!	5.6	11.0		#		lt	HORNBLENDE-BIOTITE LA GREY. MEDIUM GRAINED	YER, DARK					
													3 6	10·8	7·1 4·8.	#			ľ	AT 20-08 , 20-25 , 20-75 AT 20-27 , 20-34 , 20-36						
23:48 23:86	24/2		-										3	9.0	7.4				[].	FROM 20-46 TO 20-55 AT 20-75 (SL.W) 20-8, 2	Cl. Sp. J/50°	~ _		$\ \ \ $		
		1									<u> </u>	24-91	<u> </u>	5.8	11.4					J/90° AT 21-67, 21-69, 21-72				$\ \ $		
24-91											24-45		_	5·8	11 · 2			H		FROM 24-28 TO 24-45		-				
23 60			11		1								3	7.1	5-8		#			BIOTITE LAYERS, DARK MEDIUM GRAINED		<u>ا۔</u> ۲				
26-45													5	8·7 7·2	3·8 5·9		11			AT 22-06,22-08,22-10, AT 22-75, 22-97,23-22		ا ِ ۲				
	+	+	+	-			+	+	₩	H	-	\vdash	.1	6.0	11.5	犐	#	\mathbb{H}	H	FJ/60° FROM 23-4-23-7 WEAT	H. J/80°		\coprod	#	\coprod	·
	\perp	L	Ш	\perp		l		L	Щ	Ш			·			Ш	Ш	Ш)		انا	Ш	Ш	Ш	

KUKULE_GANGA HYDRO POWER PROJECT BOREHOLE LOG FOR ENGINEERING PURPOSES **TAB.** 13 BH-KKIOOF 02 FEATURE - KK 205 (OLD), WEIR AXIS SHEET 02 BOREHOLE DATA DRILLING DATA WEATHERING ROCK STRENGTH JOINT ROUGHNESS WREVERY JOUGH R Brough | Shasightly rough | Shasightly rough | Shasishenaved 10 12-12-91 COMPLETED.26-12-91 H- COOR BINATE . 153,000 - 409 sell : unconsehaged MH /m² V Every tight 4 D Imm T Slight 0 I=1 Omm MO4mderst open I.O-5 Omm O 4epon 5 5 Omm UPTIONS POATS): 03 V - COOR DINATE 150,563-453 HE TYPE ACKER ELEVATION (COLLAR) 199-01 1.0 - 5.00 highly NG METHOD ROTARY ELEVATION (BOTTOM) 168-45 OTHER SYMBOLS RECOVERY 5 0-25 00 SARREL, BIT' NX FINAL DEPTH 30-36m PL.ALmoint lead strength index stahtty HAN ID LOGGED BY: INCLINATION 0° 100an STORED AT Stirst ground water Broth sample Ewater sample 100.0-250.00 R.O.D (%) LOCATION (me Fig DISCARDED, DATE: extremely strong RILLING TESTS JOINTS PERMEABILITY RECOVERY GENERAL DESCRIPTION ENGINEERING ASPECTS CASINO/CEMENT IORAL WATER COLORADES waten Loss (total_itres/minute) rock type, colour, gram size, ACUST SET NO. 100 SEP NO. 100 texture and structure (massive, cleaved, foliated, lineated, flow bonded, gnessose, porphyritic, etc; scale as for joint spacing), STRENGT PERMEABULTY . 80TTOM . . PRESSURE (manameter re × REMARKS GRAPHIC (with respect to ă . weathering, alteration, minor lithological characteristics, strength, joints 70 5 excavation, grouting, permeability, rock quality, etc.) 2 AT 23-96 , 24-66 , 24-82 , 30-25 J/75° AT 24·02, 24·36, 25·84, 26·43 (SL.W) \ <1 28·58, 28·0 2795 6 · 2 11.9 3 7 8 6 · 4 4 · 1 AT 25-06, 25-15, 25-6, 25-67,25-9 25-95, 25-99, 27-56, 27-95, 28-12 28-18, 29-16, 29-35 1/20° 3 8 1 6 · 6 29 48 6 · 3 12 - 1 COMPLETED DEPTH HOLE AT THE OF 30.56 M.

-		F		Δ	T I	JE	?F	- K	ĸ	20		· ((OL.	D)	. [DES	ANDE	ER								Ti		SHEE
-							DAT			7						DAT					ίE		WEATH		IG		ROCK STR	NGTH
		RR: HIN LIR E B	UPT E F IG ARR	YPE MET	7 HOU BIT: LO	AY: ONE N	S). E – TD Rotar	Υ	03-		Y-C ELE ELE FIN: VLR	OOR VAT	IDIN ION ION DEP	ATE (C) (B) TH	1504 DLL A		o .58	Same	rough sided COVERY CORE RECOV	ERY		JOINT SEPARATION Vavery light C.O.Imm Tailght O.J10mm MOEmderd.open I.O-5.0mm OTHER SYMBOLS P.L.B.Lepaint load strength Index U.C.S municals compressive strength T Effist ground water T strength	sell : unconsolid material completely highly moderately slightly fresh	uted			A A weak B C moderately strong very strong	5.0-25 g 25.0-30 g 50.0-30 g
-	COR				NG		TES	272	Ti	011) NC	···) ME ()	BILIT	- V	R. Q. D		_	GENERAL DES	CRIPTION	Г	Ш	III EN	extremely already	SPECTION
	₩.	DVANCE	CASING/CEMENT	DARL WATER (COLOR, LOSS)	DRILLING	WATER LEVELS	1831	RESULT	JOINT SET NO.	ess.	T10M	0.05-0.30m 0.30-1.00m SPACING	-00-3.00m	FROM TOP DEPTH		PRESSURE (BARS) (Manometer reading)	oss s/minute)	N or	RECOVERY %	ONA C	2	rock type, colour, graitexture and structure cleaved, falluted, linea banded, gneissose, po scale as for joint spac weathering, alteration lithological characteri strength, joints	in size, (massive, ted, flow orphyritic, etc: cing), , minor	GRAPHIC LOG	WEATHERING	2000	RE MAR	K B to grouting ,
0·2 0·7	8						SPT	20														TOP SOIL BLACKISH RESIDUAL SOIL LIGH CLAYEY SILT HESIDUAL SOIL YELLO CLAYEY SAND/SILT GARNETIFEROUS ROCK WHITISH TO REDDISN	T BROWN,					. 4:
- 2.4																						GARNETIFEROUS ROCK (CHARNOCKITE P) DI COARSE TO MEDIUM			a T			
. 6-1																		-										
9·0	,													9∙0														
12.	0					000			I						12:0	3 6 3	95 180 276 185 98	15·4 14·8 13·0 15·2 15·9				DISCOLOURED, MEDIUM	NTO PIECES WEATHERED					
						0 0				•	Xino.			2∙0		1 3 6 3	10 0 19·2 28·0 19·6	14·9 15·1 12·9 15·4 16·4										
- 16·16 - 16·16	•				1312	515		٠	1	1 1	r T		+	5.0	15-0	1 3 6 3	3·2 5·7 II·0 5·5	4·8 4·5 5·1 4·3			и	GARNETIFEROUS BIOTI LIGHT COLOURED, COARS GRAINED, MAIN COMPONE AT 15-03,15-17,15-35,15- AT 15-12,15-13,16-87,16-01 CHARNOCKITIC GNEISS COARSE GRAINED BAIN BANDS UP TO 30 Cm.	SE TO MEDIUM ENTS QU,FD,BI 50,18-70 FJ/20 8.15-38 J/60°60 WITH RNET HICH					
18-1	0					-			r	R	7			19 O	18-0	1 3	3·0 2·8 5·0	4·5 4·2 3·9				TO COARSE GRAINED, MAIN COMPONENTS Q AT 18-70 FJ/20° AT 18-26,18-27 J/50°	GNEISSIC. u, FD, PY					
21	٥				_	25			п		T		2	21·O	21.0	6 3 1	10·0 5·3 2·9	4 6 4 2 4 3				AT 18-0, 18-84, 9-52, 20 20-36, 21-0 FJ/20° AT 20-88 J/40° AT 20-70 J/60°						
244						32 63	-		п		7				240	1 3 6 3 1	NIL	0.0				GARNETIFEROUS BIG GNEISS, LIGHT COLOU MEDMUM TO COARSE MAIN COMPONENTS (AT 21 O FJ/25° AT 21 70,21-92 J/5(GRAINED, Gu, FD, BI, GA				•	
,					12	35			п		т		N N	240		1 3 6 3	NIL	0.0				AT 2412, 2451,2457, 2482, 2518,2586,25; AT 2645 J/60°						
27 (1			.				-		2	7.0	27:0		J					AT 27-20 J/go	•					

											<u> </u>															_				
1	E	Α	TU	RE	- K	K 2	20	5	(0	LD)	, [DES!	A ND!	Ę R												l	ВІ	Нкки	SHEET OF 02	02
٠		LL		DAT			I					DAT		JOINT A	OU (ΚE		OINT SEPARATION		WEATH		G			R	OCK STRE	NGTH	
) TE		ON 5	(DA)	•	1 6 0 . 15	03.92						43 450 144 28:		VRESTY F	P u 91	•			Y	Every tight < 0.1m stight 0 1-1 Or	=	soit ; unconsend material	8184					MR /m²	· <1.00	-
МІК	E T	1 P E	TON	E - 70			100	LEVA	A T + O	4 (c	OLLA	R) 211	58	SREslightly S Remooth Steelicker	•					Demderal open 1.0-50 n Bopon > 50m	- 1	completely highly			H				1.0 - 5.00	- [
!		METI El, B		ROTAI NX	RY		1				0770 1-05	181 10m	48	RE	COV	ER		_	P.I	OTHER SYMBOLS		moderately			1		H	C maderately strong	5 0-25.00 25 0-50 00	
-1 M	AR:		LOGG	ED DT	:					OR F		0•			RE	CO	VER	r (%	u,	Index C.B Buniosial compressiv strength		slightly fresh					1	strong	50 0 400 00	
-		E D ARD	AT: ED, B	ATE:				E A R	ING	(see		1		e a consta	R.	0 . D	n	61	**	Afirst ground water Arack sample Budler sample	ľ							very strong extremely strong	100 0-250.00 > 250.00	
DI	રાદ	LIP	İG	TES	STS	JO	_			1		MEA	BILIT	Y	RE	ECC	OV	ER	10	ENERAL DES	sc	RIPTION				EN	GI	NEERING A	SPECTS	
		380					T	Τ	2	7.00	3	ts;	ē	**/*		*				ock type, colour, g vture and structu				l	ſ					
AUVANCE		5	LEVELS		٠.	2		1	SPACIN	-	T	(BARS)	Loss res/min	3 -		RECOVERY		*	c	eaved , foliated , line mided , gneissose ,	eote	ed , flow	9	9		AT GREETS		'RT MAR		•
ě		3	٦ I ه	1	AESULT	7 867	NOUGHNESS REPARATION	2 6	6 6 6	È	BOTTON	e e	R L	NO E		5		•	150	ole as for joint sp eathering, alteratio	oci	ng),		٤		-		(with respect		X.
7	CASING/CEMENT	DARL WATER (COLOR, LOSS)	MATE OF DRILLIN		-	TNIOL S		50	1.00-1.00m SPACII	10	6	PRESSURE (manometer	WATER LOBS (10tol_itres/minute)	LUGEON .		CORE	₹	•	lit	hological characte rength , joints			GAAPHIC	FEATHERING		# DC#		excavation, of permeability,		٥
4	7	8	1	ļ	ļ.,	<u></u> _		411	32'	}	ļ.,	<u>5</u>	=======================================	K	o V		17	- 100 11 T	١_	·			ļ_	7-1-1	_	- 1 T	-	etc)		
	-	1	12-4				Т	Ш				3	NIL	0.0	И	W	W	W	1^	T 28·39 FJ/25°			Ì	Ш	\parallel					
	1		8			ΠR	T	Ш				3				///	W	Ш	1					$\ \ \ $		Ш				
4	+	+	+				+	H	1	-	3010				4	14	4	4	1				 	HH	- -	+	\mathbb{H}			
	1				HOL	E			qφ	MP	LET	ED		AT		TH	F		ĺ	DEPTH OF		30·10 n	•							
	l							$\ \ $		1							$\ $							$\ \ $						
	-							$\ \ $								$\ \ $			1					$\ \ $						
			•							١.																				
İ		ı						Ш								Н	\parallel	$\ \ $					1	Ш	Ш				,	
1																Ш	\parallel	Ш						$\ \ $	П		Ш			
	+														Ш		\parallel	Ш						$\ \ \ $	П					
	ł					Ì									Ш		11	Ш	İ					$\{1\}$	П	Ш				
	İ		11												Ш		\parallel				•		İ	$\ \ \ $	Ш					
	١														Ш		\parallel	$\ \ $	}				1	Ш						
	1					1											\parallel						ł							
1	ſ									ļ							1	Ш	ł					Ш	Ш	Ш	Ш			
]														Ш		\parallel						İ	Π	11					
	Ì					-											11	Ш						Ш						1
	١				İ											Ш	Π		Ì				}							
١	1		$ \cdot $				1	Ш	Ш						Ш		\parallel	Ш					}	Ш	Ш		Ш			1
 	l							Ш					-		Ш	Ш	\parallel	Ш	1				}	Ш	Ш	Ш				
						-		Ш							Ш		Ш	$\{ \} \}$			•		ļ							1
	-					l		Ш							Ш	Ш	\parallel	Ш						Ш	П	Ш	Ш			
	١	T													Ш		Ш	Ш						$\ \ \ $	П	Ш				1
	1								Ш						Ш		\parallel		1				Į	Ш	П					
]										İ					Ш		\parallel							$\ \ \ $	Ш		Ш			
	١																П	Ш							Ш					
	ł		-						Ш						Ш		П	Ш					ļ	$\ \ $	П					
							İ						•		Ш	Ш	$\ $							Ш	Ш	11				
																Ш	\parallel	Ш	ĺ					$\ \ $	11		Ш			1
	1						1								Ш	Ш		Ш	l					Ш						
	1							Ш							Ш		\parallel	Ш				-		$\ \ $	П	Ш				
															Ш	Ш	11							111	Ш	П	Ш		1	1
		1						$ \cdot $								Ш	\parallel		1					Ш		П	Ш			
					1			$\ \ $					-		Ш		$\ $	Ш	ŀ						Ш					
1	1														Ш		П							Ш	П	$\parallel \parallel$				
								$\ \ $							$\ \ $		$\ $								$\ $		$\parallel \parallel$			- 1
								$\ \ $										Ш					l				11			- 1
		ŀ															$\ $	$\ \ $						$\ \ $	$\ $					
								$\ \ $									$\ $	Ш	.					$\ \ $						
													•				$\ $							$\ \ $						
1													,			$\ $	$\ $							$\ \ $	$\ $	$\ \ $.
							1	Ш						1	111 5.4	11 \ -	11 T		4	5		•			$\ $		\parallel		1	
. *	_													·	- 4	•	•			- 					-					

-							-	_								CF		VE						В	H KK	12 5
					RE DAT		K	20						DAT		CE II	N IA		ΚE	· Y	WEATH		G		OCK S	TREN
IN DF	TAPTI	ED BE	PE IETH L, MI ISD ED A	TONE	SI OZ ROTARI X ED BY:	TED 92			X - C Y - C ELE FLE FINI FROI BEA LOC	OOR OOR VATI VAT AL I	DINA DINA ION ION TION RTIC	TE I	58126 15035 LLA9 TTON 50 - 0	3,550 M 19,850 M 1) 238- 1) 208- 3 m	E 83 80	V. Hilling	cove COVE COR REC	RY C	y (%: %)	JOINT SEPARATION V Neety (1gh) a 0.1 mm T stight 0 1-1 0mm MOmmdered open 1.0-3 0mm O supen > 3.0 mm OTHER STMBOLS PL.S.I.speint load strangth U.C.S Norther Strangth * Strangth * Stran	highly moderately slightly fresh	ored		ENG	A weak B	strong
	ADVANCE	CASING/CEMENT	CO-COM TOSS	G CHILLING	TES	STS	JOINT BET NO.	MOUGHNESS	SEPARATION	S 000-000	800	×	EK (a) MOTTOR OT	(manorneler reading)	WATER LOSS		COME RECOVERY %	e	\$ a a a a a a a a a a a a a a a a a a a	rock type, colour, grafesture and structure cleaved, foliated, ine- borded, gneispose, 2 scale as for joint spo- weathering, alteration tithological character strength, joints	im size. e (massise, cled, flow archyritic, etc. cing), a, minar istics,	GRAPHIC LOG	WEATHERING	HOCK STRENGTH	with re excaval cermen etc. !	ticn, gr
1 - 6 1 - 92 2 - 14 2 - 87 3 - 4 4 - 6	2-41 DZ, 01 4-8 DZ, 06	2.0	DRILLING	2-7	SPT	>50		花房 用用	MO MO MO T T			1-6	4-6	1 5 5 1	0·5 0·8 1·2 0·6 0·4	1-4 0-8 0-6 1-1				RESIDUAL SOIL - REDDISH SAND RESIDUAL SOIL - DARK BROG BROWN CLAYEY SAND COMMETTY WEATHERD RESIDUAL SOIL - REDDISH CLAYEY SAND OARNETIFEROUS BIOTITE MAIN COMPONENTS QU, F COARSE GRAINED GARNE CHARNOCKITE, DARK GRAI QU, F4, PY WITH INTER DARK GRAY HORNEBLNG LAYERS UP TO 40 cm A 2-22, 2-82, 3-02 WEA AT 1-82, 1-79, 1-95 W	BROWN CLAYEY WN YO REDDISH BROWN GHEISS, COARSE IT COLOURED, 4, B B 7, MEDIUM C COMPONENTS, RCALATION OF E BIOTITE IT 1-63, 1-75 HJ/65°	~		LZ		
7 - 6	7-6 02/ 07			6-2: 07			•	R	т			7-6	7·6	6 3 1 3 6 3	NIL	0.0				AT 2-45 SI WEATH J AT 8-38, 5-76 J/2 AT 8-85, 6-73 FJ/	5°	y.				
12-2	2 6 5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		CARAMY TO WHITEH	5-25 52/0 7-12 52/1 16-5			11 11 111	R	T T T			0.8	13-6	1 8 6 3 1		18 · 2 16 · 6				AT H-72, 12-47, 14- 14-54, 18-03 J/85 ⁹ AT H-10, H-26 J/65 FROM 14-5 TO 14-85	- 40°	J.			o state de mandante. Apprende de mandante de mandante de mandante de mandante de mandante de mandante de manda	
18-7	18 5 7:11 18:6 02/2 11 7			17-15			2 = 2	R	MO O T			6-7	18-7	3 1 5 6 3	COU	SSURE				GARNETIFEROUS QUART GREISS, LIGHT COLON COARSE GRAINED, MAIR Qu, Fd, GA, BI AT II 17-08, IT-35, IT-38 A J/15° - 25° AT 17-06 WITH J/60	RED MEDIUM TO 1 COMPONENTS 5-71, 16-97 LL WITH 59	5 -				
22-6	20-8 02 ₁₃ 22-6		# D - W	®-0 02,4							2	2-6	22:6	1 3 6 3 1	NIL.	0.0				20 83 , 20 88 , 21 28	J / 10°	- ~				
	25.7 D7.(g			7-4 02/5 17-4 02/6				SR	T .		100	5.7	5 -7	1 3 6 3 1	NIL	0.0				AT 25-85, 25-87 FJ/	'65 °	\$ - \$				
	7"45			17 TS			tv	SR	•		2	5-7		1 3 6 3 1	NIL 1-	0.0				CHARNOCKITIC ONEISS WE ENRICHED LAYES UP TO GREY, MEDIUM GRAINE COMPONENTS Qu , Fd , AT 26-5 J/25° HORNBLENDE PIOTTE GI	O Zem, DARK D, MAIN PY, GA	5 5 5				

· -			_				<u>.</u>					·-·																Toueer /	F.
				_			KK	20						ADR	ACE	11	N.T.	AK			· .			<u> </u>		В	HKK12	SHEET OF 02)
					DAT								DA		101	NT A	OUG	HME		E	Y JOINT SEPARATION	WEATH		G ***	-	RO	OCK STE	RENGTH	
				_	31. 0		Z - 0Z	1					359,85		VA =	rough	4482				Y Svery tight 4 0,1mm T Stight 0.1-1 0mm	materiel					A	< 1.00	_
	46 L							- 1					ES (RA		1 2	slightly smooth slighter					1804mderet open 1,0-5,0mm 10 sepen > 50mm	campletely highly						1.0 - 5.00	
ILL!					ROTAR'	Y		- 1				1 8011 H 30	OM) 20	8 - 30		RE	COV	ERT	_		OTHER SYMBOLS PL.SLIPPOINT load strength	mageratory					C maderately stre	5. 0-25 00 25. 0-30 00 png	1
•					ED 87	:		- 1				L:0°	- U.S. III			: :::	RE	COV	ERY	176	U.C.S Puniques compressive	slighmy					strang	90 0-00 00	ı
CRE CRE					AT # :			- 1	9 E A	RING	;	re Fig	,		8.3%	<i>100</i>	m . c). O	(%)	,	strength # #first ground water # #rec's sample W ewater sample	*****			A		estromety strong	100.0-250 00 250.0	
	RIL			- 1		STS	Ť,	JOII			T			ABILI	TY		_				GENERAL DES	CRIPTION	Ι	111	E	NG		ASPECTS	
-		3					╅		П		+		_	\neg			1	?		-	rock type, colour, gra		1		۲	-	l .		1 1
rğ	3	3	9	=			9	-	2	=	L	£ ()	(BAAS)		غِ اغ	*	Ι.			-	texture and structure cleaved, foliated, inec				1	RENGTH	Ì		3
ADVABC	3	S C	DARLL	16761.8	1111	REBULT	1					9 1			ا اوک	Ė		RCOVERY	3	•	bonded, gneissose, po scale as for joint spar	ropvritic, etc :	9	1 2	1	STAE	NE W		¥ L
	CASING/CEMENT	1	1451 04		=	=	LOINT	ROUGHIESS	Š	-0.78 00 = 004Ci	88	SOT TOP	PAC 38 CAC	WATER			١,	. :	9 9	•	weathering, alteration lithological characteri	minor	GA A P HIC	WEATHERING				, grouting ,	8
DAILY	3	DARLL WATER COLORLO	3			ĺ	۱۹		l h	.55	ō٨	ž g	1	WATER L	(total Litres /minute)	PERMEABULET				- 1	strength , joints	31103 ,	3	3		ROCK	germeabilit etc.	y, rock quality,	1 1
20-4	\vdash	9	-	-{		├	╁	<u> </u>		 T	-	 '	+	1	-		10 177	77 	, 기사	1001 - - - - - - - - - - - - - - - - - - -	DARK GREY TO BLACKISI	I_MEDIUM	-	777	rla	П	ļ		
D2/ ₄			١				Н	\vdash	-	$\ \cdot\ $	╟	28-	7	╂	+		#		#	H	GRAINED, MAIN COMPON	ENTS HO, BI	-~		Ш		}		1 1
:		١	-	- [127	SR	۱		Ш	ı	1		1			{ []	\parallel		AT 29-88 , 29-90 J/I	0*	~-						1 1
<u>. </u>	LI			_				Ш.	_]]			_					11	И	11	H			~_						<u> </u>
		-	- 1	-						$\parallel \parallel$	Ш	1	HOLE	E co	MP	LE	rei	Ы	M-	HI	THE DEPTH (OF 30.03	3 m						
1		-	-				H			$\ \ $.						Ш	\parallel				İ						1 1
'		-								$\ \ $															Ш]]
			1																										
			١		Ì						$\ \cdot \ $			1					$\ $										
		-	- 1	ļ				П				- [- 1		Ш	\prod	$\ \ $									I
ě			-					Н	Ш			-	1				Ш		\prod	Ш							<u> </u>		
1		-	-	-			11		Ш		{{	İ	İ	1			Ш	Ш		Ш							1		
		-		1	- 1					Ш		-	1	}						$\ \ $	•								1 1
		-		1								1		İ				Ш	11										1 1
	1		1	١]]	1				Ш	Ш	Ш									
		-	İ	-			11					Ì	1				\parallel		П						Ш				
-	1	-		1	}		11		Ш	П				1			\parallel	Ш	$\ \cdot \ $	Ш]		Ш				
ì		-	1	1			11		-				1				\parallel	$\ \ $							Н				
	1	-							Ш		1					- [Ш		Ш					Ш				
				1					Ш					1			\parallel												1
			1	1	1		11	l	4				1					Ш		Ш					Ш				1
		1	Ì	1					\parallel					1			\parallel		11	Ш					Ш				1
	. 1			1	-				Ш			-	1	1			\parallel	Ш	11	Ш					Ш				
		۱	1	1			11	1	Ш			ļ	1	1	1		\parallel			Ш			1		Ш				
		1		-					-							Í			$\ \ $										1
		١	١	١								1	1	1			П			Ш					Ш]]
٠				-						$\ \ $					1											Ш			
		-		-													\parallel					•							
				-	ļ				\parallel							ł													
									\parallel						1			$\ \ $	$\ \ $										
			1	1			4	^		$\ \ $						}													
				-										1	l		$\ $							111					
١				١	I																			$\ \ $					
		١	١	1					Ш	Ш		ļ		1			\parallel	Ш		Ш					$\ \cdot\ $	Ш			
			ļ				П						1				\parallel	$\ \ $	$\ \ $	Ш				$\ \ \ $	11				
		-	-				П			$\ \ $					1		$\ $	$\ \ $		$\ \ $									
		1								$\ \ $					1		\parallel								11				
].														
			- 1	1		·•·										Ì								111					
			-													ŀ								$\ \ $				+	
													-				$\ \ $	$\ \ $		Ш									
			-	}										.						Ш				$\ \ $					
			1		ĺ					$\ \ $				-		ł				Ш					$\parallel \parallel$				
				-	i								1	1.		1				Ш					$\ \ $				
	Ш	\perp	$oldsymbol{\perp}$	\perp			Ш	Ц	Ш	Ш				Ľ			Ш	Ш	Ш	Ш				Ш	П	Ш			

1					•			B	ORI	EH	OLE	. L(OG F	Oł	₹ ! ————————————————————————————————————	<u> </u>	16	SINEERING P	URPUS)E 3) 		1D	[3		j
	F	EΑ	TU	RE	– ĸ	K	20	5 (0	OLD),	WEIR	R_A	XIS.					,				·- ·•-	٠. ا	HKKI		i C
				DA	TA	03.0					DAT		JÓINT A		HNES		E	JOINT SEPARATION	WEATH		G	-{	R		TRENGT	1
		HON		·s) —			١٠-	COOR	DINAT	150,	98·432		VREvery r R arough Spaciations S asmooth	, rou	gh		-	V svery tight	material completely			H		A 	l. Q	- K
DRIL	LING	TYPE MET RREL.	HOD	ROTAR	Y		EL		ON. (PÓTTO	M) 182 :		SLaslicker RE	COVI	RY	_	4	OTHER SYMBOLS PLEEpoint load strength	moderately					C	5. g 5. g 5. arrong	۶
FOR	EMA		LOG	56D BY			IM V	CLINA' RTEAL	710N F				San er		Ove	RY (*	indes U,C,S Buniasial compressive strength F stirst ground water	slightly fresh			1		strang very strang	50. q	
COA	E 61	SCARC	£0, C	7		Γ.,		CATIO	4 (500		MEAI	דו וום	**************************************	_	CO			GENERAL DESC	RIPTION	r	Ш	1	III ENG	NEERIN	G ASPE	1
	J.	ILLI	\top	I E	STS	Ĭ		<u> </u>		-		9	:	3	_	<u> </u>	╗	rock type, colour, grain texture and structure	ı size,			Ī				
3	ADVANCE	0.08,	DARLING		1	ET #0	ATION	SPACING		T	E CEARS	LOSS es/minut			9	×		cleaved, faliated, lineal banded, gneissose, por scale as for joint space	ed , flow phyritic, etc :		9		STRENGTH		MARKS	
1 5	DAILY ADVANCE	SEULL WATER COLORLOSS	6 2		REBULT	JOINT SET	ROUGHNESS SEPARATION	0.09-0.408 0.80-1.008 0.80-1.008	FROM TOP	BOTTOM	(monomete		LUGEON		AND			weathering, alteration, lithological characteris	, minor	GR A P HIC	EATHERIN		S S S S		pect to on, grouting pility, rock q	
	8 3	T I G	MATE			 - -	_	66.	00	2	(mana	3 0		ļo.	} _ 50 1 []	! !!	00	strength , joints TOP SOIL DARK BROWN SAN			• •		• TIT	etc.)		z;
0 72		ای					:			1.0			K=1-12 s 10					WITH PLANT ROOTS COBBLE: AMPHIBOLITE, DA		-						
1 45		DRILLING		SPT	23		;		1.0				K =1-21x10					RESIDUAL SOIL, YELLOWISH REDDISH BROWN CLAYEY	BROWN TO SAND.			$\ \cdot \ $				
	45	RY 0.		SPT	>50				2 45	2.45			K =167341	9			۱';	RESIDUAL SOIL, WHITISH TO BROWN CLAYEY SILT								
3.42 3.8 3.8	3.4	٩					R T-	-	-	3.42					H	Ш	. 1	YELLOWISH BROWN VERY W								
4. 45			62		!		R T R:T	4	3.9			2.8	6 2]]] //		۱.	OF HORNBLENDE-BIOTITE (UP TO 10cm. GREY, MEDIUM GNEISS, MAIN COMPONEN	MEISS BANDS GRAINED,	*	\prod					
4 86 4	8				1 1		R T R T				3 6	4.6 6.8	4.0 3.1					FROM 3.42 TO 3.8 CLOS J/50°	ELY SPACED	4						
6.72			i			11.	ŖT		: 		3	4.9 3.0	4.2 6.6					AT 3.86,389, 4.3,4.42,J AT 4 06, 4 12 CHL J/50°		4.						
7.13	42		ļ			15	RF		7.13	7. 42							181	AT 4.0, 4.05, 4.10, 4.32, CHL. J/10-15 °	4.38	- Jac				<u> </u>		
	1 03		İ				:				1							AT 4.87 J/45°, 4 88J/70	•							
		REYISH	291			1	R T R T				6	\$ MIL	0.0				И	FROM 4.95 TO 534 CHL, SPACED J/70° AT 5.20,534,7.24 J/15		-AL						
9. 92		GRE				-	RT		i								ľИ	FROM 5.78 TO 593 J/65° FROM 6.24 TO 6.34,643						1		
19:65	48								10.64	10.65		7.0	19.9				N	AT 8 89 FJ/50° AT 8.91, 9.15 J/15-20°		*						
11 48 12	03		2.9 12.(1			11 111	R Ó				3	11.2 16.2	10.6 7.6				И	AT ID 15 AND FROM ID 12 T FROM IL58 TO 11 68 WEATHE J/50°)					Ш			
12.92						_	<u>"</u>	إل	13 24	14 16	3 .i	7.4	21.0	X			И	AT 11.9 OPEN WEATHJ/5°		*				OBSERVE	OVERFLOW	. .
			2.9			ш	RT				1 3	<u></u>					ΝJ	AT 11 77, 11.94, 11.96, 12.20 FROM 11.93 TO 12.08 J/70	EIVLHTABW	.				WATER AT	THE RATE	O: .
14.16			3.0								6 3 1	}NIL	0.0					AT 13 90 J/20°					Ш			
15 0	+	H	+-			1	+		Н	15.29 OLI	Ε (OM	PLET	EC		AT		THE DEPTH	OF 15	≁		∦.	\mathbb{H}		•	
																			0. 10.							
						^																				
				,	-																					
			İ				1																			
							i											•	•	,		$\ $				
															$\ \ $											
								:																		
															$\ \ $											
			-						:																	
,														$\ \ $						·						
'																					,					
		Ш						Ш					ļ 	\coprod)								

3.8	-																		_	MALEINING F						CUEET	$\frac{1}{2}$
AND THE CONTROL OF TH	HE	A	TU	JF	RE	– K	K	20	5	(0	LD)	, '	WEIF	R A	XIŞ									1	BI	HKKIB OF	1
Company Comp	15.						•	4						Α	JOINS R	Out	MME		E				3.		RC		
Company Comp				-			.04 9	ı						•	VREVETY F	augh			- 1	V avery tight < 0.1mm T atight 0 1-1 0mm	material		775 1000				,
The content of the								- 1							S Pemeet Staticke	h h <u>sid</u> e	4			O sepen > 50mm		Ì			7 ° . E		
STATE STAT	i				UIANT	,								900	RE	COV	ERY			PL & Lapoint load strength	1						
CALLING TESTS JOINTS PERMEABILITY RECOVERY GENERAL DESCRIPTION ENGINEERING ASPECTS				G G E	10 BY						10 N F	ROM 0			N. 28 A. 1933	ÄE	ÇÕV	ERY	%	strength	1	ļ	111	P	11	· · •	
1				0.4	7,8							, g	1		9869811	R.	D. D	(%)		# Efirst ground water # srack sample # swater sample	<u> </u>		Щ	Ш			-
1 1 2 2 3 3 4 4 4 4 4 4 4 4	FIL	LI	٧G	1	TES	TS	J	OIN	TS	<u> </u>				BILIT	Υ	RE	CC	VE]		EN	G	NEERING ASPECTS	1
1 1 2 2 3 3 4 4 4 4 4 4 4 4	إ	89	회.				ا ا					•	ins)	(e)	į				- 1	texture and structure	(massive,		ŀ	:		•	-
### 1		3	١			5	ž	16.98					9 2	oss s/mir			OVER	8	:	banded, gneissnael, po	orphyritic, etc ·	9	9	2		REMARKS	
1 1 1 1 1 1 1 1 1 1	3	E .	8		=	3 .		E .		0000		90776	S un	_					· į	weathering, alteration	, minor	1 1 1	E E		ı		
1	3		RATE	¥			٩	~	5 pq	9	Ē		PRE	#AT total	100	1 :		•	.		slics ,	S A A	WEA	Š		permechility, rock quality,	
1 1 2 2 2 2 2 2 2 2	<u>ا</u> ا		-+			-		\dashv	+	3 <u>6</u> - 1111	+==		==		<u> </u>	m	π	TT	ΠÌ	RESIDUAL SOIL YELLO	WISH BROWN		11:11	Ŧī			 1
1 1 2 2 3 3 3 3 3 3 3 3		Ĕ	-		3					Ш					K =+15±10	111	$\ \ $	Ш		CLAYEY SAND		~				·	0.45
1 0 7 1 2 3 3 2 4 4 4 4 4 4 4 4 4		æ			SPT	. 27					<u> </u>	1.45			<u> </u>			$\ \ $	$\ \ $			~~					1.55
1 R T		Z				}					1						$\ \ $		Ш			_~	1111				i i
1 8 7 2 5 5 5 5 5 5 5 5	1	8]									EDDISH BROWN	~					
1 8 7 2 5 5 5 5 5 5 5 5	- 1	- 1		-												$\ \ $			$\ \ $			~~[\mathcal{W}				
	145	اد							$\ \ $	Ш	L					\prod				CHARNOCISTE LIGHT YELL	OWISH BROWN.	2	111				1 1
3 2.0 10 17 1 3 2.0 10 10 10 10 10 10 10							-			Ш						N	· Li			CHARMOCKITIC GNEISS, W	TH INTERCALAT	1					1 1
10 10 10 10 10 10 10 10	٠						111	R.	۱ ۲	[]	5.5			2.0		H	\mathcal{H}	W		THICKNESS UP TO 10 er	n. GREY,	~	ااالإ				"
	1		- 1				111	R	'	Ľ ₩	4		3]	M	1	1	ч		COMPONENTS	~	311I	Ш			8.2
	"		O	101												H	1		И		•	~	41II			•	
# 10		-	-				11	RN	ηd	Ш	1					И	K	H	T.		rl wrath pa/ed	1 ~ F	4III	П			
1 R T			-	1			111	RA	nd			9.0				И	<i>\\</i>		Ü		•	~	1111			_	'
									П	14:1	8.66					131	\mathcal{Y}	H.	M			1 1		П			
		1	1				ī	R 1	,	1	١.			3.9		H	X	W)	M	AT 7.28,7.28,7.68,7.71,	7.75, 7.78,7.82	~					9.34
	<u> </u>		9.	.05				RN					1 . 1		_	M	1	1	1	ALL WEATHLJ/200- 250		~~	$\ \cdot\ $				
## ## ## ## ## ## ## ## ## ## ## ## ##			F	200				RN	<u>"9</u>	Ш			1 ! 1			H	\mathcal{X}	11				~		-			l l
		_					111	R 1	-				Ĭ			И	1	1	W			l	\mathbb{H}	П		- •	
	1		1	-			Н		.#	₩	1				٠.	H	\mathcal{H}	H.	Н	AT 1063 WEATH 1/10°		 ~ .		П			12.16
	. '		1				П		Ш			12.16				13		J)·			12.65,1275 20°	~					
				-			目	R R		4	13.19			2.0		Ш	#	\mathbb{H}		AT 12.84, 12.86,12.90 J		1 1		Ш			18 80
## T ## T ## S 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 5 2 3 3 5 3 3 3 3 3 3 3		-					11	R	<u>r </u>		-		3			H	X.	W.	И	L MTASW JE EE. ST TA	/60°	~	1111	H	Ш		1 1
							111	R	r		1	1	l ' 1		1	M	1			AT 13.36, 18.42 , 15.4	8, 13 . 49,13.93.	~			Ш		
			ľ	~		ł	111	R	╌╢	"	1		3	i		H	\mathcal{V}	h	Ш	14. 20 , 14. 46 , 14. 84 , 15. 10	В, 15.Ю СИLОRI-	~	1111				15.7
## AT 15.26,15.70,15.74,5.75,15.82 ## AT 15.26,15.70,15.74,5.75,15.82 CHL J/30** ## TO 16.00 CHL J/30** ## PROM 16.00 TECTOMIZED ## PROM 16.00				Ì			11	_	_		_				<u> </u>	И	H	1	H								16.3
## ## ## ## ## ## ## ## ## ## ## ## ##							1	RR	ŦIJ		16.66	1		3.7	•	Ø	1	11				1 1					16.69
B. 13 III R. MO III R. MO 2016 HOLE COMPLETED AT THE DEPTH OF 20.16 m											-	1	1	4.3		H	H	W	悄	CHL. J / 45°	•				Ш		· · · · ·
HOLE COMPLETED AT THE DEPTH OF 20.16 m							•				1		3			捌	1		11.	FROM 16.69 TO 16.80 TO TO TO TO THE CHLORITISIZATION	TECTONIZED						18.13
HOLE COMPLETED AT THE DEPTH OF 20.16 m							L	R	7					١,		H	[]}	11	H	DISCONTINUTIES . AT 19.18,19.68,1970,19	73 WEATHU/6920	~. │			$\ \ $		
HOLE COMPLETED AT THE DEPTH OF 20.16 m				_								5016				ᅦ		Į.		FROM 19.92 TO 19.10 WE FROM 19.53 TO 2016 J/ AT 19.18.20.16 J/20 AT 19.76.19.87.20.11.20	65% 1/15+2 °C	~				•	19.53
			H	0	LE	С	0	ΜF	2	Ė	ED		T.	THE	DE			‡	Щ				111	+	$ \dagger $		
						.	Ĭ '		T			[["		, ,			}	1	20.10 M	.1						
														ļ		$\ \ $											
														۱.				$\ \ $	11							· ·	
			1	1			-					1							$\ $								
													.			$\ \ $											
			-																				[[[]				
		.																$\ \ $							$\ \ $	_	
		1																$\ \ $. 1	
														٠,				$\ \ $									
5A - T - 49							L,	Ц	Ш	Ш	U	<u></u>		L	<u> </u>	111 54		\mathbf{T}	- 4	49	· · · · · · · · · · · · · · · · · · ·		Ш	Ш	Ш		L

	 -	E r		T 1 1	חר															R	H KK2 0	SHEE 1
					KE.		K 	20			O), I			ER IN		ίĒ	Y WEAT	IERIN	G T		OCK STRE	OF :
1		110	25 02	92	OMPLE	TEO 19	.03 9		- coo	RDINA	1 6 153,0	055-970	•	JOINT A	DUGNNEŚŚ		JOINT SEPARATION sail unconse			delich.	MM /m²	
1			TIGNS		Y S ; O	9		1			TE 150, COLLA			R srough SReelightly	rough		Tatight 0.1-1 Omm MOamderat open 1.0-3.0mm campletely Cosepen > 5.0mm highly				weak 8	1.00
			ME 1		HOTAR'	•					H 350		·00	Statictor RE	OVERY		OTHER SYMBOLS moderately				C maderately strong	5. 0-25 or" 25. 0-50.00
1	0 8 6				GED 81			l:	ICLIN FRICA	ATION	FHOM			333333B	CORE RECOVERY (*	(%)	U.C.S municated compressive strength fresh			H	strong	50.0400 0/1
			RED CARD		ATE.		.		DCATI	ON Lie	<u> </u>				R. Q. D * (%)	Ц	e afirst ground water Research sample We swater sample		Ш[Ш	safremely strong	> 250
	1	RII	LLI	1G	TE	STS	J	OIN	TS			MEA	BILIT	۲	RECOVER	RY	GENERAL DESCRIPTIO	4		ENG	NEERING A	SPECT
1.	. .	1	8 TO 8	9			9				į.	(BARS)	inute)	į	* *	.]	texture and structure (massive, cleaved, foliated, lineated, flow			STRENGTH		
1.	PERM (7 CE W		DRILLING.	1681	RESULT	15	ROUGHNESS	SEPARATION SOUR SEPARATION		BOTTOM	l w	LOSS res/mi	1 5	RECOVERY 0 %		banded, gneissoce , porphyritic, et scale os for joint spacing 1, weathering, alteration, minor		WEATHERING	STRE	With respect	
1	PA IT		LWATE	RATE OF		=	JOINT	30 OK	4 50 6 50 8 50	388	0 1	PRESSURE (Manoineler	WAYER LOSS	LUGEON	¥ * •	,	lithological characteristics, strength, joints	GRAPHIC	WEAT	BOCK	excavation, permeability, etc. 1	
	_ -	<u> </u>	Den L				L		185	3-1	_L_	, Ĕ			o 30 1	100		1.	L-1	TTT		•
8: 4	2	4		2		Ì			$\parallel \parallel$	o.	°			K =168xIO			TOP SOIL DARK BROWN CLAYEY SAND WIT	1 -				
				מוררוא	SPT	>50					1 55	 		K =3 61410			RESIDUAL SOIL REDDISH CLAYEY SI	· ·				
2.8	2 8	Ì		5	SPT	>50					280		Ì						11111			
3.41	. 260			ORE TISH				i			100				711		AMPHIBOLITES, DARK GREY, MEDIUM GRAINED, MAIN COMPONENTS AMP, BI	~				
4.03	1			5						3.4	15	,	3.8	7.0		119	FROM 2.8 TO 4.03 WEATH JOINTS PREDOMINENTLY ALONG FOLIATION.	1		Ш		
				200							Ì	3	4. 7 5.9	3.8			• .	+				
5 35				28/			-	 	 :	+		3	4.9	3.9	ии	\parallel	AT 6.27, 6.46, 6.47, 6.49 WEATH	~				
6.21	7 6 27 270	6 27		E C			1	RM	111		į	'	4 3	7.9		$\frac{1}{2}$	FJ/30°. FROM 5 87 TO 5.96 WEATH, J/75° AT 7.2(CHL) 7.86(WEATH,) J/60°	+				
6.9	5							R M	11.	6.9	6.95 95	 		ļ		ሽ	FROM 5.35 TO 5.7 CLOSELY SPACE UNDIFERENCIATED J.					
7 .8	3			2			-	+	+ + +	14		3	2.0	3.7 2.2		Щ	WASH SAMPLE	-		-		
0.9	- 1											6	3.4 2.7	1.5		Щ	(AMPHIBOLITE ?)	+		$\ \cdot\ $		
9.0				5.94 29.0	_1					!			2.1	3.9		╫		_			•	
10 4	5					İ				10.	10.45		<u> </u>		5			+				
11 0													3.8				AMPHIBOLITE DARK GREY, MEDIUM	~				
11 35				8 3 03/0				1	j			3 6 3	SE/	NOT THE		1	GRAINED.	+		Ш		
15 8				l						!		1	PAG	KER			GARNETIFEROUS ROCK WHITISH TO LIGHT BROWN, MEDIUM TO COARS					
١.							į		11,		13.8						GRAINED.			\prod		
13.6					}													~				
15.3										` •	VERE E	ECUTE		TESTS KER CAN		\parallel		~				
15. 9	15 9			2						· *	107 SE						FROM II 8 TO IS IS UNDIFFERENCIATE				Ì	
16.5			1	8 6 08/				;		.					441111		WEATHERED JOINTS CAN BE SEEN IN PRESEVED CORE. CORE BROKE INTO PIECES UP 10 7cm. OTHER					
17, 43	•		- 10	5								İ					PARTS REPRESENTED WITH WASH SAMPLES.					
18.15	,		-	ادً				1				ļ					•	~				
1								1									•	1 ~	3			
194							1 1	R M	111			<u> </u>					AMPHIBOLITE. DARK GREY MEDIUM GRAINED. MAIN COMPONENTS-AM, BI	-				
20.55	pero			1			11	RIT		19.	.96	,	3.6	5.3		1		+				
21.05	•	24 E)					=	RT	#	$\dagger \dagger \dagger$	İ	3 6	4 9 7 0	3.6 2.9		Н	CORE IN PIECES WEATHERED FOLIA' AND STEEP CROSSED JOINTS SEEN					
22.21	,			03.0				i		Щ		3	5.5 4 3	4.0 6.3		\parallel	AT 2105, 2164 WEATH, J/152 200 AT 22.23, 22.27 WEATH, J.	+				
22 72	L.,					Ì	=	RIT	+	til						7		+				
23.44 23.44	050			-	-			+	+ -	23	23.44 44			 		⋪	CHARNOCKITIC GNEISS WITH INTERCALA -NS OF HORNBLENDE BIOTITE GNEIS	710 ~				
			,				L	RT	111		-	3	4.8 5.6	6.9 4.0			GREY, MEDIUM GRAINED MAIN COMPONI -TS QU,FD,Py	N +				
25 25			2	9 40				\square'				6	8 2	3 3		$\ $		+				•,
			100	086			111	RT				3	5.2 4.4	3.7			GARNETIFEROUS BIOTITE GNEISS. LIGHT COLOURED MEDIUM TO COARS GRAINED.	_ ~				
26 4								RT			27.0		"."	6.4			FROM 25 25 TO 26.40 CORE IN PIECE OF 5-7 cm SEPERATION ALONG 1/1594	5.				•
27. 0	DB/12							A T		27.	0				1111111		(FILLED GAUGE WASHED OUT) AT 26.4, 26.62, 26.68 FJ/60°	-				!
L	1_	Ш	\perp			L	Ш		Ш	Ш		L		<u> </u>			<u> </u>			Ш	<u> </u>	

BOREHOLE LOG FOR ENGINEERING PURPOSES **TAB. 13** BHKK20 SHEET 02 FEATURE - KK 205 (OLD), DESANDER INTAKE JOINT ROUGHNESS JUNEAU TO THE PROPERTY TOUGH TO SERVICE TO THE PROPERTY TOUGH SOME STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TO THE PROPERTY TOUGH STATE TOUGH STATE TO THE PROPERTY TOUGH STATE TOUGH STATE TO THE PROPERTY TOUGH STATE T DRILLING DATA ROCK STRENGTH BOREHOLE DATA WEATHERING HILD 25 02 92 LUMPLETED 19 03 97 A-COURDINATE 153,055-970 material T - COUR DINATE 150,564-440 < 1 00 TYPL ACKER ELEVATION (COLLAR) 203-51 1 0 - 5,00 > 50 ***** L.ING METHOL ROTARY ELEVATION (BOTTOM) 170-00 RECOVERY OTHER STMBOLS IL BARREL, BIT NY FINAL DEPTH 350m ***** INCLINATION FROM O . BEARING 22 a.o.o (%) IE DISCARDED, DATE LOCATION (... . ENGINEERING ASPECTS DRILLING TESTS JOINTS RECOVERY GENERAL DESCRIPTION PERMEABILITY rock type, colour, grain size. reading) waten -coss (total Litres/minute) feature and structure (massive, cleaved, finiated, lineated, flaw builded, gnessose, porphyritic, etc. scale as for ionit spacing', weathering, alteration, minor lithological characteristics, MATE OF DRILING MATER LEVELS DAILY ADVANCE CASING/CEMENT LUGGON " FRESSURE (* with respect to excavation, growting, permeability, tack audity, strength , joints 5 GARNETIFEROUS BIOTITE GNEISS AS ABOVE. III R T 5.1 6.8 4 9 3.7-2.8 AT 273,28.0 FJ/65° 3.6 AT 27 03 ,27.37, 27.76 J /20° AT 27 63 J/50° 5.9 - 1 4.0 AT 30 25 SL WEATH. J/25° 30.5 AT 33.45,34.10,34.2,34.3,34.76 SNIL 0.0 J /25° 湯 R AT 3422, 34,29 CHL, J/50°)6<u>5</u> 717 4 HOLE COMPLETED DEPTH AT THE

KUKULE GANGA HYDRO POWER PROJECT

-		FE.	AT	UF	 RE	- K	ĸ	20	5 (0	LD)	. [DESA	NDE	R .				_				1	B.H	HKK21 SHEET
-					DAT		_	Ė				DAT					K				IG	p. J		CK STRENGTH
1				92 (.º	WP(#1	FO 26	.03 9	- 1				98 088 157 897		JOINT R VRsvery r R srough		NES		7	JOINT JEPARATION soil : unconsolid revery tight <0.1mm material retight 0.5-1 0mm	alea			a(-)	MR /m² < 1.00
"	CHIN		rf	TONE	4 TDC1				FYATE	וא ור	OLI A	R1 199-	71	SReelightly S =smooth Stasticker		h			#Osmderal open 1.0-5 Omm completely 3 open > 5 Omm highly	•				reak B (.0-5.00) C 5.0-25.00
			(F T 1) 1 , MI1		OTARY			- 1	I FUATI			M1 174-: m	51	RE	COVE			7	OTHER BYMBOLS moderately L.8.1=point load strength index		A		ור	noderately strong 25.0-50 00
	0 F W	A 4	1 7 D A		10 BY				FARING		121147 (o °	į	Skirit				6	J.C.S Sunidelal compressive strength fresh		ПП		11	strong 50 0-100-08 rery strong 100-0-250-00
•	<i>n y</i> 1	0156	4 O F	D, D				, lu	004110		<u>`</u> .'_							4	# Effect ground water # Brack sample # Ewoter sample		Ш	Щ		refremely strong > 250 y
	P	RIL	LIN	G	TES	TS	J	OIN	TS	 F	ERI		BILIT	Υ	-		/ER		GENERAL DESCRIPTION rock type, colour, grain size,			EN	GIN	IEERING ASPECTS
:	,	181		2			١		1 5		3	(BARS)	s ninute	1	% **				texture and structure (massive,	100		1		
DEPTH	ADVAN	ING/CEM	WATER COLORLO		TEST	RESULT	١	ROUGHNESS	SPACI		801108		WATER LOSS		ECO		*	- 1:	banded, gneissose, parphyritic, etc: scale as for joint spacing), weathering, alteration, minor	¥ 2	1	- A - B - B - B - B - B - B - B - B - B		(with respect to
ă	1 = 1	CASING	MATE.	WATER		=	JOINT.	2		m 0	ı	PRESSURE (manometer	WATER otal Lit	LUGEON	1	A	•	- (weathering, alteration, initial lithological characteristics, strength, joints	SR AP	WEATHER	1		excavation, grouting, permeability, rock quality
	A D	3							00-	<u> </u>	5	å Ë	* £	R.	6	50	- K	બ	TOP SOIL BLACKISH CLAYEY SAND	 -=-	l Lii	.		etc.)
0 15																	$\ \ $		ALLUVIUM BROWNISH, MEDIUM GRAINED CLAFEY SAND.]				1
		-																	CLAFET DAMED.			.]]]		i,
					,											Ш				.				
2.35												ĺ				Ш			RESIDUAL SOIL, REDDISH BROWN CLAYEY SAND.	0	$ \cdot \cdot $			
																	$\ \ $			0		1		
4,			·														$\ \ $, °				
		:	1					i							Ш	Ш	Ш		GARNETIFEROUS ROCK. BROWNISH, MEDIUM GRAINED.	~				- ⁻ / _/ /
1		!		:				i												~				3
6.9			İ					1	'						Щ	Щ	Щ		•	-				
7.3		!							111.							Ш		ال	GARNETIFEROUS CHARNOCKITE, COARSE	<u>~</u>	- 17			ş.
8.15		İ						:											TO MEDIUM GRAINED	ve				
9.0			Ì							9.00				 	1	11	Щ		GARNETIFEROUS ROCK. (CHARNOCKITE) BROWNISH. MEDIUM GRAINED.	*				
	Ì	1	Ì					1	Hil	•	Ί	3	9.0 16.5	18.8						-				
				6.0 280				ļ				6	22.0	11.1	$\ \cdot\ $	$\left \cdot \right \cdot \left \cdot \right $				~				:
								i				3	17.0 10.0	15.7 20.8						AL.			Ш	.,
11.85		1				•	-	<u>:</u>	 '-	12 00	15 00				₩	Ш	Щ	∦	CHARNOCKITE . GREY, MEDIUM GRAINED	15				1
							,	RT				1 3	2.0 3.0	4.2		11	H	1	MAIN COMPONENTS Qu, FD, Py.	ʹͺͺ				
				3.5 23/0			11	RT				6	5.4	2.7		11	\mathbb{H}		GARNETIFEROUS BIOTITE GNEISS.Ou. RICH WITH INTERCALATIONS OF HORNBLENDE-BIOTITE GNEISS LAYERS	-	1111			•
							1					3	2.9	2.7					UP TO 40cm MEDIUM TO COARSE GRAINE MAIN COMPONENTS Qu. FD, BI.	- -				_
15 0										15.00	15 00						#	1		-				
							$ \cdot $	R.T	. :			'	3.7	7.7			1	1	AT 12 35 FJ/20"				$\ \ $	
		1	İ	6.0 240			lu l	RT	':			3 6	13.0	6.6			11		AT 12.82,1310 J/25° - AT, 5.5 FJ/35°	<u> - </u>				
		!						•	;:			3	5.0	46	H		捌		AT 16.95, 17.25, 17.90, 17.92 57.50?	_				•
18 0		ļ		:			$\mid \rightarrow \mid$			18.01	18 00		4.0	8.3	1			\parallel		\-\ _				
	į	i						RIT	1:1			1	3.2	67	1		捌			- <u>-</u>	$\ \ \ $			
			İ	8.70 75/11			111	RİT				6	4 3 6 5	4.0 3 3			 	1	AT 18.93, 18.99, 19.01, 19.59 J/30°	<u></u>				
		1	!									3	6.5 3.0	3.9 6.3	H		111	#	AT 20.56, 20.90 FJ/30°	 			$\ \ $	
209		ĺ						Ì		21.0	21.0				批	11	排	1		_				1
								D -	11:1			3	6.0	9.3 5.6		$\ \ $	111	1]	AT 22 AB 22 00 1/0-0	 ^ _	[[[]			
				6.0 86/8	ĺ		"	RIT	:			6	14.5	7,3		}	∦		AT 27.45, 72 80 J/50°	-	$\ \cdot\ $			
		1						:				3	59 41	5.5 8.5	11	1				<u>-</u> ما	$\ \ \ $			
24 0		! i	1	+	}		-		1:4	i	24.0				雅	$\ \ $		4	AT 24.09, 24.12, 24.13, 24.25, 24.26,					
!	į						1	SR		:					H		$\parallel \parallel$		24, 27, 24.28 FJ/30°	-	!!!			
25 70	1	<u>!</u>	į				<u> </u>		-[-		<u>ا ـ ـ ـ</u> ـ			11	壯	H					4;1	-	
	:	i	!				H	ŲL	11.1	100	MP	_ET	ŁD	ΑT		HE		} [PTH OF 25,2 m					
;	!	1						!	1:1						$\ \ $							$\ \ $		
!					l				lill			.						$\ $						
			لــــــــــــــــــــــــــــــــــــــ						ш.	L	اا			L	ЩД	Ш	ш	П	7	ــــــــــــــــــــــــــــــــــــــ	بلللا	111	Ш.	

										<u>. </u>							_							JSHEET	01
						K	-,					· 	ILRÁ	E	_ 		_					L,		MINN 290F	ÖŻ
·				DAT		. 02. 9	- 1				DAT		JOINT R		HNES	K I	7	JOINT SEPARATION	WEATH		G 	}	R	OCK STRENGTH	
1980	PTIO	4 5	(D A Y	s)			٧-	COOR	DINATE	. 144	1984	544	VREvery re R grough SRastightly	-	oh.		11	/ Every flight < 0,1 mm Futlight 0 1~1 0mm AO=mderat ópen 1.0-5 0mm	material completely					A <1.00	- ·
LIN				E - TO			- 1				R1 65		S = emooth SLuslicker	side	đ			sopen > 5.0mm	nighty					weak 8 10-500 C 50-25.00	1
•	AREL			14			100	WAL C	EPTH	50.1			SACOTAL SACOTAL	COV			ţ,	OTHER SYMBOLS P.L.S.L.spoint load strength Index J.C.S Suniavial compressive	moderately slightly	İ				moderately strong 25 0-50 00	
-F MA				ED BY.				CLINA RTRAL ARING	TION F	ROM							1	strength	fresh					strang 50 0-100 00 very strang 100 0-250.00	
			0, 0	ITE :			1		N 1000	1-9				R.C	0	(%)	ļ	T Efirst ground water R Erack sample Water sample	L		Ш	П	Ш	extremely strang > 250 00	
DF	ILL	.IN	G	TES	STS	J	JIN.	rs	_			BILIT	Υ	RE	CO	VER	4	GENERAL DESC	CRIPTION			E	VGI	NEERING ASPECTS	
	CASING / CEMENT	9				ا۔ا			1	3	(BARS)	et e	***					rock type , colour , grain exture and structure					¥ 24		_
/ABCI	9	AM1 1 1190	LEVELS	_	5	2	2 2	3-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	<u> </u>	T^{-}		SS /mir	3.5		RECOVERY	*	ĮŁ	cleaved , foliated , lineal ounded , gneissace , po	rphyrilic, elc	9	*	l	7 T T T T T T T T T T T T T T T T T T T	REMARKS	u ,
5	7 2 2	8		7837	RESULT	1 3	ROUGHNESS EPARATION	L	9	BOTTOM	s un	ir ir	LUGEON			-		scale as for joint spac weathering, alteration		APHIC	WEATHERING		51.5	(with respect to excavation, grouting,	16 PT
1	CASING / CEMENT	1	MATER		_	JOHT	¥ %	2000 2000 2000 2000 2000 2000 2000 200		٥	PRESSURE (manometer	WATER LOSS (total Litres/minute)	LUGEON .	1				ithological characteris strength, joints	ilics ,	S A A	WEAT	l	, 0 0 0	permeability, rock quality, etc.)	
1	. 5	ļ	╀┦				+		:]	-	5			6) e	111		TOP SOIL BROWNISH CLAY	EV SAND		TER	ļ.,	11	616.7	-
. !														Ш			h	RESIDUAL SOIL LIGHT BR	OWN SANDY	2.					0. B
								Ш						Ш		\mathbf{H}	-1	ARNETIFERÓUS .ROCK		~_		11	$\ $		
							4	ЩП						Щ	Щ	111.	١,	COARSE GRAINED. DISC	OLOURED.	~_	100				2.0
			1			, ,	R O							捌		111	10	OU RICH BIOTITE GNE!! OCCASIONAL COARSE	GRAINED	~ -		$\ $			2.0
						111	R MC]		$\ \ $		1	GARNET-ENRICHED BA 10 cm. light coloured	, MEDIUM	_ ~		$\ $			3.25
				1		-	+] [4]						刚	杊	妣		GRAINED, MAIN COMPONE! Ri	NTS Qu,FD, GA,	~ -		$\ $	$\ \ $		
		İ				111	R MC	1111	.					1	11	111		FROM 1.0 TO 2.40 CLO Undifirenciated Joints		~			Π		
														H		批	1	WE ATHERED.		~-		$\ $	\prod		
						1	RT	Ш	8 0	-			ļ	11	H	\mathcal{H}	1.	SLIGHTLY WEATHERED		-~		П	П		
						=	RT				1	40	9.4	H		批	1	FOLIATION JOINTS AT 258, 2.65, 268, 2.7	2, 275,3.0,	~-		П	\parallel		
							i				6	9.2	9.0 6.2	H	111	717	1	3 02, 3, 05, 3 10, 3, 15, 3 3.83 < 50°		~~		Ш	П		1
						\dashv	+-				3	ne	9.7	H	Ш	111	1	AT 3.03,3 4G,3.56, 3 SL.WEATHERED J/25		_~		П	$\ $		1
							R T			9.0	'	4.2	9 9	1		111	1	AT 4.0, 4 40 J/15°		~ -		П			
							i		9.0						##	111		AT 52,5.3, 6.95, 61 AT 7.86 J/60°	17 FJ/45°	-~		Ш			1 1
						"	` `				3			W	\mathbb{H}	\mathcal{H}		FROM 8.05 TO 8 22 AN		~ -		П			
											6	NIL	0.0	团	捌	∤ }}		TO' 8.87 CaCO3 FILL J AT 10.90 J / 20P	780-	~		П	$\ $		
												J	1	H	111	\mathcal{W}		GARNETIFEROUS BIOTITI		~-		П	\parallel		11. 2
				1			- -		12 0	12.0		<u> </u>	ļ	Иl	H	111	ıI.	COAPSE TO MEDIUM GRA Plum Pudding Coarse Garnets.Light Colou	GRAINED	-~		П	$\ $		
				ĺ		111	R T				1	h		И	{ }}	111		COMPONENTS Qu, FD, G		~ ~		Н	\parallel		1 1
			1 1	İ		1	RT				6	NIL.	0.0	11	Ж	}{}}	1	AT 12.10 J/20°		~ -		П			
				l							3			И	1	뀘.	1	AT 1430,1706 J/4		-~		П			
				l		\perp	_			15.0		اب ا		H	111	111	1	21 14 30 ,17 00 474	3	~-		П	\parallel		
				}					130		, ,	ļ!		H	<i>\\\</i>	111	1			- ~		П	\parallel		1
						1.	7 T				3		İ		111	\mathcal{H}	1			~ ~		П			
				- 1							6 3	NIL	0.0	1	$\{[]\}$	111	1			~-	111	Н	П		
									•		١.	J		[]]}{	排	1			-~	$\parallel \parallel \parallel$	Ш			
,		l		1					18.0	18.0		- 1		H	111	111	7			~		Ш			
		Ì					1			1	3	h.	}	H	111	111	1	AT 19,70 J/15°		-~	$\parallel \parallel \parallel$	П			
			1	l		m	7 T				6	NIL	0.0	H	\mathbb{H}	} {}	1			~-		Ш	\prod		
											1)		Ш	扪	111	1			~ ~		$\ \ $	Н		
		1		ŀ		Н.	4	Ш		21.0				H	Ш	\mathcal{W}	1			~ -		П			
				1			1		21.0		, ,	.		11	Ш	$\{j\}$	1			~-		П	П		
	1	1								l	3			1	ᅦ	狙	1			_~	111	П			
				1							6	NIL	0.0	H	\mathcal{H}	${\mathbb W}$	1	•		~ -	Π	Ш		•	
								Ш			1)		И	}[[111	1			- ~		П	\parallel		
						-	+	HH	24.0	24.0			 	懰	11	H	1						$\ $		
											!	h		M			1								
				1							3 6	NIL,	0.0	Ш		批	1								
				- 1							3)		[]	.[H	#1	1					$\ $	$\ \ $		
									11	27.0				W	11		1			_~					
								$\ \ $	270]		[[.				
	\perp	L	Ш			Ц	\perp	Ш	Ш_	<u></u>		L	<u> </u>	UI.		排	ŀ	* Comments of the second			Ш	LL			لا
														5A	· - '	T -	5	3						-	-

										30	RE	HC	LE	LC	G F	DR	E	N	G	INEERING PURPOS	LS —		T/		13
	F	E	<u>Α</u> ٦	rul	RE	– K	K	20	5	(N	EW/	OL.	.D) ,	TA	ILRÁC	E	οι	JTI	FΔ	LL					HKK 28 SHEET
	[RI	LL	NG	DAT	Ά		\Box	В	ORE	HOL	.E	DAT	Δ	JOINT R			K	E)	WEATHE		G	L	R	OCK STRENGTH
t .				[041			1. 02.	٧.	- co	09 01	MATE	144	984 5	44	Mavery re R arough SRaslightly			٠	١	Y zvery 11ght					A <1.0
1	CHIN L L IR				ROTA				LEV	A T 10	H (BC	1701	1) 65 W1 15	- 1	S zemoch Strolichen RE	OVE	ıv		4	O sopen > 5 Omm highly OTHER SYMBOLS moderately P.L.S.Lapoint load strength					C 3.0-23, moderately strong 25 0-50
1	96 B 96 M			F084	N W ED 87	:					PTH 0# FR		on.			CORI	PAE	1 (T	4	U.C.S Symiasial compressive strength fresh					strong 50.0-100
	RE S			AT	ATE .				E A R	ING	1500 1	٠,-							4	T stirgt ground water R Sract sample W swater sample		Ш	Щ	MG	NEERING ASPECT
	D	_	LIN	IG	TES	STS	J	OIN	T	<u> </u>	1	_		BILIT		REC	20 \	/EF	7	GENERAL DESCRIPTION rock type, colour, grain size,			٦		NEEKING ASPECT
DEPTH ()	DAILY ADVANCE	CASING/CEMENT	21	MATER LEVELS	1887	REBULT	JOINT SET NO.	ROUGHMESS	SEPARATION A Q Q S	0.30 - (.50 m SPACING	FROM TOP DEPT	TO BOTTOM I'm	PRESSURE (BARS) (manameter reading)	WATER LOSS (total Litres /minute)	LUGEON or LUGEON or	CORE RECOVERY	987	•	1	fexture and structure (massive, cleaved, foliated, lineated, flow bunded, gneissose, porphyritic, etc. scale as for joint spacing), weathering, alteration, minor lithological characteristics, strength, joints	GRAPHIC LOG	WEATHERING		ROCK STRENGTH	REMARKS (with respect to excavation, grouting, permeability, rock qual etc.)
29.0													1 3 6 3	NIL.	00					GARNETIFEROUS RICTITE GNEISS AS ABOVE INTERCALATION OF DARK COLOURED HORNBLENDE-BIOTITE GNEISS	~ 				
30.0							-	H	+	$\parallel \parallel$	30.0	30.0	<u> </u>	<u> </u>	 			$\ \ $		FROM TO 36.10 37.20 40.66 41.05	~~				
31.0													3	NIL	00					45.6h 46.50	_~				
32.0												}	3								 ~ -				
33.0							_		_		33.0	33.0		Ĺ	ļ			$\ \cdot\ $		*	-~	$\ \ $			
34.0													1 3	h		H	$\ \ $	$\ $			~-	-			
35.0					•			$\ \cdot\ $					6	NIL	0.0		H	$\ $			~				
İ								Ш				36.0	-	1					.	FROM 34.20 TO 34.40 CORE	_~				
34.0											36.0			h		\parallel				HAS BEEN BROKEN INTO PIECES OF 2-3 m in Size. Joints can not be identified probably due to vibra-	~ -	-			
37.0													6	NIL	0.0					-TION EFECTS OF THE MACHINE.	~-				
36.0												39.0	١,								-~]			
39.0									+		39.0	T	1	,		$\parallel \parallel$			-			-			
40.0													6	NIL	0.0			$\ \ $				1			
41. 0								$ \cdot $					3						$\ $		-~	-			
42.0							+	H	-		42.0	420	-	-		╢	$\ .$				~-	-			
48.0													3								-~	/			
44.0													3	NIL	0.0			$\ \cdot\ $			~	-			
45.0							-	$\left \cdot \right $	_	$\ \cdot\ $	45.0	45.0	1	 		-									
•• •													1 3 6	1			-	$\ \ $		1		-			
47.0													3	NIL	. 00	$\ \ $				•	~-	-			
												48.				╟][.	Hi			-]			
48.0						ľ													$\ \cdot\ $		آ-	-			
49.0																					-	-			
50.0	\dagger		-	+	+	1-	-	101	. E	,	CON	/PL	ETE	b	AT	╢	E		H	TH OF 50.10 m.		+ + +			H
****		احسر ۱	. ———			-		l		· · · ·					******************************			. ۵. ۱. چ	۶À	- T - 54					

TAB. 13

BH KK29 SHEET OF OF FEATURE - KK 205 (NEW/OLD), HEADRACE (SADDLE) DRILLING DATA BOREHOLE DATA WEATHERING ROCK STRENGTH JOINT ROUGHNESS IARTED 24 02 92 COMPLETED' 27.03 92 X-COORDINATE 155,463-150 VREVERY rough
R grouph
Resultably rough
Seastightly rough
Seastightly rough
Seastightly rough
Recovery soil : unconsolidated MH /m2 Tatight O.1-1 Om
MOsmderat open 1,0-5,0m
O sopen ITERRUPTIONS PRAYED OF Y-COOR DINATE 146,967 R93 <1.00 1.0 - 5.00 highly BILLING METHOD ROTARY ELFVATION (ROTTOM) 154-777 e 5.0-25 00 OTHER SYMBOLS m a der o FINAL DEPTH 99 86 m PL.S.Lipsint load strength index
U.C.S Suniarial compressive CORE RECOVERY (% TRE MAN' LOGGED BY. INCLINATION FROM O" RE STORED AT-# #first ground water
#rack sample
#water symple 8.0.D (%) LOCATION ISES IN RF DISCAPDED, DATE: > 250.00 DRILLING TESTS JOINTS PERMEABILITY RECOVERY GENERAL DESCRIPTION ENGINEERING ASPECTS rock type, colour, grain size, waren Loss total_litres/minute) OF DRILLING texture and structure (massive. ВЕРАВАТОВ 0.00-0.100 89 1.00-0.00 89 1.00-0.00 89 CABING / CEMENT STRENGT cleaved, folioted, lineated, flow PERMEASULTY . bonded, gneissose, porphyritic, etc: scole as for joint spacing), weathering, alteration, minor lithological characteristics, #07.70 JOINT SET REMARKS × 1887 PRESSURE (manometer n (with respect to MATER OF ş excovation, grouting, permeability, rack quality, etc.) 2 strength , joints TOP SOIL BLACKISH CLAYEY SAND 0.0 CORBLE (WEATHERED BIOTITE (GNEISS) Δ COBBLE (WEATHERED AMPHIROLITE T Δ 1.0 WASH SAMPLE (COARSE SAND) COBBLE - (WEATHERED BIOTITE GNEIRS) 3.05 3 0 5 Δ WASH SAMPLE (GRAVEL) 4 0 5 0 WASH SAMPLE (COARSE SAND) 6 0 6 10 RESIDUAL SOIL LIGHT BROWN BROWN SILTY COARSE SAND. 20 915 2002 9.15 GREVISH WEAK ROCK WITH TRACES II SL T OU. RICH BIOTITE GNEISS, LIGHT COLOURED MEDIUM GRAINED, MAIN COMPONENTS Gu, FO, 81. 10 59 11.11 R SILCKENSIDED JOINTS CHLORITICIZED 3 R AT 11.06, 11.24,11 29,1143 J/25* AT 13.72 F3/60° 14.11 CHARNOCKITIC GNEISS, GREY, MEDIUM TO COARSE GRAINED, MAIN COMPONENTS 15 37 0.0 GH, FD, Py AT 17.26 FJ/65 RT AT 17.5, 18.0 CHL J/60° 17 26 AT 19.50 CALCITE FILE (3mm) J/60° RT 5.2 AT 18.25, IB. 45 CHL FJ/70 5.7 5.8 3 6 R AT 20.30 CHL. J/70° 6.3 6.0 • 204 HORNPLENDE - BIOTITE GNEISS DARK GREY MEDIUM GRAINED 20 4 20.5 R 21 21.2 CHARN'CKITIC GNEISS, GREY MEDIUM TO 27 33 11 RT COARSE GRAINED, MAIN COMPONETS Qu, FD, Py 111 RT 33 FROM 20 52 TO 2070 J/70° 1 3 1 AT 21.0 J/50° 23.47 FROM 21.20 TO 21 .36 CHL.J/60 0 FROM 23 26 TO 23.55 CHL J /85° 3 6 IJ лıк 0.0 A7 23.66 FJ/60° 3 AT 21 50, 22 60 J/204 30 * 1 AT 23 2, 25 06, 25.98, 26 .17 J/600 FROM 27.98 TO 28 30 J/800 4 11 12 11 AT 27 54,27 62,27 90, 28 05 J/ 303 0.0 111 R 5A - T -

										ВО	RE	HC	DLE	LC	G F	OR	E	N	NGINEERING PURPOSES TAB 13
		FE	Α	ŤΨ	RE :	- KI	K :	20	5	(NE	EW/	OL.	D),	HE	ADRA	CE	(S	ΑD	DDLE) BH KK29 SHE
					DAT								DAT		JOINT R	AUG W			EY WEATHERING ROCK STRENG
:				_	0MFLF1 (8) 06		03 9	- 1					63-130 67-89	s [VREVELY TO	wgh			V duery hight a 0 time material T stight 0.1-1 Own MOnagest nose 1 0-50mm remaintry
1	ACH!				YANICA			- 1					R1 234 M) 154	637	Stationily S standard Staticker	11444			O sopen > 50mm highly OTHER SYMBOLS maderately
,				117 N	t			-	T 174 A	L DE	PTH	99 6	96 m	<i>"</i>	To (S. C.)	COVE	E DVER		PL. & Lapemi load strength
,	UBE P	4 A M 5 T O I	lf D		ED BY			- 1,	vŧ 51	INATI ILAL RING	DN F1	ROM C	י"						strength fresh I B very strang 100.1
1	OFF	0150	ARE	ED, D	1		i .	ŀ	roca	HOITA			,	j	(Sile Pier				W VIEW NAME .
	12	, ,	-	NG	TES	STS	J		NT:	5				BILIT	Y	REC	OVI	ERY	rock type , colour , grain size ,
;	2	١	DAILL WATER (COLDRILDSS)	= =			ç		=	SPACING	100	:	(BARS)	a uind	1				texture and structure (massive, cleaved, foliated, lineated, flow banded, gneissose, porphyritic, etc. 2
	ADVAMC	N3)/	3	PAILLING	181	AC BULT	1	D MM C 3	NAT.	-0.30 BPACI	2	200	2 3	2 2	1	MECOV	_	*	scale as for joint spacing),
	2	CASING/CEMEN	14	MATER OF	•	=	JOINT.	2	4430	2000		5	PRESSURE	#ATER (totalLite	LUBRA AND PROPERTY OF THE PARTY	1	OF C	•	weathering, alteration, minor Weathering, minor Weathering, mi
<u> </u>	8	3	8						_ }	00-	L	2	_=	: :	Ē) 13/1	90 F1 F1	# 100 1717	i laurendan i harrina
	286												6	MIL	0.0				AT 29.29 , 31.03, 31 08,31.10
29 21	•						H		-		-	29 20	<u> </u>	<u> </u>	 -	111		1	31 50, 31.56, 32.14 CML FJ/50 ⁹ 60°
30 2	,						۱ ا	R	T						1	11:		$\ \cdot\ $	FROM 32.10 TO 32.34 J/80°
							11	R	т							n			DARK GREY. MEDIUM GRAINED,
							14	R	T							1			
32.10	325	ا ا					Ш	Ц	_			_			l				BIOTITE GNEISS. LIGHT COLOURED -
								R			32 51		1	\				1	IN PLACES GARNETIFEROUS MEDIUM GRAINED, MAIN COMPONENTS FD. Qu, BI
				1.3:				SL					3	NIL	0.0	M.			AT 32.51, 32.55 J/20°
				. 142									3		0.0	H			AT 32.55, 37.58 J/40°50°
35.47	,								-			35,47	'	1		$\ \ $			<u>}</u>
											35.47								招
	36.0		CREAMY	.35									3		ļ	111			1tl
			SRE	200									6	NIL	0.0	仦			AT 38.7, 39.0 J/60°
39.51												38.51	ì	Į)		11	11		.}}
373"											30.51				1	11:		[]]	∭ ` <u> </u>
									-				3	1.6 2.1		1			· }
				26.0	4 1								3	2.3					AT 40.1, 40.38, 40.66, 41.7
			\dashv				m	R	т			41 50	'	1.9					初 L-11111111
41.58	91.58 05/10										4.58	-	-	 	 	批			FROM 40.5 TO 40.74 J/85°
													3						AT 42.1 J/25 CALCITE FILLIMM -
			F.	130									6	MIL	0.0				AT 44.0, 44.20 J/15°
44 05			INKIST										1)		11			<u> </u>
	GA		٦								44.64	4464				H .			GARNETIFEROUS BIOTITE GNEISS (ENRICHED WITH HIGH PERCENTAGE OF
			-										١,	19		111			GARNETS) PINKISH, MEDIUM TO
46 0				93	4 1		"	R	т				3	2.1					QUARTZ -FFLOSPAR PEGMATITE WITH
			-	526									3	19					GARNETS, MEDIUM TO COARSE GRAINED -
47.57	97.57 1771		-									47, 57	<u>'</u>	1. 6		11			AT 46 26 J/60°
48.7											4757		,	24					TO 47 12 J/80°
		İ		200	1 (m	R	т				3 6	19	l	11			BIOTITE GNT ISS, LIGHT COLOURED, MEDIUM GRAINED, MAIN COMPONENTS
		1											3	2.0	1				0 - FD, BI ΔΤ 48.2 J/25°
50 52							Ц					50.52	<u> </u>		 	#			}}
51 05					.		-	R	-		50 52		,	2.0	1			}	AT 51.78 FJ/50°
	52.05		EAMY	1 51	1 1					$\ \ \ $			3	2.2		KIT.	[[:]]	111	
	re/r		S	-			"	R	'				3	1.6	1	1		4	(<u> </u>
53 35		-								$\ \mu\ $		53.55		1.5	ļ				AT 25 30 J/20°
								R	Ţ				}			H		111	AT 58 62, 54 3, 54 58, 54.80 J/20 -
							-	-											AT 33 75, FROM 33 98 10:04.103/700 -
55.2							"	R	۱										BIOTITE GNEISS (WITH HIGH PERCENT
L			\perp				\sqcup		_11	Ш				ŀ	L	иИ	W	Ł۱۱	TN

F	E	λT	UF	RE ·	- K	K	20	5	(N	EW	/OL	.D),	HE	ADRA	CE (SAD	DLE) BH KK29 SHEET O	3
				DAT								DAT		JAIM!	KE	Y WEATHERING ROCK STRENGTH	
417881						.03 9	- 1					463-13(967-89	1	Wavery . R Brough	andy.	V Surry light < 0.1mm materiel ▼ Stight	-
PACHINE PIL: 19				PATARY			- 1					R1 254		Stralighte S remeat Stralighte	h nsided	MOI majorat open (.O-5,0mm completely of appen week 8 1.O-5.00 or appen week 8 1.O-5.00 C 3.O-25.00	l
'08F B	nae i	, 1917	NX				-	114 4		PTH	9q	96		RI	COVERY	PL. Biggord look strength slightly maderately strong 25.0-50 00	į
ORF MA				D 87			- 1 4	/I B1	INAT II AL RING	ION	FROM	D°			I RÉCÔVERY (%	strength tresh	
T			j			i	•		TION			١	ļ		R. G. D (%)	9 Bifret graund water 2 Breck tompte 100.0-720.00 Sweet strange 200.0-720.00 Sweet springe 200.0-720.00	
- Dr	ILL	_		TES	15	H	OIN	+		_		T	BILIT	1	RECOVERY	GENERAL DESCRIPTION ENGINEERING ASPECTS	
	CASING / CEMENT	1	3			ė		=	SPACING	L		(BARS)	## /minute)	1		texture and structure (massive,	.
DAA	2 2	DARL	רנגנו	•	8 U. 1	E	ROUGHNESS		•		1	-	10	Ë) ×		
DAILY	CABING/CEMENT ELWATERICOLORI	RATE OF	MAT A	•	ž	101	ğ		305-0-308 30-1 008 8PACI 1:00-3-008		2	PRESSURE	WATER LO	PART AND L	DHA O	weathering, alteration, minor	
	3 8	ľ						ŀ	00-	1.5	2	E	* 8	1	0 90 100	erc./	
56 6				l		\sqcup	4	\perp	\coprod	36.6	-	<u> </u>		ļ		BIOTITE GNEISS (WITH HIGH PERCEN-	56.60
203				l							1	,	2.3		<u> </u>	@u,fD, 8i	
			1.58			11	R	Ŧ				3	2.7 3 3		Mallilli	STAINED ENEISS, LIGHT COLOURED, MEDIUM	7 43
			03/									3	25			CHARNOCKITE DARK GREY, COARSE	1
				1		$\left - \right $	+	-	Щ	29.6	59 60					GRAINED, MAIN COMPONENTS QU,PD,Py	1
				1								!	h		111111111	SUBVERTICAL J	1
BUZ			1.58			"	R	1				3 6 3	NIL	0.0		AT 55.26 J/60° AT 56.94, 57.27, 57.47, 57.67 J/50	
E/4	, I	1	nvis									i	Į.			FROM 59 0 TO 59. 22 CHL J/70°	
11	> u	1		Ì			-	.]	لہ	62.	62.G	-				AT 62.04, 62.50 J/50°	
1	9			l			!			62.	1	١,				· ~	
	>		.85			111	R	T				3				AT 62.94, 63.35, 63.85, 63.95	l
,]	REAMY		nyo									6	>NIL	0.0	KILHILI	65.0, 65.47 J/25°-30°	
53.6 745	٥							_			65.6	1	Y			AT 63.65 SL8 J/30°	
				ļ						65.6	`	١,			14444	AT 65.83, 65.94, 66.24, 66.50 J/25°	
!			1.85				RT	.	1			3	NIL	0.0	MAHI	7 ~	1
`			03/6				. 1.			'	1	3		0.0		~	
. 96].	L	68.6				MINIM	~	
REPIE							-			08.6						~	
1			2.55 17(3)									3	NIL	0.0		~	- 1
	×		17/03				1		1.			3			RHHIII	*	
	REA	1 1	Ì							l.,	71.58	i	ľ.			~	
2.18	U									70 5					KIIIIKK	~	- 1
703				1			:					3	<u> </u>			AT 75.32, 76.73,77.02,77.26	
	-	1	90	-			:					.6 3	MIL	00	HILLIN	Total	
				}		-	- İ				74.73	'	ľ			FROM 76.0 10 76.20 J/20° (%)	
103						$ \cdot $	1	-	<u>ٔ</u> ۲	74.7					HIHH		- 1
				1			R	-				3	3.9 4.5		HHHH	~ ^{**}	
			2.59 2.07			111	R I	r				6	5.5		HIHH	~	
				1			•					3	4.9 4.8		MINIM	~	
	ISH.	1		1	,	' 1	। ।	- 1 :		779	7792					QUARTZ - FELDGPAR- BIOTITE PEGM ~ -	77.5
98	E Y	1			•	"	RI	4					h	İ		~	8. B6
	ō		2.5A 22.01			,,	RI	,	i			3 6	NIL	0.0		FILLED (2mm) IRON STAINED J/60° 90° ~ (IRREGULAR ANGLE)	
					•				<u> </u>		1	3			MARKA	(a. 111111111	19.95
3 18						H	<u>+</u>	+	- -	90 9	6 80.96			 		Ou, FD, BI	
٦						"	Rİ	r			}	1 3	l			~ -	,,
			2.54	l		111	R i	r				6	NIL	0.0	[]	QUARTY - FFI DAPAR - BIOTITE PEGMATI-	
			220				i				na 14	3	1	1		AT 83 53 SLS J/40°	
													<u>. </u>			AT 83.30 J/40°	
															5A - T		

-																	<u> </u>			DI EI				B	H KK29 SHEE
					RE.		< K	20					DAT		ADRA		-		KE		WEATH	ERIN	 G		OCK STRENGT
	5 1 4 8 1	* D	74 C	.92 (OMPL	****	27.03		x - c	008	INAT E	155,4	163 130		JOINT A		HHE		\exists	JOINT SEPARATION V svery tight 4 0.1mm T stight 0.1-1 0mm	selt : uncenseld: material	oled		N. S.	MM /=2
1	41F8				v-5) (ı e		- 1					967 R95 R) 254	637	R arough Shaslighti S samoof Stadicher				- 1	MOunderel open 1.0-5.0mm O septen > 5.0mm	completely highly				
				400 RIT: N	ROTAS X	N			F 194	AL D	FPTH	99 1		777	AE	COV	ERY		=	OTHER SYMBOLS PLELMOIN load strength	moderately alightly				maderately strong 25.0-
1	1980 1980		ar n		SED B	₹;			IN C	LINAT TICAL RING	10 4 F	ROM (or			_				Index U.C.S Eunionial compressive strength # Bfirst ground water @ drack sample	fresh		$\Pi\Pi$		11100g 50.0 1017 11100g 100.0
	ORF	D15	CARI	ED, I			- i	.	roc	AŢIOI	1 10-		, .ac a :							GENERAL DES	CRIPTION		Ш	ENG	SNEERING ASPEC
	-	RII		NG	115	STS	+	JOI	N 1	5			MEA			+	*	JVE	<u>. K I</u>	rock type , colour , gra	en size ,				
		CEMENT	DRELL WATER (COLDRILOSS)	DRILLING		.	9		- O	SPACIN		_	(BARS)	matte Loss (total_itres/minute)	,		RECOVERY		e	texture and structure cleaved, foliated, lines banded, gneissase, p	iled . flow	901	:	nenor	REMARKS
	A ADVANCE	12	TR BCO	_ ! "				ROUGHRE	PARAT		100		PAESSURE nonometer	S E	100			AND		scale as for joint spo weathering, atteration	icing), i , minor	APHIC	WEATHERING	E	(with respect to excavation, grouting
	\$ 5	CABING	PR.L. WA	RATE OF			Inio		=	0.30-1.00m SPACI		2	PRESSUR Monometer	#ATER (totalLite	LUGEON OF		5		ए द 100	lithological character strength joints	1511CS ,	8	1	2	permeability, rock quetc.)
84.7	 		.8		_	┪	+	Τ-	Н	֓֟֟֓֟֟֓֟֟֓֟֟֟֓֓֟֟֟֓֟֟֟֓֟֟֟֟֟֟֟֟֟֟֟֟֟֟	84.14		<u> </u>			Î	$\prod_{i=1}^{n}$		IĬĬ	PEGMATITE AS ABOVE		~_	M	Π	
							١.,	R		$\parallel \parallel$			3	h	!					GARNETIFEROUS CHAR AT PLACES ENRICHED GRAINED GARNETS, GR	WITH COARSE	74			
				3.1			"	"	$ \cdot $				6 3	NIL	0.0					COARSE GRAINED MAIN Ou, FD, Py, GA	COMPONENTS	12			
				234						$\ \ $			Ĭ	1	'	\parallel	$\ \ $					72			
87 6	- 1						-	+	H	$\ \cdot\ $	97.64	87.64			ļ	$\ $				AT 86.40 J/50°		~			
	23/1	4	A M Y						$\ \ $				١,	ļ .	ļ	\parallel				AT 88 10,88.15 CHL.	J/25°	1			
			CRE	3.11	ē		111	R	т				3 6	NIL	0.0							7			
							ļ						3	V			Ш					1			
90 9	92		\vdash				-	+-	\vdash		90.9	90.92				$\ $						7	$\ \ \ $	$\ \ \ $	
											 .	Ì	1 3	h		\parallel					•	12€			
	925			3.1		.							6	NIL	0.0	\parallel						1			·
								1					3) · ·			Ш					7			
94.0	5		E S				-	+		H	94.05	94,05			 	\parallel						*			
			GREY				Ì				.		'	h	}							*			
	95.9 25.0		٥	3.1 25/						$\ \cdot\ $			6 3	NIL	0.0							~			
			_							Ш		97.02		ľ						AT 97.20,98 55,98.7	73 . 99 70 J <i>/</i> 60 ⁶	, Tu	IIII		
97.0	2		EAM	`				T			97.0	2										1			
98.2			CRE	3.1			lı.	R					3	<u> </u>					$\ \ $	GARNETIE FROM S BIOT		~	$\{\ \ \ $		
	26.0	2											3	NIL	0.0					GARNETIFEROUS BIOT LIGHT COLORED MEDIL	M GRAINED.	~			-
-	+		Н	╁	1.0	+	+	+		₩		99.86	1	<u> </u>		╫	Н	\coprod	₩			╁╌	HH	+++	
					HC	ĻΕ	1	CC	M		ĒΤ	ED	A	רנ	EPTI	1	19	F		99.86 m					
										$\ \ $														Ш	
																				٤	•				
																	Ш						$\ \ \ $		
												}							$\left\{ \left\ \cdot \right\ \right\}$						
l																11			Ш						·
												}				\parallel									
	1				ļ.											\parallel									
							İ			$\parallel \parallel$															
	!															$\ $							$\ \ \ $		
	:																								
	1																		$\ \ $						
	i)					
	:																			'				$\ \ \ $	
1	. !		Ì		1	İ	İ			111	ll .	1	1		l		Ш		Ш	I		1 1		Ш	

DRILLITED OS O-STORED OS S	LIN S I L AT L AT L AT L AT L AT L AT L AT L	VG DAY TON DD: : N	DAT DATE DATE SI: E-TDC ROTAR X LD BY: LTE:	A		2 X	ВО	RE	HOL	LE [<u>.</u>			ΕY	7	WEATH	ERIN	G			SHEET OF TRENGTH	02
HUPTIONS HINE TYPE LING MET BARREL, MAN GSO STORED DISCARE	DEILLING NOTE THE	DAY TON DD: : N OGG	SI: E - TDC ROTAR X LD BY:	I Y	04 9	٧	- coo	RDIN	ATE															1116110111	
LING MET BARREL, MAN ISSO STORED DISCARE	DAILLING NO	TON D: : N OGG	E - TDC ROTAR X LD BY:	٧			- coo	A DIN				ŀ	JÖINT I			ŝŝ		JOINT SEPARATION	sail : unconsolic		Ĭ			/m²	
LING MET BARREL, MAN ESD STORED DISCARE DRILLE	DEILLING NO THE	00: : N 066:	ROTAR X LD BY:	٧		١-	EVA	T 10 M		LLAR		1	R ±rough SRzelighti	y 10.			M	f stight 0.1-10mm #0=mderat open 1.0-5,0mm	completely				^	₹1.00	
STORED DISCARD	DRILLING	0 G G I	D 84;			E				TTOM)		ŀ	S *smoot Staslicker	neide COV			P	OTHER SYMBOLS	highty				C C	1.0 - 5.00 5.0-25.00	
STORED DISCARE DRILLI	DRILLING NOTE	:), 04	TE:							30.35			Section			RY (9	P	L.S f.=point load strength Indes	moderately slightly				moderately s	-	
DRILLI	PRILLING	_					EARIN		m ra	OM 401		l					~		fresh				strong very strong	50. 0-100 0 100 . 0-250 0	
	PRILLING	3					DCATI	ON (-)		22.20	T			3	#first ground water # Brock sample # #oter sample	····		Ш	Ш	extremely st		
ASING / CEMENT LWATER (COLOR, LOSS		1 1	TES	TS	JC	NIC	TS	4			EAE	BILIT	Υ	RE	CO	VER	-	GENERAL DESC]		ENG	NEERIN	G ASPECTS	j
ABING/CENE		۱.,۱			اہ				DEPTH	9	reading)	· inte	996/E	١				ock type,colour, grain exture and structure				٤ ا			
ABING/C		rever8		SULT	2	28	E 8 8	•	\neg	:	[oss /mir	# ج		4400464	*		leaved , foliated , lineat anded , gneissose , por		200	9	RENGTH	RE	WARKS	5
	0		787	R S.	11 SET		E 8	88	10	BOTTOM	e e	itres/	N N				50	cale as for joint spaci veathering, alteration,	ing),	APHIC I	HE R	5	(with resp		T T
10121	AATE	MAYER			TRIO	•	0.09-0	77	# O	2 3	(manometer	WATER LOSS (total Litres/minute)	PERMEABULTY	}	1 4	•	lit	thological characteris trength , joints	tics ,	GRAP	WEATHERING	ROCK	permeah	n, grouting, lity, rock quality	ä
	-	\vdash			+	+			0.0	-	5	45	17 - 3	b M	, PT P	יי רווגוי	0	ARNETIFEROUS BIOTITE	0.05.05		 	- 	elc.)	·	<u> </u>
			İ	ļ	ı F	M	k				3	125	14 - 5		${f W}$	洲	P	LACES WITH PINK COLI Du, RICH LIGHT COLOURE	OUR FELDSPAR	~	111		ł		
	ľ	2.0	1	ŀ	, -	, L				- 1	6	280	15 9	11	${\mathbb{H}}$	ł III	G	RAINED, LAYERS RICH II	N BIOTITE AND	-			ŀ		1
	- {		- 1	i	1			Ш			3	124	14 - 4	H	111	1111		T 0.55, 0 65 WE#TH. FJ/		_	111.		ļ		
			ı	[.	_	+	111			3.0	-!	48	18.5		/ ()	批	. w	VEATHERED FJ/60° FROM 2 45 TO 2.58 OPE		 ∽		111	1		2.45
				1	11 F	, _T	$\ \ \ $	³	5.0		3			H)	! }	111	1 3	Nos. WEATHERING PEN		-					2 85
		2 0		- 1		1	$\ \ $			1	6	N	NII	Uł	$\ \ $		Π,	JP TO 2 cm	-	 					
RAY	-			}	III F	1 8	$\ \ \ $				3	NIL	NIL	ИI		[][]	H		•	\~ _					
	1			1					-	6.0	.			胖				AT 0.54, 0.58 WETH. FROM 0.7.10 0.9 WETH		-					
			- }	}	- -	-	$\ \cdot\ $	-	_ -					11	╢	Ш	/1 a	AT 3.34, 4 IS J/55-65	9	-					5.9
18 74				Ī	ı R	,	1111	6	5.0		'	. 1		И		X		AT 52,533,80J/30 AT 775,8.35,8.55,11.55		~					
[1]	ı		i	1	. .	Ι.		Ш		- 1	3			111	团	111	1			-					
		2.0		-	III E	₹ Т	Ш				6	NIL	NIL	И	[]]	1111	H	ORNBLENDE-BIOTITE GN	EISS,DARK						7.6
					١	ì	Ш		1		3]			111	11/	rL_	ARNETIFEROUS BIOTITE							6 5
	- }		Ì						9	9·0	,			11	11	111	1 00	OLOURED. MEDIUM GRAIN OMPONENTS Qu, FD,Bi		~			1		
		-	1		I R			٤	9 0	- 1	1	22	8.5	Ył		111	η,,	ROM 9 65 TO 9.82 CALC	ITE COATED	-	$\{\{\}\}\}$				9 55
11	,	2 0	l	į.	11 6		Ш			- 1	6	80 240	9·3 13·6	H	${f H}$			TEALED J/70° T 10.45,10.57 CHL J/	10 0	~	Ш		l		
	ľ		ļ		ı Sı	니		Ш		- 1	3	75	8.7	l l.			V	CTONIZED ZONE SHEARED	ALONG FOLIATIO	ŠΧΧ			Ī		10.95
				-	- -	-	Π	Ш.	2.0	2:0	+-	_20.	7 . 7	H	111			ORNBLENDE-BIOTITE G		~					11.25
		ı	i	- 1	' F	1	Ш		20	- 1	<u>.</u>		A1 11	M			F	COLORED MEDIUM GRAIN FROM II 9 TO 12 15 C		-			1		
					III F	1	Ш	Ш	-		6	NIL	NIL	H	H	41/1	1	AT II.95 J /10°		· -					
		- [- 1	-	-	 ↓ ∤L	-	5.0	5.0					111	111		ARNETIFEROUS BIOTIT					l		13 15
	- 1			1				Ш,	3.0	ł	3]		W	11	HH	G	DU.RICH WITH COARSE SARNETS LIGHT COLOURE	D. MEDIUM	.					
			ŀ			1.	Ш				6			M	拊	[]]]	6	RAINED, MAIN COMPONE ja	NTS O u,FD, Bi,	-					
	ľ	5∙0	l		ı R	T	Ш					NIL	NIL		H	}{};	1			~	1111				15.7
GRAY				}			Ш				3			H	11	M	Ии	ORNBLENDE-BIOTITE G	GRAINED,	_	$\ \ \ $				
	-		1	- 1	ł			Ш	1		,				M	141		IAIN COMPONENTS Ho, B	•				İ		
				}	-	- -	Ш	μ.	8 0	<u>8</u> :0 _	. (H	$\ \ \ $	111	l.k	AT 15.84 FJ/50°СНLОR FROM 17.3 TO18.53 СНL		`		$\cdot $			17.75
L 16 HT	-	1	l		II F	₹ Т		Ш	٩	- 1	<u>'</u>]			Kł	{	$ \cdot $	N.			_			1		
				ľ	- -	+		Ш	1	Ì	3			111									l		18 75
	}	2 0		Ì						- 1	6	NIL	Nn_	拊	Ш		1			~			ł		
	- [ĺ		ŀ		Ш		- 1	3			111	$\ \ $;				-	1111	111			
- 1 1			j	ŀ	- -	- -	111	:	210	Si.o	, ,			1	111	111	H			~		$\Pi\Pi$			20 75
				-							3				$\parallel \parallel$					_			1		
		2 0		1			$\ \ $				6	NIL	N1L		[[]	[]	H			5			1		
+	1			1							3				†							$\parallel \parallel$			
	ı		ļ							240-						Ш	^	NT 26.8 CHLJ/50°		-			•		
	١		Ī	}		- -	$\ \ $		240		; - K		· ·				1	HLORITISIZED JOINTS	AT	\$			1		24 0
.			ļ	1				$\ \ $			3			\prod			1 2	16 82 J/10°, 26 85 J/		-					
-	İ						$\ \ $		-		6	NIL.	NIL	11	$\ \cdot\ $		H²	27.58 J/20°		~					
				1							3			$\ \cdot\ $			ĢA	ARNETIFEROUS BIOTITE'GN DARSE GARNETS MEDIUM TO	EISS WITH]		260
	ļ		İ	-	_ _	4	Щ	.	. } .	270	۱				H^{\prime}		-01	RED. E IGHT COLOURED.	LIGHT		$\ \ \ $				26.6
			ļ	}	11 5	չ þr			270		1		•	111	.		CC	OLOURED MEDIUM GRAIN	IED	-					26./5
11		Ш				\perp	Ш	Ш							Ш,	Ш				~	ШЛ	Ш			2/55

					<u>. </u>													·	<u></u>	_	_		<u> </u>						Т.		10171	SHEE
	١	FE	Α	Τl	JF	RE -	- K	К 2	20	5	(N	ΙE	W)	, ۱	NEIR	(A)	KIS	; ·							,			_			1111	OF
						DAT									DAT	Α		NT .		- 11 15		KI	E,	JOINT SEPARATION	WEATH		G		-	ROC	CK STR	
•	4811 [E44					MPLET Si	ED.0	9 04	92				HATE BTAN				VR:	rough					- 1	V avery tight < 0.1 mm T z tight 0.1 - 1 0 mm	Mareria						A	₹1 <u>.</u>
4.	CHIN	16 1	7 P E	τ	OŃE	- 100								OLLA				slightl smoot slicke						MOzmeerat open 1.0-50mm O zapen > 50mm	completely		y_{γ}			M	c •	1.0 - 1. 5.0-, 1
	11 L.II					ROTAR	łY							0170 30.3				RI	CO	VER			7	OTHER SYMBOLS PL.S.Lapoint land strength	araderately stightly	•				ור	derately stron	. 25.0 Ji
	H E M H E :					D 8Y:	:						OM F	ROM 4	10°	1		<u>;:;</u>] ài	co	VER	¥ (9	4	indes U.C.S. Burugural compressive strength	fresh		П		n		rang ry strong	50.0-ty.
	A E					TE:					ATI		k	fiq)				R.	0. D	(*	%)		F Stirst ground water R Srack sample W Swater sample	1		\coprod	Ц	Ш		tremely strong	
	D	RIL	-1	NG	\sqcup	TES	STS	L	101	NT	s				MEA	3ILI7	ſΥ		R	EC	0V	ER		GENERAL DES					EN	IGINE	ERING	ASPECT
1 _		-	DAIL WATER COLDRILOSS	2			l				1	9		3	(BARS)) aga		**/*		%			1	rock type, colour, gra terture and structure	(massive,				;	<u>r</u>		•
	ADVANCE	CABING / CEMENT	200	DRILLING	רנאנו	E	SULT	SET NO	NE 38	ATION		1.00m	-	_	2 2	WATER LOSS				RECOVERY		*	Į:	cleaved finitiated, linea bunded, gneiscosa . po scale as for joint spat	orphyritic, etc :	100		2 2 2		STRENGTH	RE MA	RKS
10		180	MTCH	9	MATER L	1637	2	JOINT S		PAR	200		# TOP	BOTTOM	Ssua			NO SECON			AND	0	١	weathering, atteration lithological characteri	, minor	GRAPHIC		MEATING ALMG		× •	with respect excavation,	grouting
	DAILY	3	Ž,	RATE	Ī			19		"	0.05	8,	A D	٤	PRESSURE (manameter r	(tota		PERMEABILITY		CORE	50	# 10	1	strength , joints		5				² ;	permeab:lify etc.)	r, rosp quic _e .
				1	1			\dagger	T	H	ĬĨ	II		Г	1	h	1		Ī		Ī	TÎ	Ī	HORNBLENDE - BIOTITE DARK COLOURED, MED	GNEISS DIUM GRAINED,	~_	П	П		Ш		
			GRAY						Ì						3								1,1	MAIN COMPONENTS He,		~	П	Ш		Ш		
29.27			LIGHT	ľ	9										6	NIL.	1 '	11L				1		BIOTITE GNEISS LIGHT MEDIUM GRAINED.		-	11			Ш		
<u> </u>	303 397			_	-			1_	L		Щ	Щ	L	L.	<u>_</u>	<u> </u>	_					1	Ш	AT 29.42 CHL, J /40		~	\coprod		Ц.	Щ.		*
l	•	q	니	니	1	COP	MPL	F	1	E	11		1	TH	E	DEF	71	Н	18	}		\parallel		30.55 m.			$\ \ $	$\ $	Ш	Ш		
																							$\ $				$\ $			Ш		
				- [$\ $					Ш	П	Ш	Ш		
1				- [ļ.							\parallel				1	П	П	Ш	Ш	•	
l																						\parallel	II				П					
1				- 1											1												Ш					
1							İ																H	_		ĺ	П	Ш	Ш			
1				-																		\parallel	11			ļ		П	Ш			
l																						\parallel						П	Ш			•
1				-	1																	\parallel					П	П	Ш			
1			1																			\parallel	$\ $				Ш	П	Ш	$\ \ $		
1				l																		\parallel	$\ $				П					
					1							.										\parallel	$\ $					$\ $		Ш		
				1															$\ $			\parallel	$\ $					П		Ш		
			-	ı																Ш		\parallel						П				
				ł											ŀ													11				
			l	-																			11					\parallel	П			
			-	-			}			11																		Ш	\parallel			
			İ							1 1		Ш		1								\parallel					П	Π	\parallel			
1			-																			Ш					Ш	11	Ш			
1			1	-						Н																	$\ $	П	Ш			
I				ł	-																							Ш	Ш			
			-																\parallel									Ш	Ш	Ш		
İ			- 1		-									İ	1				\parallel	Ш						Ì	П		Ш	Ш		
			- [Ш								Ш							Ш	П	Ш	Ш		
			- [\parallel	Ш		\parallel					Ш	П	Ш	Ш		
'				-										ļ	1														Ш			
1																			\parallel	Ш			$\ $				1	П				
					-																	\parallel	$\ $					$\ $				
																			$\ $			$\ $	$\ $					$\ $				
											\parallel								11				$\ $					$\ $			٠	
											\parallel										$\ $	$\ $	$\ $				11	$\ $				
				-																		$\ $	П							\parallel		
					1											,							$\ $									
											$\ $				'															\parallel		
										$\ \ $	$\ $					•														\parallel		
																							1							\parallel		
اـــــا						i			L_	Ш	Ш	Ш	·				<u> </u>		Ц	Щ	Щ	Ш	Ц.	· 60			IJ	Ш	Ш	.Ll_		

		FF	-/	T	UF	RE -	- K	к 2	05	5 (1	IEW), V	VEIR	AX	IS					В	H KK32 SHEET	01
						DAT			1				DAT		ויי ואוסנ	KE	Y WEATHER		 3 7. (5.)		OCK STRENGTH	·
IN T	ERR	UP	TION	8 (1	PAY S	MPLET	ED.		٧.	COOR	DINAT	E : 150,	,581·0 ,582·4		VAzvery i R zrough SRzelighti	ondy.	V =very fight <0.1mm material T utight 0.1-1 0mm MO=mderat.open 1.0-3.0mm completely				A <1.00	
				K T(_	TO	CI					BOTTO			8 =smoot Straticke		O sopen > 5.0mm highly OTHER SYMBOLS moderately				weak 8 1 0 - 5.00 C 5 0-25.00	
	RE I			:BIT LO		IX D BY:	:			NAL I		I. 30 FROM	· 15	٠		CORE RECOVERY (%	P.L. S.L. spaint load strength index U.C.S Buniasial compressive	Sec. 1			moderately strong 25.0-50.00	
				AT:	: , DA	76:			91	E A RING C A TIO	3	40°	,		(R.Q.D (%)	strength T = first ground water R = rock sample				very strong 100, 0-250.00 extremely strong > 250.00	
	-			ING	_		STS	JO	OIN	:-			MEA	BILIT	·		GENERAL DESCRIPTION	1		ENG	NEERING ASPECTS	
(=)	ADVANCE	EMENT	COLDRADSS	DRILLING	LEVELS	<u> </u>	וויד	FT NO.	NESS ATION	SPACING		M (e)	((BAAS)	LOSS		OVERY %	rock type, colour, grain size, texture and structure (massive, cleaved, foliated, linealed, flow banded, gneissose, porphyritic, etc:		9	RENGTH	REMARKS	(E) H
DEPTH	DAILY AG	CASING / CEMENT	DRILL WATER (COLDR.LOSS)	RATE OF	WATER	1837	RESULT	JOINT SE	ROUGHNESS	0.05-0-00-00-00-00-00-00-00-00-00-00-00-00	1.00 TOP		PRESSURE	WATER (total) itr		O SO 100 CONT NECO O N O O O	scale as far joint spacing), weathering, atteration, minor lithological characteristics, strength, joints		WEATHERING	ROCK ST	(with respect to excavation, grouting, permeability, rock quality, etc.)	30 %
					100 N						ō,ċ	ō	3	0	0		BIOTITE GNEISS					
								I F	7				6 3 1	0	0		HORNBLENDE - BIOTITE GNEISS, DARK GREY MEDIUM GRAINED				·	\ \ \
	3- 85 OR			-	.						2.9	2:95	3	0	0		AT 0:57, 212,4 55,4 59, 4:63 FOLIATION JOINTS _					
	96 ₇										-		3	0	0		BIOTITE GNEISS	-				
								r F	- 1			6.15	1 3	0	.0		AT 6-68, 7-13, 7 2 28,8-20 FOLIATION JOINTS . ON SCME CHLORITE STAINS					
	7.5							IL F	₹ ₹				6	0	0		A 7:45 J/60°					
											9.0	9·05	-	0	0		MEDIUM GRAINED.					
													3 6	0	0		BIOTITE GNEISS, GREY, MEDIUM GRAINED					
	11.8							II F	1			2.00	3	0	0		AT 11-25 J/60*					
	38										12.0	0	3	0	o b							
			LIGHT GRAY					II F	T				6	0	0		AT 13 9 ,14-87, 15-38 J/80*					
		-	Ĕ								15.0	15.00	7	0	0			\downarrow				
-	16-19 0/07												3 6 3	0 0	0 0							
							27.	-	+			18 00	1	O	0		AMPHIBOLITE, BLACK, MEDIUM					
											180	d	3	0	0		GRAINED					
													6 3	0	0							
	20-3 1/01	3									2100	21.00	-	0	0							
								II R	, ,				3	0	0		AT 20-87, J/50° AT 23-38 J/60°					
													3	0	ó							
											240	2400	 1 3	0				-				
	52.5												5 6 3	0	0		BIOTITE GNEISS, GREY, MEDIUM GRAINED					
	اُ							ΠF	7				١	0	0 .		AT 24-92 J/80° AT 27.70,27-84 J/40°					
											27.0	27.00		. `	-		CHLORITE FILLED. AT 28-55 J/90° CHLORITE FILLING				٠.	

											BC	RI	EH(DLE	L)(F	O	R	E	NC	SINEERING I	PURPOS	SES 					13 	LIEET.	_:]
=		F	E/	\T	UF		- KI	K 2	20	5	(NI	EW.), W	EIR	AX	ış							••	,		1	Ę	3.1	1 KK32	OF	Ö
						DAT			I	В	ORI	EHC	LE	DAT	<u>A</u>			1000			ĶΕ	Y JUINT SEPARATION	WEATHE		G	<u>.</u>	-	RC	CK STRE	NGTH	i - i
1					DAY!	MPLET B);	ED:	•						581·02 582·43		VR=	rough	ougl	•		-	V avery tight 40 imm T slight 0.1-1 0mm MOunderst open 1.0-5 0mm	material				i e		A	< 1.00	. "
			7 Y P			TD	CI		- 1				OLLA!				slight smool slight	h nsid		·-		O HOPEN > 50mm			9		Ų		c	5 0-25 00 25.0-50 00	٠,
			RREL	,811	: 1	NX ID BY:						PTH ION F	30 ·	15							r (%)	P.L.S I.zpaint load strength Indes U.C.S Bunigsigt compressive	slighfly				Ä		mederately strong strong	50.0-100.0	إزاة
	CORE	E 81	FORE	D A					- [*	EAR	HING:			1		7	Z. Xz] R.	g. D	(%)	6 1	strength # Afrest ground water # Brock sample # syster sample			Ш	Ц		Ш	very strong estremely strong	100.0·250 0 > 250 0	00
	· 1		RILI		1	TES	STS	J				7		MEAI	BILIT	ΓY		R	EC	OVE	RY	GENERAL DES	CRIPTION			.]	EN	GIN	NEERING A	SPECTS	4
ľ		I	. 8					٠			9		()	(saas) reading)	(all		**/	ľ	* -			rock type, colour, gr texture and structur cleaved, foliated, line	e (mossive, oled . (low				3				is
Į	-	ADVANCE	Na C		LEVELS	1831	RESULT	SET N	ROUGHNESS	Į.	SPACING	100	1	۱	10 S				RECOVE		*	bunded, aneissase, p	orphyrilic, etc : scing),	וכ רספ		WEATHERING	24 62 54 5	2	REMAR (with respect	to	10.7
		DAILY A	CASING/CEMENT	16 04	WATER	=	2	JOINT	ROUG	SEPA	1-0.30 m SPAC!	100 a	2	PRESSURE (manometer	WATER LOSS (total) itres/minute)		LUGEOR or PERMEABILLTY		S S S	Ž.	0	weathering, atteratio lithological characte strength, joints	ristics ,	GRAPHIC		WEAT	200	ROCK	excavation; of permeability, etc.)		
28	- 1	4	5					Ľ		_ 	528 528	1-	2	-5		+-		6	ั เก่	'n	[]			-	 	П	11			 	H
29	21	67	2445											3	0		0	H	\mathbb{H}	H	H	AMPHIBOLITE , BLAG MEDIUM GRAINED.	ck,								
			THOU							7			3015	6 3	0		0	P	\parallel	#					\prod		Ш	Ш			-
30	14	457	†	1	П		но	LE			ģ	MI		TEI		T		3 ¢		5	H										1
																									$\ $						
																									$\ $						
Ì																			Ш										-		
																						•									
			.																							$\ $					
l																ŀ															
																										$\ $					
						•																				\parallel					-
												.				1			Ш												
														·							$\ \ $				\parallel						ľ
	Ì																									$\ $					
																										$\ $					
				İ																	$\ \ $				\parallel	$\ $					
																				1,					H						
					ŀ								1.																		
Ì																				11						$\ \cdot\ $					
																		$\ $			$\ \ $				$\ $						'
																				11											
						-																									
													'			į															
						•																									
																1			\coprod										plants it distribution them.	مرجمت والمعاد والمعادد المعادد المعادد المعادد المعادد المعادد المعادد المعادد المعادد المعادد المعادد المعادد	
																					T	- 62									-

<u> </u>								_														=						T_		SHEET	01
									K	2	_	_							AN	DER	:	_					_		HKK 34		<u>. </u>
		_	ILI	LIN	_	DA	_			_	-			_	HO		DA	TA	4	JOINT R	KI	Ξ,	Y JOINT SEPARATION	WEATH		G	+	R	OCK STRE		
MA DR CO FO	ARTI	UP 1 NG ARI ARI	YPI ME' IEL, IEL,	I. THOI BIT; LG	DAY:	8): LD B1		J :			Y- EL PII INE BE	EV.	OR I	ON ON EP	ATE (C	DLL# DTT(VRavery r R grough SRastightin S mamooth Stasticker RE	ough , rough , sided COVERY CORE RECOVERY (%		V avery light < 0.1 mm T stight 0.1 - 1 0mm M04mderat,open 1.0-5.0mm 0 sopen > 5 0mm QTHER SYMBOLS	material completely highly maderalely slightly fresh					A weak © C moderately strong strong very strong extremely strong	< 1.00 1.0 − 5.00 5.0-25.00	,
	D	RII	_LI	NG		TE	ST	s	J	OI	N.	ΓS	5	I	P	ER	ME	ABIL	IT.	Υ	RECOVER	Y	GENERAL DESC	CRIPTION			E	ENG	NEERING A	SPECTS	
DEPTH (m)	DAILY ADVANCE	CASING/CEMENT	DARL WATER (COLORLOSS)		WATER LEVELS	7887		REBULT	JOHNT SET NO.	BOUGHIE SS	SEPARATION	0.05-0.30 8	0.30-1.00m SPACING	- 1.00m	PROM TOP DEPTH	TO BOTTON (*)		MATER LOSS	(total Litres/minute)	LUGEON or PERMEABÎLEY mêses	CORE RECOVERY % 55 AND 50 %	0	rock type, colour, grai texture and structure cleaved, folicited, linea banded, gneissose, po scole as for joint spac weathering, alteration lithological characteris strength, joints	(mossive, ted, flow orphyritic, etc: cing), , minor stics,	GRAPHIC LOG	WEATHERING	,	ROCK STREEGTH	RE MAR (with respect excavation, permeability etc.)	to grouting,	0EPTH (m.)
4 2 - 5							T					Ī	Ň						-				TOP SOIL, BLACKISH CLI								
					1.1 12/0					R							1	3.	0	7.7			GARNETIFEROUS AMPHR BLACK, MEDIUM/COAR GRAINED, AT 1:10 FJ/60° AT 1:6 J/60°	SE							
	4-00 DI/DE										T/ MC						3 6 3 1	9 21 10 3	0 0 4	9·6 II·I IO·I 8·7			AT 2:25,2:45 J/50° AT 2:77,2:86 J/15° AT 4:50,4:60 J/5 AT 3:83,4:12 J/5 AT 4:68 WEATHERED,	. – 20°						,	
• 8	7·5 026		IAY							R							1 3 6 3	0 0		0 0			GARNETIFEROUS QUAR FELDSPAR GNEISS. WI TO COARSE GRAINED, MAIN COMPONENTS Q FELDSPAR, GARNET.	HITE , MEDIUM UARTZ,							
,	0·0 ²³ 6:		LIGHT GRA						п	R R · R	T T				•		1 3 6 3	0		0 0 0			FROM II-10 TO II-70 BA HORNBLENDE — BIOTITE AT 8-48 J/50° AT 7-77 J/18°-20' AT 7-80,8-00,8-10,8-1: 8-25,8-33 J/15°-20 AT II-80,11 B6,11,64 AT II-80,12 00 J/50°	. GNE199 2,8-14,8-16,					-	r	
,	2·5		***************************************						ш	R SR	T						1 3 6 3	0	,	0 0 0			AT 9-00,9-18,9-20,9-21 11-00,11-10,11-90 J AT 12-84,12-86,13-18, J/85* AT 13-30,13-84 CHLOR COATED J/20* AT 12-44,12-56,14-0 AT 15-09,15-42,15-78,16	/20° ,13·24, 14·12 ITE J/20° - 30° 8·18 J/50°							
	žξs								11.						•		1 3 6 3	0	•	0 0 0			FROM 17-68 TO 17-96 ZONE, IRON STAINEDJ 1-3 Cm. AT 18-23,18-24,18-26,15 17-04,17-08,17-28,17 17-57,17-68,18-0 J/1 AT 18-52,18-9,18-94,	OINTS AT -67,16-59, -42,17-45 15-20-							
,	18-0 18-0 18-0 18-0 18-0 18-0 18-0 18-0								II M	R	L						3 6 3	0	2	0 0			19:94,19:97 J/7 FROM 18:70 TO 19:40 ZONE JOINTS 20°- 3-4 Cm.	O'-80' FRACTURE		-					
•	05	Н	O L	Æ		C	OI	MF		E					AT		20	· O r			5A - T										

KUKULE GANGA HYDRO POWER PROJECT BOREHOLE LOG FOR ENGINEERING PURPOSES TAB. 13 BITKK35 SHEET TEATURE: - KK 205 (NEW), DESANDER ROCK STRENGTH WEATHERING JOINT BEFANATION Variet light all tem Variet light (1 - 1 0mm MOundaint agen (1 0 0mm O sapen KT.Y DRIFTING DATA | HOREHOLE DATA hall jundenspildulid material WH /m* COOR DINATE sample lete LECORDS COMO TOACHT 10.500 O SAPAN E TRAPELS PL BI Spaint to an arrangth pl Bi Spaint to an arrangth pl Bi Spaint to an arrangth pl Bi Spaint to an arrangth pl Sapan FLEVATION TENTLANT եւցեւմ escued tire tone the ALPOHENON I ded YBALON GIRLING BRILING PLEVATION (BOTTOM) ately elland PR ft 401 siighily FINAL BEFTH 20 20 ORF HARMET (#111 NR THE SEES WAR IN 60 0-10116. 100 0 296 INCLINATION FROM STATION tout HAN . Longeb by: R 0 0 1961 ILY WINDLE AT carremally alliants w \$46 LOCATION LOS Ciq. 1 DRILLING TESTS JOINTS PERMEABILITY ENGINEERING ASPECTS RECOVERY GENERAL DESCRIPTION rick tyre, colour, grain size, taytus and structure (mission, cleared, charted, incoded, flow burded, grainwest, printputte, size one as for paid sporting, extended, allerthin, other burded, alterhin, other burded, alterhin, other burded, alterhin, other strength, joints STILT NAME STILT NAME STILT NAME STILT PROPERTY 1 THE STATE OF THE S PATTOR OF PA ğ FEATWE TING * twith respect to exercively in, greating, permentally reck quality at 1 8 6 low war, be benisie crarke gand MARINE HERITER, IINP INITIER Taken ! 111 GIRVES BAND ALA RIL. B P. 0 i nt AARNETIFFROUS SISTIF ONEISS, LIGHT MREY, MRIHM GRAINFD . 3 i" · i~ i.ž 30 II R T 3,1 3 3.1 4 . D AT 15.96 FOLIATION 3/609 4.2 в 8.0 AT 3 13 J/500 3.0 3.0 AT 2.05, 2.20, 2.66,2.72, 2.92, 2.97, 3.10 J/25° 8.9 6.0 0 ō AT 6.17, 6.35, 8.29, 8.66 J /50° 0 0 3 7.0 0 0 III R T 6 3 0 0 8 0 0 0 9. O 9.0 0 O AT 9.30, 9.44 J /50° %, 10 0 n j RT 6 0 0 GRAY 3 0 0 11.0 0 0 LIGHT 12.0 3 0 0 AT 12.20, 15.00 J/500 13 0 II R T 6 0 0 0 0 14.0 ١ 0 0 15.0 AT 15.80 , 16.34 FJ/68° AT 17.95 J/45° 13.9 IRT 0 0 6 0 II R T 17.0 0 o 18.0 II R T AT 18.98. 19.05.19.12 J/304 19.0 III R T 20.0 20 HOLE COMPLETED AT 20.20m.

5A - T - 64

TABLED 37 /00/09 COMPLETED BI/09/09 H COORDINATE V. COORDINATE V	CNGINEERING ASPICES
MACHINE TIPE TIME TOC ELEVATION (COLLAR) ENGLISHING COLLAR) ENGLISHING COLLARS ENGLISHING COLLARS ELEVATION (SOLITON) EL	CNGNEERING ASPECTS
PORE NAME PORE	ION CACHEERING ASPECTS
CORE DIORED ATT	ION FINGINEERING ASPECTS
come pieconnen, pare tocation (see)	
DRILLING TESTS JOINTS PERMEABILITY RECOVERY GENERAL DESCRIPT	. •
claused tellisted, financed, the form ten latter of the control of	
N IA TO THE WALL AND THE PROPERTY BAND PROPE	**
TO TOUR AND THE PROPERTY OF TH	1.0
*^ <u>- </u>	
4 0	* \$25
* 0	
10 a 2) a 2 2 2 2 2 2 2 2 2	
2 2 3 3 4 3 5 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
200 1 0 0	
% 23.00 m.	
5A - T - 65	

	205 (NEW), DESAN	IDER KEY	. WEATHERING	BHKK37 SHEET OOF OF
DRILLING DATA STARTED:09/06/92 COMPLETED:14/06/9 OTTHRUPTIONS COAYS] MACHINE TYPE TONE TOE I UNIT LING METHOD ROTORY COME BAPHEL, BIT. NX OMEMAN: LOGGED BY: COME STORED AT: OME DISCARDED, DATE:	Z X-COURDINATE. Y-COORDINATE ELEVATION (COLLAR) ELEVATION (BOTTOM) FINAL DEPTH INCLINATION FROM VICINICAL BEARING LOCATION (see 1.)	JOINT ROUGHNESS JOINT SEPAR VRIVETY raugh R grouph Spatightly rough MCZnedern's open Statistics of the state	a O I mm O 1-1 Omm 1.0-5.0mm 1.0-5.0mm 1800.8 0 attength materialy stignity tignity fresh	MN /m² A (1.00° C 5.0-25.00 C 5.0-25.00 strong 50 0-00 00 cry; strong 100.0-250.00 extremity strong > 250.00 ENGINEERING ASPECTS
DAILY ADVANCE CASING/CEMENT CRELWATER/COLORJOSSI RATE OF DRILING WATER LEVELS TEST TEST RESULT AGENLT RESULT	SEAMETION SEPARATION S	. rock type .co	lour, grain size, structure (massiva, ted, lineated, flow sone: porphyritic, etc: joint spacing), literation, minor haracteristics, ints	REMARKS (with respect to excavation, grouting, permechibity, rock audity, etc.)
0-55 5PT 10 SPT 12 SPT 18 SPT 21	3.0	RESIDUAL SO	IL, BROWN CLAYEY	
75	3 0 6 0 3 0 1 0	O (COMPONENTS DANK COLOUP PYROXENES)	, DARK GREY MEDIUM :: HORNBLENDE , !ED FELDSPARS,	
7 7 15	R MO	O AT 8-65 WEA AT 8-65 J/6	THERED J/60°	
0	1 0 3 0 6 0 3 0 i 0			
3	R T	O AT 14-32 , 14 : 0 O AT 15 O O O O O O O O O O O O O O O O O O	39,17:30 J/60° 28,14:62,14:82 J/20° 13,15:73,15:79 2,17:48	
19.49 120e 3	3 0 6 0 3 0 1 0	0		
19-5 9 1706 III	R T	O AT 19-85 J/2	5°	

DOLLING DATA DOCESIOLE DATA THE PROPERTY OF		FE	ΞΔ	TU	IRE		K	(2	20!	5 (NE	w)	, H	EAD	RACE	E	IN	ΓAH	Œ					В	HKK39 SH OF	EET C	DI I
Comparison Com													DAT	A	38/25		AUNE		E		j		IG		OCK STRENG		
A						: 1 E D : 2	8/06								Wavery .	****	Ph.		- 1	Y avery tight a Q Inum T #1ight B I=1 Dmm	meterie!	9174			•		
The control of the															B Bamook Stasticher	P. 911	ed_			0 septen > 50mm	pidpik						ı
The state of the	CORF	na e	RFL,	817 -	NX			-	INAL	. DE	PTH									PL Stepaint tops strength	1				1 _		
DRILLING TESTS JOHN SPECIAL PROPERTY RECOVERY GENERAL DESCRIPTION DRILLING TESTS JOHN SPECIAL SPECIAL DESCRIPTION DRILLING TESTS JOHN SPECIAL SPECIAL DESCRIPTION DRILLING TESTS JOHN SPECIAL SPECIAL DESCRIPTION DRILLING TESTS JOHN SPECIAL SPECIAL DESCRIPTION DRILLING TESTS JOHN SPECIAL SPECIAL DESCRIPTION DRILLING TESTS JOHN SPECIAL SPECIAL DESCRIPTION DRILLING TESTS JOHN SPECIAL SPECIAL DESCRIPTION DRILLING TESTS JOHN SPECIAL SPECIAL DESCRIPTION DRILLING TESTS JOHN SPECIAL	٠.				07D B	v :		1 1	-011	VF.	ON FE	юм				_			- 1	strength P Stret expend poter	****		$\Pi \Pi$		very strong (O	0 0-750 00	。
The state of the			_		,	 CTC	Ι.		_		7		, AE A E	211 17		_					PIRTION	Γ	Ш	ENG			
### 1	. [년	HI		NG T	115	515	+3		+		3	_			T	+		JV E		rock type , colour , grai	n 517e .			<u> </u>	NEEKING ASI	2013	1
### 1	3	5	0780	2 2		_	1	2	5	PACIN			(Bass	SS /	*		16.84		- 1	cleaved , faliated Imea	led , flow	8		1 2 2			1 - 1
	A DVA	20/5	En (co					UG M RE			å	10 TO	. .	יון אי		-	-		- 1	state or for joint space	inu',		1	5	with respect to		1 1
	ָרָ הַ . סור ה	A 5 19	11.00	WATE O		•	, 10,	2	100	- 50	20	9	PART.	MATE	Cultura		CORE	-	.	hinological characters		1 2	1	# 00°	permeativity is:		
Section Sect		Ĭ	Ē	-	. =			-			-					<u> </u>		Lii i	100	TOP SOIL BROWNISH	HOWN CLAYEYSA		.:175.1.	hii			
Holes Complete C	•								\parallel																ļ		-
## STATE OF THE PROPERTY OF TH			Н		5Pi	24	7									H	₩.	1						1111		1	
TO TELL OF THE STATE OF THE STA									П	$\ \ $					1		[]]				OME IS S						
I	3.15				_1		İ												H		0.12.00						- 1
			l≯i	41											l	1											
TO TO TO TO TO TO TO TO TO TO TO TO TO T				15	×																					İ	
		_	H	- [-	RT	- -	H						H	扰	#	H		· · · · · · · · · · · · · · · · · · ·	-					
# A C C C C C C C C C C C C C C C C C C		220		- [l			1 1	- 11		e-cc			0	0	1		/ },	H	QUARTZ - FELDSPAR	GNEISS,					Ì	- 1
To To To To To To To To	6-0× 220					•	H		-	₩			3	0	0	H	11		1		RAINED					ļ	l
To													6	О	0	H			1	AT 6-28 J/65°		ŀ		Ш			
				ļ											1	A			1								
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			RAY				ш	RT				9 00				-1	\mathscr{V}		И	AT 9 00, 9 17 J/20						-	l
1			١						\parallel				- 1		ı	1	III.		1								
1	23												1		1	H	ll		1								l
			LIGHT	1				-					- 1		ł		111		11								j
3 0 0 0 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	1								\mathbf{H}		12.00	1 <u>5.0</u> 0				-1			A								- 1
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0								\vdash	$\dagger \dagger$	H			- 1		l	H	\mathbb{H}					ŀ					- 1
				-					\parallel						[H.		1	•							ł
		1 1							\prod				-	-	ı ~	V			1			ļ					- 1
6 0 0 3 0 0 1 0 0 800 1 0 0 0 800 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1									11		15-00	15.00	; -	 O	0		K		Y							1	
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0									\parallel				- 1		l	rí											
BOO 1 0 0 FOL ~ 60° FOL ~				-			١,					Ì	- 1			K	H)		1							İ	- 1
HOLE COMPLETED AT 20 15 m						-	4		\parallel				- 1		l	V	X		11								-
HOLE COMPLETED AT 20 15 m	N. C.			l						Ш		8.00			0	Y				FOL ~ 80°						j	
HOLE COMPLETED AT 20 15 m				ļ								l			0	H			7								ł
									\parallel			200				1		\mathcal{A}	Z							1	
		П		\top		F	ibi	E	11	pρ						ΪŤ	7	d:	Ħ	m							\neg
									11				ŀ			1			$\ $							1	
				-					$\ \ $				İ						$\ $							1	ı
				ł									ļ													}	- 1
	1	1		1	Ì		Ì		11						· .	$\ $										1	1
									\parallel										\parallel						!	į	
						ļ																					
	1.													•													-
																			$\ $.	
													·			$\ $											
3A - 1 - 0/	1	1		Щ		1			Ш	Ш	<u> </u>	لـــا			<u> </u>	 51	111	 T -	11	7			ШШ	Ш			لب

BOREHOLE LOG FOR ENGINEERING PURPOSES

TAB. 13

								<u>.</u>	~	\ <u>F</u>	/1		W 1	CHE	OF.	SHAF	т						\;		1	Bŀ	1KK420	HEET
						DAT		K	7					DAT		SHAF			-	KE	· Y	WEATHE	RIN	G			CK STREM	
	ARTE	ÓΟ	. 05	. 92	CON	PLET				(- C	OPI	DINAT	E.		-	ABEART .			6 5			sail :unconsolida material	led	730373		蒸	MH /m²	₹1.00
1				1 9)):			- 1			DINAT		n) 230)·90	R Brough Streinghtig B Bemack					MOsmderol open 1.0-50mm	completely highly		T			8	1.0 - 5 00 5.0-25 00
pn	LLH	46	# F T	ноб		•			- 1				BOTTO H 230				COV	FRY			PL Stapoint load strength	moderalely slightly				1	nederately strong	25 0-50 00
	RE M				GE	84:			-	NC L VERT	IN A	ION	FROM	-		g/1135111 	RE	COV	ERY	(%)	U.C B Bunimic! compressive	fresh				11	etrang very strang	90 0400 09 0 0250 0.000
	RE S			AT: ED,	DAT	· E :					RING		e fig	1		"		Q. D			# meder somble # meder somble			Ш	Ш	ш.	intremely strong	> 250 0
	DI	RIL	LII	NG	Ţ	TES	TS	J	110	IT:	<u>s</u>	\perp		MEA	BILIT	Y	+-		VE	RY	GENERAL DESC				EN	IGIN	EERING AS	PECIS
OEPTH ()	DAILY ADVANCE	CASING/CEMENT		RATE OF DRILLING		TEST	RESULT	JOINT SET NO.	ROUGHNESS	J.,	0.05-0.30 m 0.30-1.00m SPACING		TO BOTTOM (m.)	PRESSURE (BARS) (manoineter reading	*ATER LOSS (!otolLites/minute)	LUGEOM 3, PERMEABILIY m/wee		CORE RECOVERY %	AND	% D O # 10:	terture and structure cleaved (numbed, lineal banded, aneissave, por sonie as ter joint spac- weathering, alteration, lithological characteris strength, joints	(massive, ed , flow phyritic, etc ing', , minor	CRAPHIC LOG	MEATHERING	1	ROCK STRENGTH	REMARK (with respect to excavation, gr permeability, a etc.)	outing ,
1.0	-		BROWNISH , 10 %											-				,			RESIDUAL SOIL, REDD CLAYEY SAND.	NSH BROWN						
5. 0 5. 0	61 DQL		REDDISH , 10 % B				• ,														COMPLETELY WEATHE ROCK.	RED						
3: 82 8. 0	ba		*							-										9								
8 ∶9s				ļ				Ļ	Ř		Щ	Ш					Ų.	Щ	L	Щ					$\ $			
10. 0		0.8	GRAY	1		i		111		4	Щ	\parallel					H	1		Ш	CHARNOCKITIC GNEISS BLACKISH, MEDIUM GRA					Ш		
	0.91		ORE ENISM		A											İ	1				AT 9.7 WEATHERED J.				1	$\ \ $		
11.0	Q.,		GRE		۱					T		\mathbb{L}				ļ			H		WEATHERED J/25°				\parallel	$\ \ $		
12.0		ĺ	Ş						R	Ma		[]"	84	3	4.9 6.8	7·0 5·2			H	H	AT 12.6, 12.66, 12.7	O WEATHERED				Ш		
18.0			GRAY,							1		$\ $		6	8.3 6.5	3.7	1		ď		J/15°-25° FROM 12 8 TO 12.8 H	IGHLY				Ш		
14 0			WHISH					Н	-	+		H		1	5.2		H			11	WEATHERED. AT 14.8 WEATHERED	70NF 4/10			\parallel	Ш		
	14-59 1/65	-	8					=	R	MO		1	14.5	+			H		K		a i i i i i i i i i i i i i i i i i i i	20112 2710						
16 0			GRAY	100	×6				R	T		14.	09	3 6 3	0 0	0 0					AT 17.18 J/50			10 th 10 th 10 th				
17.0			- 1	20	6			***						١ ا	0	0	H		1		AT 14.86 WEATHERED AT 17.87 J/10°	140,			$\ \cdot \ $			
18 0			GREENISH	. 6	7			H	\dashv	+		17.	17.67 67	1	58.0		II.		H	M						$\ \ $		
19 0			9	19	5									8	60.6 68.8	1	K	1	1		FROM 19.05 TO 19.58							
19 54	2/7	Ì	SH					11						3	61.5	41.3			U		WEATHERED ZONE WI SPACED FOLIATION	TH CLOSELY						
20 0			BROWNISH										207] '	55.5	63.0	H		1									
21.0		Ì	٦					H	+	+	#	20		1	0	0				柑	1							
22 . 0									R	T				3	0	0				H	AT 21 0= 21 00 '	.°- m°						
											$\ \ $			6	0	0	1	//			AT 21.05, 21 66 J/15	o - • eu -						
23.0				Ì							$\ \ $		25.8	3	0	.0		H	1	$\{ \} $								
24.0	365							Н	\dashv	+	$\parallel \parallel$	23		1-		-		1		1	1							
25 0														3	0	0	H	1		胖								
Z6 0			GRAY											6	O,	0				H	1							
			CARERISM										,	3	0	0		W.										
27 0	16-91 16-9		5					Н	\dashv	+		26	269 92	-	-	 		H		1								
28 0	$oldsymbol{\perp}$	\perp		\perp	1			Ш			Ш	IL			<u> </u>	<u></u>	B		Ш	1	60	l		Ш	Ш	Ш		

BOREHOLE LOG FOR ENGINEERING PURPOSES

TAB. 13

	FI	ΞA.	ru	RE	; – к	ĸ	2	05	5 (1	NEV	٧),	SUI	RGE	SHAF	Т					E	3H.KK42	SHEET (02
	DF	RILL	ING	DAT	Α			_!	BOR	EHO	DLE	DAT	Α		K E	Y JOINT SEPARATION	WEATH		G		ROCK STR	ENGTH	
		09.05 TIO4 S		OMPLET (8):	reb:			ĺ	00R					Assett .	andy	V trory tight a D (mm T tright D1-10mm	sail ;unconsohd motoriol	16164			MR /=	₹1.00	,- ·
		T Y P E					ļ				0 L L A	R) 23	0.90	Straighti S Remout Straiche		MOVEMENT SPIN I 0-30mm O Repen > 30mm	tompletely highly				· c	1 0 ~ 5 00 5.0 · 25 00	
		966.0						FIN	AL D	EPTH	230				COVERY CORE RECOVERY (%	OTHER SYMBOLS PL.SIspoint lead strangth index	magerately slightly				mederately atron	25 0-50 00 50 0-00 00	1
	MAN	: RED		180 BY:	:				LINA1 TICAL RING		FROM .			L	1	U.C.S Buniosial compressive strongth Safirst pround water	tresh		ווח		strong	100.0.250.00	0
:086	DIS	CARD	D, D			Г.	لــ	LOC	ATIDI	tore)		Yw tad	H.O.D (%)	# stars ground water # starch sample # stagle: sample	<u> </u>	r	Ш	HIII ENC	SNEERING A	> 250.0	
F	DRI	LLIN Tel	IG	TES	315	J	OI I	TN T		+-	<u> </u>	MEA	BILI		RECOVERY	GENERAL DESC		1		ENC	SIVEEKING A	ASPECTS.	1 1
	5	DRILL WATER (COLOR, LOSS)	ובאברפ			ė	-	8	SPACING	L	<u>.</u>	(Bans)	9.8 Animate	•	E B	texture and structure cleaved, formated, linear	led , flow			RENGTH			9
Ī	/CEMEN	A CO		1831	RESULT	35	GHWE	E.	200 8 100 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	8 6	BOT TOW		១ ដ	. 4	% o	boulded, gneissaue, po scole as for loint spac	ena".	یا	1	1 2	(with respect	to	X L
8	CASING/CEMEN	WATE	WATER	•	•	TMIOL	Ş	š	2000	100	6	PRESSURE Improprieter	*ATER	LUGE	A ANG	weathering, alteration lithological characteris strength, joints		GRAPH	WEATHERIN	MO CM		arouting ; , reck quality;	0
1	10						_			1	Ŀ	<u>=</u>	l		6 50 100			_	ı i i		. e1c 		
8		GRAY	1						Ш			3	0	0	mmm	CHARNOCKITIC GNEISS, F	BLACKISH,						
		LIGHT G							Ш			6	0	0		MEDIUM GRAINED FROM	30·0 TO						i 1
.,,	İ	3				Н		$oxed{\sqcup}$	#	30-1	30-19		0	0		31-10 QUARTZ- RICH 811 LAYER,	OTITE GNEISS	ł					
						п	R	۲				3	0	0		FROM 34-10 TO 34 90 FROM 35-20 TO 35-80							
31						ш	R					6	0	0		FELDSPAR PEGMATITE. AT 30-19 J/60°		1					
, 3 0	5								Ш,			3	0	0		AT 31-10 J/35°					•		1 1
d							H	\vdash	₩	33.0	33-00	-	0	0									
						п	R	۲				3	0	0		AT 34-25 J/70° 34 15 J/50°	r 4	İ					
ı						ш	R					6	0	0		35-55, 35-86 J/							
												3 I	0	0		54-86, J/35°	•						1
36						_	Н	Н	Щ	36-1	36-1	-	0	0									
. ~												3	0	0									
			11						$\ \ \ $			6	0	0									
· [3	0	0									
9 39 IA	9					-	R	T	┧┼┼	39·O	39-07		7.7	ļ									
, `	֓֟֟֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓֓	GRAY		İ		I		+		Ì	E S	3	8.5	8·8 5·7				_					
		CHT 6				ш		т		İ	LENGT	6	9.7	5.9		QUARTZ RICH BIOTITE							
		3				ш	R	Ma			TEST LENGTH	3	8.6	9.8		AT 41 86 FOLIATION J							
						I		+	╫┼	É	42.1	3	10·B	3.6		AT 40-8 J/80° AT 39-9, 39-94, 40-14	40·63 J/I5°						
43			1			- 1	R			LENGTH		6	12.3	2.5		FROM 41-50 - 41-58 CLO JOINTS J/15°							¦
94	×					m	R	7		ST LE		10	15·5 14·9	2·1		AT 39-73 IRONSTAINED AT 42-9, 4-94, 43-54,	43.56,						1
'						\vdash	-	Н	╫┼	1	ŀ	6	14.3	4.8		43-84 FOLIATION J AT 42-11 J/40° AT 43-20 J/20°	1/85-						ıİ
٠										45·Z	45-22			ļ		AT 44-19, 44-22 FOLIA	TION J/40°				1		1
.						1		I		٦٠		3	0	0		AT 45-07, 48-19 , 48-27 FROM 48-2 TO 48-45 J/							. 1
ŀ						I	R	T				10	0			AT 44-3,44-45, 44 72, 46-16, 48-24, 46 8,	45.7 ,						. 1
7 PQ	15	l				ш	R	т				6	0	0		47-35, 47-51, 47-57 J/15° - 25°							: }
1, [4	5										48-43	3	0	0									. 1
1		Ц						П	Ш	48-4		3	0	0		GARNETIFEROUS BIOTIT LIGHT GREY,	E GNEISS,						.
ł		1								Ï		6	0	0							Ì		
ļ												10	0	0									
	-											3	0	0									
P.V	59 25					Н	_	Н	╫	51.6	51·69 9	3	0	0									. !
												6	0	0							Ì		.
		GRAY									-	10	0	0					$\ \ \ $				
.											1	3	0	0									
		PINKISH				-	-	\sqcup	H	54-7	54-71	-	-	!									1
												İ	,							$\ \ \ $			
_i ——				ئــــــا	·			الب	لملدا				·	5 A	ייליגו <i>מאמ</i> גאי ה' T' _ 60							'	

-																					-	B.I	HKK42 SHEET	03
-									7					DATA		SHAF	KE	- T	WEATHE	RIN	G		OCK STRENGTH	
	MAC DRIL COR FOR COR	918 PR MINE L.IN F WI E MI	D OP	05 9 NS 1	000 000	ED b y	₽Đ.	•	¥ 6	LEV	OR DOR DOR DOR DO DOR DO DOR DO DOR DO DO DO DO DO DO DO DO DO DO DO DO DO	INATE INATE IN (C ON (B EPTH ION F	0110 0110 230 ROM	R) 230 M)	-90	Whovery of R wrough BRacinghily B memorth Stublisher	OUGHRESS TOUGH	JOIRT SEPARATION Varyy bight. A Dimen BOundered seen I 0-3 0mm of OTHER SYMBOLE PL Simpoint load strength U.C S Sunspand compression strength E Sirey; sound maler	ieli unconselidal natorial rompietely ''. nighly noderately alightly				MN / m² A < 1 01 wrot 8 1 0 - 3.00 C 5 0 - 25 0 1 moderately strong 25 0 - 400 0 very strong 100 0 250 0 strong 250 100 0 250 0 strong 250 100 0 250 0 strong 1100 0 250 0	0 0 0
-	-01		RIL		_	TFS	STS	J		UT!		1 1000		ME A	L BILIT			GENERAL DESC	RIPTION			ENG	NEERING ASPECTS	
	DEPTH ()	T	-	SATE OF DRILLING	R LEVELS	1837	PEBULT	JOINT SET NO.		SEPARATION	0.00-0.50 & SPACING		-	PRESSURE (BARS) (inchorneter reading)	"ATER LOSS (total Littles/minute)	LUGEON o. FERNEABILIT m/see	CORE RECOVERY %	rock type, colour, grain texture and structure foliated, litteate banded, gneissase, por scale as for junt space weathering, alteration, thological characterist strength, joints	size , (massive , ed , flow phyrific, etc ny ', miner	GRAPHIC LOG	*EATMENTED	ROCK, STARROTH	REMARKS (with respect to excavation, graviting, permeativity, rack quality etc.)	2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x
51	92	265						п	Я	7		572	57:29	3	0 0,0000	00000		AT 57 92 J/85°						
51		365	ATEC TO	1				ш	R	T		601	60-14	6 10 6 3 6 10 6	0 0 0 0 0 0	0 0 0 0 0 0		GARNETIFEROUS PIOT ONEISS. LIGHT GREY. FRONT 70 60 TO / AND FROM 82-23 T GARNET - RICH BANG AT 61-0 J/40°	1 65 O 86 24					
64	3 8 2	5 O	10.12					п		T T		63-1	66 26	3 6 10 6 3 3	68 7·3 8·7 8·0 7·9	4·6 3·0 2·4 3·3 5·4		AT 63 96, FOLEATION AT 65-70 FOLIATION AT 65-40,65-27, J AT 65-74,66 0 J/5 AT 64-30 J/50*	/ 70°					
69	B.	9-5						t	R	T		69-1	-	6 10 6 3	0 0	0 0 0		AT 67-83 J/50°						
70 71 72								п	R	7			72 41	6 3	0 0 0	0 0		AT 70 8 J/50° AT 71-75 J/85°						
73 74 75 76 77		5 6 9	LIGHT GRAY	1								75-6	75-6	5 10 15 10 5 10 15	0 0 0 0 0 0			-	· .					
79 80 81	æ	6:						01	R	т		78	78-9 9	5 10 15 10 5	0 0 0	0 0 0		AT 80 87 J/30	•					
8.3 84								ın	R	r		922		5 10 15 10 5	0 0 0 0	0 0 0 0	5A - T -	70						

BOREHOLE LOG FOR ENGINEERING PURPOSES

TAB. 13

		FE	ΞΑ	T	ÜF	RE	ː – ı	κĸ	ż	Ò5	(NE	w),	SUI	RGE	SHA	T		04
				_		DAT			I	E	301	₹EI	HOI	E	DAT	Α		K E	WEATHERING ROCK STRENGTH	
•	NTER NTER SACHI SALL CORE ORE	RUP'	TION FYPE ME' REL, :	HO HO BIT:	BAY: D: Dage	10 B Y				V-C ELE ELE FIN: INC VER BEA	OOR VAT VAT AL : LINA TICAL	DIN ION ION DEP		1LLAI 230- 0M		0-90	Vitavery A servegit Bittelight S symbol Stablishe	v rough norded ICOVERY CORE RECOVERY (%	JOINT SEPARATION Very tight T stight D.1-10mm Motimistry Depart D	-
	C	RI		NG	;	TES	STS	J	01	NΤ	s			ERI	MEA	BILIT	Υ	RECOVERY	GENERAL DESCRIPTION ENGINEERING ASPECTS	
	DAILY ADVANCE		DRILL WATER COLOR LOSS!	HATE OF DRILLING	WATER LEVELS	181	AESULT	JOINT SET NO.	ROUGHNESS	. SEPARATION	1 0.30-1 00 BPACING		SROM TOP DEPTH	TO BOTTOM (m.)	(monometer reading)		LUGION 37 PERMEABULIT =/400	% % % % % % % % % % % % % % % % % % %	teck type, colour, grain size, learline and structure (massiva, learline and structure (massiva, learline and structure), learning the structure of the right space of the right space of the right space of the right space of the right space of the right space of the right space of the space	
96	39 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5	PINKISH GRAY LIGHT GRAY					п	R	т			5·26	85-28 86-22	5 10 15 10 5	0 0 0 0 0 0 0	0 0 0 0 0 0		GARNETIFEROUS BIOTITE GNEISS, LIGHT GREY AT 86-30 J/50°	
92 3 	92·8 500							m	R	Т			4-4	94-4	8 15 30 15 8 15 25 15	0 0 0 0 0 0 0	0 0 0 0 0 0 0		AT 96-50, 97-4 J/25°	
18 19	5)bs							ш	R	Т				100-01	8 15 25 15 8	0 0 0	0 0		AT 97-53,99-0 J/19°	
01	Pho		T GRAY					1	R	т		l ic	90-01		8 15 25 15 8	55·5 50·2 43·1 43·3 42·7			AT 101-17,107-26,101-27 FOLIATION J/60° FROM 107-48 TO 101-56 4 NOS. FOUATION J/80°	
03	1034 52, 5e		LIGHT				-545-	ш	R	т		No.	3-14	05-14	8 15 25 15 8	0 0 0	0 0 0		AT 104-4,104-82 ,105-62	
07	07-6 03-6							п	R	т		K)6-i8		8 15 25 15 8	0 0 0	0 0 0		AT 107-92,107-95 J/60*	
10	111-0 0-9 00							п	R	т			983	09-33	8 15 25 15 8	0 0 0	0 0 0		FROM HI-7 TO H2-4 J/90° AT HI-4, HI-94 J/25°	

}			- ^	т	1 15				· · ·	2			A)E			SIII	oce.	SHA	т	BHKK42 SHEETO
						DA	_		<u>.</u>	7						DAT			· KE	Y WEATHERING ROCK STRENGTH
		ED.	TION TION TYP ME MEL	7 H C		9):	EYE				Y-C ELE ELE FIN INC VER	OOR VAT VAT	DIN ION ION DEP LTIO		1LL A1			VAnvery R srough SRasingh! S samed Stasters	COVERY CORE RECOVERY (%)	strength fresh wery strong 100.0-250 QC
	ORE	918	CAR	DEC), D	ATE:			Τ.	_	LOC	ATI) AF A			R. 0.0 (%)	GENERAL DESCRIPTION ENGNEERING ASPECTS
1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	DAILY ADVANCE	/cement	DRILL WATER COLDELOSSE	_	רבאברם	TE		RESULT	JOINT SET NO.	SHHE 55	SEPARATION	0.30-1.00m spacing	00 S 00		TO 807708 OF	manager reading)	WATER LOSS (total Lites/minde)		O CONE RECOVERY %	rock type, colour, gram size, testine and structure (mossive, cleaved, foliated, lineated, flow brinded, gnessone, porphysitic, etc., and structure (mossive, color os tor ionit spocing), weathering, otteration, minor weathering, otteration, minor strength, joints.
112 - R 113	16													12-53	<u>112-5</u> 3	8 15 25 15 8	0 0 0 0	0 0 0 0		GARNET IF EROUS BIOTITE GNEISS GARNET-RICH AMPHIBOLITE, BLACKISH, COARSE GRAINED.
- 115-6 116 116-8 117	16	LIGHT GRAY							п	R	T			11571	115-71	8 15 25 15 8	0 0 0 0	0 0 0 0		GARNETIFEROUS BIOTITE GNEISS, COARSE GRAINED HORNBLENDE-BIOTITE GNEISS, COARSE GRAINED AT 117-05, 118-60 J/50°
119-6 120 121 -121-3	256									R				21.69	121-89	8 15 25 15 8	0 0 0	0 0 0 0		AT 119-58, 119-89, 120-30 J/40° f QUARTZ-RICH BIOTITE BNEISS AT 128-86 J/90° AT 128-86 J/40°
125	123-1076e								π	R	т			•	124-92	8 15 25 15 0	0 0 0	0 0 0 0		GARNETIFEROUS RIOTITE GNEISS WITH COARSE GRAINED GARNETS AT 121-92 J/60°
127	127 9 08/													27-93	127-93	15 25 15 8	0 0 0	0 0 0		
129 130 '	30 9 30 9	PINKISH GRAY												30-96	130 90	15 25 15 8	0 0 0	0 0 0		
132														34-1	134-1	15 25 15 8	0 0 0	0 0 0		
135 136 137	135 F								п	R	т			36 85	1368	15 30 15 8	0 0 0	0 0 0 0		AT 134-25 J/50°
138	39.9	LIGHT GRAY			-				m	R	т				1399	15 25 15 8	0000	0-0-0-	5A - T	AT 139-58 J/20°

BOREHOLE LOG FOR ENGINEERING PURPOSES

TAB. 13

BHKK42 OF SHEET FEATURE - KK 205 (NEW), SURGE SHAFT ROCK STRENGTH WEATHERING BOREHOLE DATA KEY DRILLING DATA DINT ROUGHNESS MN /e2 STARTED 09. 05.92 .COMPLETED: H-COORDINATE. T | DO INTERRUPTIONS (BAYE); Y - COOR DINATE . 1.0 - 5 00 ELEVATION (COLLAR) 230-90 MACHINE TYPE JOY OTHER EYMBOLS 3 0-25 00 PRILLING METHOD: ELEVATION (BOTTOM) RECOVERY P.L.81.spoint load strength index U.C.8 Symposial compressive FINAL DEPTH 230-07 CORE BARREL, BIT: INCLINATION FROM VERTICAL: FOREMAN: LOGGED BY: tresh CORE STORED AT: BEARING .. TORE DISCARDED, DATE : LOCATION less Fig. ENGINEERING ASPECTS DRILLING TESTS **JOINTS** PERMEABILITY RECOVERY GENERAL DESCRIPTION # C ... rock type, colour, grain \$176 . DRILLWATER COLORLOSSI RATE OF DRILLING WATER LEVELS MATER LOSS (fotal Litres/minute) testure and structure (massive, cleaved, familed, invested, flow bolded, gnesseue, parthyritic, etcanic or for joint spacing), weathering, alteration, minor lithological characteristics, 20.00 FERMFABILITY " Š we want 88
(with respect to excavation, growling, permechility, rack quality etc.) MOT TON * Š DAILY CORE strength , joints Θ GARNETIFERCUS BIOTITE GNEISS WITH COARSE GRAINED GARNETS. O B o в AT 184-10 J/70° ш R BIOTITE GNEISS GARNETIFEROUS BIOTITE GNEISS R m QUARTZ-RICH BIOTIFE GNEISS.

5A - T - 73

BOREHOLE LOG FOR ENGINEERING PURPOSES

TAB. 13

-										~ =												В	HKK42	HEET
-								(K	20					DAT		SHAF	KE	· · · · · · · · · · · · · · · · · · ·	WEATHE	RING	3		OCK STRE	
-		978	D 09	. 05		DAT			- 1	x - c	OORE	HATE		DAI		JOINT R	OUGHATES	JOINT SEPARATION Vision tight 40 imm Talight 01-10mm	soit .unconsolds material	****			WH /m²	<1 00
	MAC	HIM	. 14		101					ELE	VATIO		OLLA	R1 230	o-90	BREELIGHTIS B Bemooth Stasictor	naidec	O soper > 50mm	camplelely highly moderately		H		c	1 0 ~ 5 00 5.0-25 00
	con		ARRE	L,DI	٠.	#0 B Y			-	F IN A	L 0	EPTH	230				COVERY CORE RECOVERY (%	P.L.Bimpoint load strongtr Indep U.C.B Buniosist compression	slightly				mederately strong	25 0-50 00
l	con		100	E D .	. 7 :	ATE:	•		1	9 E A		10 H 7		,			R.O.D (%)	strongth F Strott ground water B sack sample W swater sample	fresh		Ш		very strong astromaty strong	> 250 00
r				LIN		T	STS	J	101			F	ER	MEA	BILIT	Υ	RECOVER	GENERAL DESC				ENG	NEERING A	SPECTS
	-			SSOT	2 .			ě		2	C786	1	3	(BARS)	inute)	••/*	%	rock type, colour, grain texture and structure cleaved, foilated lineal	(mossive,			REROTH		. j
		ADVANCE	30/	T BOLOGY		1	Suct	15	ROUGHNESS	RATIO	-0 35 m		BOTTOM		tres/m	1	aecove 0 %	pended, grieissnaft, par sone as for jaint space	phyrilis, etc ma`,	APHIC LOG	RETHER!NO	=	with respect	اه ا
		DAILT	CASING / CEMENT	CORLL WATER COLORLOS	WATER	-	=	LOINT	ROU	25.0	000-000 000-000 000-000	30.	00 00	PRESSURE (Indudineter	waten coss (totalLitres/minute)	LUGEON OF	CORE R	weathering, alteration, lithological characteris strength, joints		GRAP	TEAT	ROCA	permeability.	
-	\dashv	-	-		+			-	\vdash	- [882 	67-6	١.	8	0	0	ในนั้นนั้	QUARTZ - RICH BIOTITI	E GNEISS.			1111		
١,	9		A D					I	R	т.				30	0	0		AT 170 60 J/60 AT 171 11 J/65						
,,	۰ ,	9 4												15	0	0		AT 167-95,168-66,11	88 96					
١,,	[*	60	7										171-11	8	0	0								
1	1 2	t	٦					lu.	11	т		171-11		8 15	0	0		HORIBLENDE - BIOTITE COARSE GRAINED. FROM 173-3 TO 173	a TICHT					
-,,	2 7							п	R	т				30	o o	0		JOINTS 60"- 70" AT 1-2 C	m SPACING					
"	- 1													8	0	0		COARSE GRAINED AT 172-78,173-25,17 AT 172 98 J/79*						
18	4 2 2		A A Y					卜	-	-:		-	174-1	A.	ō	0		AT 172 7 J/30°	GNE ISS	-				
ľ	5		5 3					п	R	7				15 30	0	0	HIMIN	AT 174 62,174 64,1	175·98					
17	6		GREEN											15 8	0	0	HIH	J/65°						
17		7.0						\vdash	Н	\dashv	H	177-0	-	8		0								İ
,,		-	4					п	R	7				15	0	0		QUARTZ ~ RICH BIOTI AT 178-70 J/60	TE GNEISS.					
,,		Ì						ш	R	+		,		30 15	0	0		AT 177-70, 178-11						
- 17	9.7							L		\perp			180·F	8	0	0	MKK	HORNBLENDE - BIOTITE	ONE 155,					ļ
,,	. 0	0-97	Ì									180-1		15	0	0	HHHH	AT 1803, 180 55,181	08,					
"	·	*64	l						1 1	7				30	0	0		IBI-IB, IBI-B4 J AT IB2-B, IB3-20	J/70°					
10	2.7		1					П	R	1				15	0	0		AT 182-D , 183 05	J/40-					
18								-	-	4		8333	183-3	8										
18	•							1	R.	.				15	0	0		AT 185-77 FOLIAT	GNEISS					
18	- 1							T III	R	T				15	0	0	KININ	AT 184 63,184-74,	J/80°					
181	19	5-14 6e												8	°	0		AT 183 40 J/25* AT 185 48 J/30*						
18	,							H	$ \cdot $	-		96 41	196 46	в.	~ ·-			•						
186								п	R	т				15	0	0	KATKAT	AT 186 66 J/7						
		,												30 15	0	0		J/50*	:=					
18 s	13	64	1					_	-	-	-	189 5	18956	8	0	0								}
191	,	1	5					a	R	÷				15	0	0		H ORNBLENDE - BIOTITE	1/60*					
191) De												30 15	0	0		AT 192-28 J/65*	•					
-191 19													192 4	8	0	0		GUARTZ - FELDSPAR	GNEIS3					
193								m.	R	Ŧ	$\ \ $	1924	1	_8 15	0	0		AT 192-77 J/25*	,					
194								-	$ \cdot $					30 15	. 0	0		AT 1937, 193-9	196 04					
195	28	- d 2						п	R	т				8	0	0		198-63 J/80°	33					
196												_	195 e.	_		<u> </u>								
			- J		J	b- p	J.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,t.,	ادسه			,	·			-	5A - T -	7.1			<u> </u>	`.		

 $\cdot \circ$ BOREHOLE LOG FOR ENGINEERING PURPOSES

TAB. 13

																IGINEERING P			_	TA		SHEET	08
,						KK	20							SHAI			MEATING				HKK42		09
				S DA			-			HO		DAT	Α		K ROUGHNEES	JOINT SEPARATION	WEATHE		6	R	OCK STR		
MT!	ERRUI MIRE	T104	2 (B.	478):			V -	. C 0 0	R DII	L C		n) 23(0.90	Viscory Simple Single Simple Simple Simple Simple	tough h	T stight 0 t-t 0mm MOsmderet open t 0-50mm O eapen > 50mm	materiol completely highly				A 	< 1 00 1 0 − 5 00 5.0-25 00	,
	E BA		7 H 0 D , 9 17 ,				100	MAL	DE	TH	230.				CONE	OTHER SYMBOLS PL.Simpoint load strongth index	maderately stightly				moderately street	-	
	E MA			010	T :			C LIN) N F	ROM			271,25.1] ŘĚČÔVERY (*	XAUC B Bunibered compressive strength	leggh				strong	50 0-400 00 100 : 0-250 0	•
				DATE:		·				lsee		,		¥ ¥ !	# 0.D (%)	A Sedie. Studie		·	Ш	1111	DIFFOILIC		T
1	DR	-	ING	TE	STS	JC	NIC.	TS T	_			MEA	31L17	TY	 	rock type, colour, grain		ł	1	ENG	NEERING	ASPECTS	1
	DAILT ADVANCE	DRILL WATER (COLDALOSS	RATE OF BRILLING		RESULT		SEPARATION	20.00	38	PROM TOP DEPTH	TO BOTTOM (m.)	PRESSURE (BARS) Monometer reading)	water Loss (fotofLitres/minute)		CONE RECOVERY %	terture and structure cleaved, foliated, lineal banded, gneissnee, par scale as for joint space weathering, alteration, lithological characteris strength, joints	(massive , , , , , , , , , , , , , , , , , , ,	GRAPHIC LOG	WEATHERING	ROCK STRENGTH	etc. 1	t to grauting , r , rask quality	1
	+	8	- -	-	-	╁	+		4	195 62		8	0	0		QUARTZ - FELDSPAR G	NEISS .						*****
197							RT	111				15 30	0	0		AT 196.30, 196.65 J							197
	78 6e					11 5						15	0	0	HIKK	AT 196.65 SLICKENSID							198
						H	+	₩	$\parallel \parallel$	19871	198.71	•				AT 197.1, 197.13							199
199	GRAY						RT					8 15	0	0		AT 201.35, 20112 J/6							
200	16H						RT					30 15	0	0		AT 201 10, 20155, 201							200
201	969 960							Ш				8	0	0		#			$\{ $				201
202				'		- -	+	₩	╢	20174	20174	8	0	0	(1) (1 	HORNBLENDE-BIOTITE			$\ \ \ $				SuS
202	L		.		1			Ш				15	0		KRAHI	BLACK, MEDIUM GRAI							
203						II S	T	Ш	Ш			30	0	0		CHLORITE FILLI	NG.						503
204	409							Ш	Ш			15	0	0		6. AT 204 J5, 204 45,2	04 55,204.75						204
	SHA PA			}		ıs	4		Ш		20509		·			204 95 CHLORITE STA	INED SLIC KENSID						205
205	H.S.					H	†	$\parallel \parallel$	111	209 03		8	0	0	111111	FROM 202.78 TO 204				$\{[]\}$			205
108	GREEN				1				Ш			15	0	0	1111111	202.78 TO 203 8.2-				1111		Ī	206
207	ľ					11 5	T					30 15	0	0		SLICKENSIDED JOINT	\$ / 70 °						207
2	27					11 5	R T	Ш	Ш			8	0	0		AT 207.48, 207.65 JA							
08 5 08 5	4					-	+	╫	H	208 29	208.29	8	0	0		J			$\ \ \ $				208
109	ļ							Ш	Ш			15	0	0		GARNETIFEROUS BIOTI GREY, MEDIUM GRAINED	TE GNEISS.						509
210	İ							Ш	Ш			30	0	0		A			$\left[\left[\left[\left[\right] \right] \right] \right]$				210
- 1	20 8					11		Ш	Ш			15 6	0	0	141414	<u> </u>							
"						H	1_	Ш	Ш	211.33	211.33			<u> </u>		AT 212.06 FOLIATION AT 212 22 FOLIATION				1111			511
112	3						7					8 15	0	0	關紹	AT 212.5, 212.7 SIL							212
						"	RT					30	0	0		AT 212.55 J/45° SH	LICA COATINGS]				213
RI D	3-4	1										15 8	0	0		HORNBLENDE-BIOTITE	GNEISS.						
14	ไ					\coprod	1	Ш	Щ		214, 44			<u> </u>		<u> </u>		 					214
215	1			1						21444		8	0	0		GARNETIFEROUS BIOTIT GREY, MEDIUM GRAINE	E GNÈISS. D.						215
216								\prod				15 30	0	0		<u>}</u>		<u> </u>	[[]]				216
	6 6						RT					15	0	0		QUARTZ- RICH BIOTITE							
17.5	80				200		RT	Ш	Ш		217. 5	8	0	0		GREY, MEDIUM GRAI	LENDE -						217
218						\prod		\prod		217. 5		8	0 0	0	HIH	BIOTITE GNEISS FROM	M 219.1 TO					:	218
_	ž							$\ \ $				15	0	0	KHAM	AT 217.2 J/45°	4.5.5						219
219	9	1			1	11 1	RT	$\parallel \parallel$				30 15	0	0	RHHIR	AT 214.62, 214 83 J	/ 30°						"
550	20.00				.			$\ \ $			22055	8	ő	ő	RAHA								220
221	8					\sqcap	\dagger	$\dagger \dagger \dagger$		22055		8	0	0		Ħ							221
								$\ \ $				15,	0	0		A				$\ \ \ $			
22.2	-											15	0	60		1							\$55
223												8	0	0	FAIR	}							223
224	23 5 67					H	+	₩			223.56	 		1	144411	}}		<u> </u>	Ш		<u> </u>		274
							•								5A - T -	· 7 5							

		F 1	: V.	T1 11	RE			wr	P	н	011	SF											В	H KK4	SHEET OF	0;2 05
					DAT		_	_					DAT	A	I			E	Y. <u></u>	WEATH		G		OCK ST	RENGTH	
IN' MA DR CO	TART TERR ACHIR HILLI DRE II	EDIS TUPI NO DARI	PETONE	HOD'S	OMPLE (8): ROTARY	red:			X-CC Y-CC FLEV ELEV PIMA VERY DEAT	OR I	DINAT DINAT ON (ON (EPTH	E. COLL BOTT	ARI;			covery COVERY COVERY COVERY	ERY (%	JOINT SEPARATION Valery 1981 OLITON Tailght O1-10mm MOWNerst open 1,0-50mm OTHER SYMBOLS PL 8,1991nt (and strength index Strength on the strength index Strength on the strength index Strength on the strength index Strength on the strength on the strength on the strength on the strength on the strength on the strength on the strength on the strength on the strength on the strength of the strength on the strength on the strength of the strength on the strength on the strength of the strength of the strength on the strength of the strength	soll unconsolid material completely . highly " moderalely slightly	gie d			MN / weak B C maderately st strong very strong estrematy, stro	*1.01 1.0 - 5 01 5.0 - 25 01 100 0 100 0 100 0 250 0	n n o .
- 60	T -		LLI		TES	STS	J	_	NT:				MEA	BILI	ΓΥ	RECC	VEF		GENERAL DES				ENG	NEERING	ASPECTS	<u> </u>
DEPTH (m.)	DAILY ADVANCE	CASIBS / CEMENT		WATER LEVELS	, tat	AESULT	JOHT SET NO.	ROUGHIESS.	SEPARATION	0.30-1.00m SPACING	200	TO SOTTON (=)	I ≅ č	13	LUGEOR or PERMEABULTY m/see	0 9		100	rock type, colour, gra terture and structure cleaved, faliated, linea banded, aneissore, to scale as for joint spoi weathering, afteration lithological characteri strenath, joints	(massive, ited , flow orphyritic, etc - cing), , ininal stics ,	SRAPHIC LOS	WEATHERING	AOCH STRENGTH	(with resp	IARRS ect to n, grouting, uty, sock quality	ORPTH (m.)
5 û · @ I 5 û · 2 Ø	25/07			T				R	Ţ		28	19	3	0	0			114	HORNBLENDE BIOTITE GN ABOVE Ou RICH BIOTITE GNEIS MEDIUM GRAINED		-					28-5
29 29·86 30				11-0			= =	R	т Т				6 10 6 3	0 0 0	0 0				MEDIUM GRANNED AT 28-50 FJ/46° AT 28-20 J/60° AT 28-58 J/35° HORNBLENDE BIOTITE GR COLOURED, MEDIUM GR	VEISS DARK	 - 				·	29.6
30-9 31 31-03				1			_		-		31-0	31-0		Ť	 	 			QU RICH BIOTITE GNEISS COLOURED MEDIUM GRAI	LIGHT	1 ~					31.
32							1	R	T				3 6	0	0				AT 31-10, 32-83, 32-61 32-95, 33-10 FJ/40°- 31-92-32 12, 32-34-	8 , 32 70,37 87 50° 32·53 J/70°-8	1-					32
3 3-03	re hi						ľ	ľ					10	0	0				AT 32-80, 33-10 J/60 HORNBLENDE BIOTITE		ļ ,.					38
34 34·26							L	Ц			34	34-	3	0	0	HH		Ш	GREY MEDIUM TO COA		-					34
55				12.5				R	+				3	0	0				AT 35-88 FJ/60°		-					35
6								R	_				10	0	0	焩	$\ \cdot \ $	ľ	AT 36-0 J/60°							36
7 17-23								Ц				37:	3	0	0]]]]			AT 36-93 FJ/45°		-			•		37 37
8	1767				-		,	R	т		37	23	3	0	0				AT 38 40 FJ/40° AT 40:20 J/60°		-					38
9				1250			,	R	7		.		10	0	0						-					39
0												40	6 3	0	0	III					-	$\ \ \ $				40
0·42 0·70 1	78/11		EAMY				"	R	т		40.		3	0	0				Ou-RICH BIOTITE GNE							40
II-47 IZ			C R								\parallel		6	0	0	W	\parallel		COLOURED, MEDIUM G		~					41 -
3				1256 7967			1	R R	T				6 3	0	0	 			41-12, 41-23, 41 28, 4/60° - 70°	-, Ju	-					43
3-45							H	Н		\parallel	63.4	15	4	 	 	卌	H		AT 41-55, 42-30, 42 43-56 J/60 ⁸		-					43
							1	R	- 11				6	0	0		$\parallel \parallel$	111	FROM 42:42 TO 42:8 AT 42 36 J/30° AT 43:94, 47:79 FJ/					11		45
5 5-01 5-54 6	29477						1 1	R	Н				10 6 3	0 0	0 0			111.1	Ou-RICH LIGHT COLOU		~					46
6,45							Н	$ \cdot $	+	#	46-1	46	1	╁─	 	Ш		Щ	RIQTITE GNEISS ENRICH COARSE GRAINED GARI INTERCOLATIONS OF H	HED WITH NETS AND				[[46
"				30 C									6	0	0	Ш		Ш	BIOTITE GNEISS LAYER THICKNESS.	8S UP TO 30 cm						47
•													10	0	0		$\ $		AT 44-12, 44-23, 44-4 45-54, 45-58 J/60°- AT 45-04 FJ/50°					·		48
9-49	90(v)						Ц	\square	\parallel	1	49	49	1 3	0	0	$\parallel\parallel$			34.4/30		-					**
0													3	0	0						_					50
٠				258 3007			ľ	R	T				10	0 0 .	0 0	Ш	$\ \ $				-			'		51
2													3	0.	0	\mathbf{W}	$\ \ \cdot$	$\ $	AT 52-04 J/50°							52
2.75	316						\vdash	H	-	H	52-7	52-7	3	0	0	$\parallel \parallel \parallel$					-	$\ \ \ $				53
٠				12*19									6	.0	0						_					54
				P/Y									10.	. 0	0			ᅦ			_	$\ \ \ $			•	55
.s. a.										Ш		55	3,	0		Ш	Ш	4				Ш				L

TAB. 13

Section Continue	H KK43 SHEET 03 OF 05	ВН к				3	rate of						ξE	วบร์	н	ER) W	- PC	RE .	UF	١T	EΑ	F		
The property of the property	DCK STRENGTH	ROCK	. .	IG						JAJRY 8	Α	DAT													
## 1	### ### ##############################	111 111 111 111 111 111 111 111 111 11				material campletely highly maderately slightly	V sary light — 0.1mm Taright	in AV E Overy (%)	roden Coven	VAnvery ro A urbugh Bastightiy B smarth gi wellchen		m).	E COLLA BOTTO H FROM C	DIMATE ON (C ON (I EPTH TIOM F	EVATION IN THE PROPERTY OF THE	FING VER		,	D); OTARY ID DY;	BAY D: R : NX : DBG(1	TION TYP(ME: REL, :	RUP: ING ING BARI MAR BYO	NTER MACH SRILL CORE 'ORE	0 0
1 1 1 1 1 1 1 1 1 1	NEERING ASPECTS	ENGINEER	E				GENERAL DESC	COVERY	REC	Υ	BILIT	MEA					JC	TS						_	
1 R T 6 0 0 0 AT 57-75 FJ/40* 1 R T 10 0 0 0 AT 57-75 FJ/40* 1 R T 10 0 0 0 AT 57-75 FJ/40* 2 R 2 R 3 0 0 0 AT 57-75 FJ/40* 2 R 3 0 0 0 AT 57-75 FJ/40* 4 77-75 FJ/40*	REMARKS (with respect to excavation, grouting, permeability, rack runlity, etc.)	with exco	PEATHERING	PEATHERING		s (massive, pled , flow or phyritic, etc : cing), i , minor istice ,	terture and structure cleaved foliated, lineal bunded, aneissose, po scale as for joint spac weathering, alteration lithological characteris strength, joints	AND R G D %	RECOVERY	LUGEOM or PERMEASULEY A/see	maren Loss (totalLitres/minute)	PRESSURE (BARS) (manameter reading)	#0TT0#	100	00-1-00 00-1-00 00-1-00	1 1	1	, RESULT	7197	- 1	RAST OF DRILLING	DRIL MATER COLDRILOSS	CABING / CEMENT		MOTE (a.)
80 80 80 80 80 80 80 80 80 80 80 80 80 8	36 4 37 39				5	0	AT 56-33, 57-87, 58-10 FJ/40°-50°			0	0	6	eı.	55-R		\mathbf{H}								1	57-81 58
6 0 0 0 10	61 61 60				- - - -							3		61-91						1256 1808				9	60 61 61-09
87	63 64 65 0				; , , , , , ,					0	0	6												*	64
70.05 70.05 71 71.34 71.34 71.38 72 73 74 74 74 74 75 76 77 78 78 78 78 78 78 78 78 78 78 78 78	66 67				\$ 5		AT 67-75 FJ/40 [®]							6799		T	, ,							546	67 67-21
72 2508 0 0 73	70 71 71 3				\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	ISS MEDIUM JRED.	OU-RICH BIOTITE GNEI GRAINED. LIGHT COLOUI			0	0	6				Т	11			255 504		E A			70.05 70.05 71
76 76.47 AT 75-88,76-08,76-20, 76-57	72 73 74				·	SS LIGHT	QU-RICH BIOTITE GNEIS							74-14						2 59 6.69		U		ps/o	72 78 74 74-14
	76					NETS,	COARȘE GRAINED GARN			0	0	6				T	<u> </u>	ĺ							76 76-47
78 78 02	79 79 80				_	J/60°]			0	0	3		79-71		T	11			256 7806				2	79
81 28 0 0 0 6 0 0 0 10 0 0 0 0 0 0 0 0 0 0 0	9.2 · 9.2 · 9.5				-					0 0	. 0 0	6)2.55 1966				280	82·81

BOREHOLE LOG FOR ENGINEERING PURPOSES TAB. 13

1										BC	H	3110	OLE.	1.0	OG F	OΕ	F	M	PILIT HING 1.		i'm saman i'm saman	i *.	7_		SHEET 7	Mari
1		Ī	15.7	٩ľ	UR	ar.	1	'OV	V (",)	8 11	ou:	31.								··::.2.I		== 1	18	II KK48 UCK STR	OF os	1 -
						DA1			1		111()		DΛ1	^	รับเทา ย	niai		KΓ	i iddia 'kirkiniki i	WF.A11	in Kilin))) 	OCK STR	ING I II	
	14.1	; ;; A ;	18" 1 80,	4 + 4					1.		MILATE IN TO		m)		# * (, tı		papary sigfer afffeiner ? neligit fi ft i fried Mittemer in fie fi fiener if fi ffeiner in fie finner in fie fie fie fie fie fie fie fie fie fie	t amfile lely sighty					* 1 nn	,
1	***	1 1 14	, 171 14 M 20021	• • • • •) i n <u>i</u> n y					ng to Prid				gi.outii kei	-914+4 	ħ+	•	Grandi armiol.	denderntölg atratita				e mederately etrens	149 84 19 P 114 114 11 114	
1	***		AN'	1.	11111	D 94.			ĮŅ!		10 N /	H-161	n" ·						inder to the suminated employeether strategibs	1. * *				rasp atteng	trie d ent	
1	1	10 11		n it s it	, ha			۱	100	r A t Hol	11		ι Mt Δ		ı		n (%)		GENERAL DES	 ::::::::::::::::::::::::::::::::::::	_N I "	[.].1	FNG	himing ingri NCERING /	SPECIS	
		"	11 II []		il	11:5	13	lΰ	IN I	2			1]	1		,,,,,,	•	tork type, enlant, gral	ii Alen i	-		,	- art anners character	All Committee Co	د •
	•	Z)	1382	¥ <u></u>	£1915	,	1,	å	100	(346)	,*		1.32.	1 22	1 1	ė		¥.	chared, Eduted, Boos booded, godlagose, po acole og for johd apop	lest, flora Epitycithe, ale	. 4	1	2000	MP MA	i it i	3.
	À			, i	2		15	37 347	1514 1 TO	## ## ## \$ 1 ## . ##		Į.	16132.46	i si g	11-34E-	31 58.		٠٠ ••	ktimingent charefor	, militari	14	N. S. S. S.	8	parmentally		
		17.4	7	8	9					1.9		r	: :	1 9 R) ' F		֓֞֞֜֜֞֟֟֝֓֓֓֓֟֞֜֟֝֓֓֓֟֞֓֓֓֓֓֓֟֝֓֓֓֓֓֓֞֝֟֝֓֡֝֡֡֝֡֜֝֡֡֜֝֡֡֡֡֝֡֡֡֜֝֡֡֡֜֝֡֡֜֜֜֜֜֜֡֡֡֡֜֜֝֡֜֜֜֡֜֜֡	- - 	atemosth , Johns		".	111	111	•1e-1.		, '
1	.	١			g na pylu			$ \ $											umitt daties ve vo		'					Aņ.
١	nn 1										nā 4.	hn 1	1													**
- 1	AA 47	/.											1	0	0											1 = # f ,
	"'												n	0	0											
- 1	411 911 74												10	0	0											
- 1	**				:.74								n	n	0											ne
1	• •		-										١,	o	0	$\ \ $										ois
1	91 82	.										71 61														01
- 1		141									" "															•
1.	. ,												8	n	n											
1					277	Ì							n	0	0						1					
1	74 / 1												lti)	0	0	$\parallel \parallel$					1.					04 1
1	l								1				, ,	,,	0										•	. 1
	10 /0	1/14														Ш			A1 68 80 1780"							1
	17 4 ,											1 4	'		1	Ш		Ш								1
			,										n	0												on The
ŀ	·•	1	11.	1				"	" '				In	0	o				COLOUREN, MEDIUM TH							90
	110 7		15										30	0	0	$\ \cdot\ $										
- 1													in	0	. 0				AT THE RE JAME							101
1.	.1.5							li	1 1				n	65	n											ins j
1.												-1310									.					164
1.					3.7.0			١.,	n ,		10-1% 181				n	Ш			At 104.94 Fd/45*							ine i
ı									n] ,				"	0					AL 1115 55 3/411"							
	"]												15	n	0						,					- 13
ľ	88,	1,1											150	"	, ,										J	((10 F
1	07							11	n r				_	o	n				At int-an, the ny d/	Mtt rd	' '					int
1	**															$\ \ $										178 ,
	00				723			-			1000 10	100 10	'					$\ \ $	AT 108 44 J/989		.					100
١,													n	'n	"											tiit 4
1,	,, [11	" '				In	O	0			$\ \ $	PROM III RA TO III FA BILICA CHALRIS AZZRE							
		/.				- 1							10	0	0_	<u> </u>		ļļļ.	At 111 a (1/48*	ng a .]''			1	!	
				·												5	۸ -	Ί,	- 80					,		•

BOREHOLE LOG FOR ENGINEERING PURPOSES

TAB, 13

STARTE INTERRET INTERRET INTERRET INTERRET INTERRET INTERRET INTERPRET INTERPRET INTERPRET INTERPRET INTERPRET INTERPRET INTERPRET INTERPRET INTERPRET INTERPRET INTERPRET INTERPRET INTERPRET INTERPRET INTERPRET INTERPRET	E TY NG N ANNE TORI	LL 2-0 0N° PE MET	IN(COA AYS	DAT	A ED:	F			BOR		OUS				. 4	•		_			H KK43 OF 05	05
STARTE MITERRY MACHINI PRILLIN CORE B FORT MI CORE S CORE D DF	E TY NG N ANNE TORI	2-0 ON S PE RET L.I	7-16, 10:	COA AYS	HPLET	ED:					EH	DLE	DAT	Α	I								
MACHINI PRILLIN FORE B. FORE MI CORE S CORE D DF	E TY NG N ARRE	ONS PE MET L.I ED	HOD HOD BIT:	AYS R);				x-c					A	-15.D.F. 6	KE		WEATHER	NG		R	OCK STRENGTH	
DVANCE D	RIL			D A 1					FLE ELE FINA INCI VER BFA	008 F	N (I IN (EPTH	E COLL'A BOTTO FROM			VR=very . R = rough SR=strabilit S = smooth SL=slicker	COVERY	V surry (sph) 4 0 femo my 1 stigh) 0 1-1 0mm mO*majorni open 1,0-50mm j 0 soon > 50mm j 1 mm mo mo mo mo mo mo mo mo mo mo mo mo	ioil "unconsobdated naterni :ampiteli kighti naderately slightiy :esh			Π	### /## # 1.00 week 8 1.0 - 5.00 C 5.0 - 25.00 medirally strong \$5.0 - 500 strong 50.0 - 600 00 erry strong 100.0 - 250 00 estromely strong > 250.0	
SEPTH - M .	BENT				TES	TS	J	Oil	NT		-1-		MEA	BILIT	Y	RECOVERY	GENERAL DESCI	RIPTION	\top	Ε	NGI	NEERING ASPECTS	
8	CASING/CE	5	SATE OF DRILLING		1857	4£ SULT	LOINT SET NO.	POUGHNESS	-	0.00-0.30m 0.30-1.00m 0.00-3.00m 0.00-3.00m	TOP		PRESSURE (BARS)	WATER LOSS	LUGEON 31 PERMETBILITY 1/400	CORE RECOVERY %	rock type, colour, ginhi texture and structure (icleared, filiated, lumiter banded, unessere, pop- scale as for joint spacin weathering, alteration, lithological characteristi strength, joints	mossive, d. flow shyritic, etc. 20 34 34 ics.,			ROCK STRENGTH	RE MARKS (with respect to excavation, armiing, permentially, rack quality, etc.)	<u> </u>
			12				ı	R	т			NS-18	15 8	0	0		BIOTITE GNEISS AS ABOVE	* ~ ~ ~	-				113 114 115
116 15 14 OR							n m	R	т		115-1	8	8 15 30	0 0	0 0		AT 117-26, J/45° AT 117-50, 117-9,18-02, II	~ (18.08 J/50° ~	-				117 118 18-37
29.44			15/	be			r	R	т			121-44	8	0	0		Qu - RICH BIOTITE CNEISS WITH COARSE GRAINED DA LIGHT COLOURED 118-18 - 118-32 J/75° AT 118-32 J/65° BIOTITE GNEISS FINE TO GRAINED, LIGHT COLOURED	MEDIUM ~	-				119 - 120 121 121-44 -
708 57							ш	R	т		121-4	4	8 15 30	0	0 0		AT 123-80 J/65° AT 124-80 J/40°	~ ~	-				122 123 123-67-
31		CACAIM					п	R R	т.			128 3	8	0	0		FROM 125-8 TO 125-93 J.	/eo* ~ ~ ~	-				125 12531 - 126 127
13											128-		8	10·9 11·7	1.9		BIOTITE GNEISS, LIGHT CO WITH COARSE GRAINED G		-				129 130
3 5						-	п						30 15 8	13·4 12·8 12·6			HORNBLENDE BIOTITE GNEI: J/499 AT 134-25 SLICKENSIDE! Qu - RICH BIOTITE GNEIS! GRAINED WITH COARSE G GARNETS, LIGHT COLOURE!	B J/40° S MEDIUM	_				131-43 131-55- 132 132-15- 133
24											1344	134-51	8	0	· o		HORNBLENDE BIOTITE GNEISS COARSE GRAINED. OU - RICH BIOTITE GNEISS WE GRAINED LIGHT COLUMED COARSE GRAINED GARNET INTERCOLATION OF HORNBL BIOTITE GNEISS LAYERS U	WEDIUM WITH TS B ~	-				135
												110	30 15 8	0 0 0	0		•	~ ~ ~	-				137 13761 - 138 - 139

KUKULE GANGA HYDRO POWER PROJECT BOREHOLE LOG FOR ENGINEERING PURPOSES TAB. 13

		BOR	EHOLE LO	OG FOR ENG	SINEERING FOR OS		BH KP3 SHEET (
FEATURE	- KP [DAM AXIS	·	,	▼ WEATHE	DING	ROCK STRENGTH
DRILLING DA			DLE DATA	JOINT HOUGHNESS	JOINT SEPARATION sell :unconsolde		MH /m²
інтеппілетіона (була), с		A - COUS DINNS	F 151, 777-35 E		Tatight O I = 1 Omm MOtimeral epen I,O=3 Omm completely		A <1.00
MACHINE TYPE DRILLING METHOD ROTAL	RY .	l .	COLLAR) 217-12 ROTTOM) 186-92	Stanictonsided RECOVERY	O POLE SYMBOLS moderately	M	C 5 0-25 00
CORF BARREL, RIT NX FORFWAR: LOGGED RI	v :	TINAL DEFTIL		CORE RECOVERY 1%	UCB suntanel compressive sirength fresh		strong 50.0-100 00
CORF STORED AT: CORE DISCARDED, DATE:		PEATING		200 (%)	T stirst ground mater B strack sample swater sample		estremely strong > 250.go
J	STS JO		PERMEABILI	RECOVERY	GENERAL DESCRIPTION		NGNEERING ASPECTS
NCE NCE CLING		2 US	GARS)	**	rock type, colour, grain size, texture and structure (mossive, creaved foliated lineated, flow		E REMARKS
CARING CARRY CARING CARING CARING COURLENT AVER OF DRILLING MATER LEVELS	SULT SET 40				bonded, gneissoue, parphyritic, etc.	C L06	REMARKS (with respect to
	AESULT	444 800 1-000 - 60	O SOTTOM PRESSURE TOTOMPTET WATER TO	LUGEON O CON RECOV	weathering, alteration, minor lithological characteristics,	GRAPHIC LOC	excavation, grouting, permeability, rack quality,
DAILY CABING CABING CABING CABING SATE (وَ	.00. .00. .00.	0 2 2	[- 10 50 10C	(: ::::::::::::::::::::::::::::::::::		etc.)
0·05 0·64				1 1111111111	TOP SOIL - BLACKISH RESIDUAL SOIL - REDDISH BROWN CLAYEY SAND	000 ~ ~	
1-00 1-40	N=9				PINK COLOUR CLAYEY WITH WHITSH CORE STONES RESIDUAL SOIL' REDDISH BROWN		
	N=13				COMPLETELY WEATHERED ROCK WITH	~~	
730		1 1111111		1	CORE STONES PINK TO WHITISH		
311 341	N=17					<u> </u>	
4-41 4-7) 08/40 <u>8-P-1</u>	N= 33	1 111111			COMPLETELY WEATHERED	1°2°/////	
<u> </u>					ARNETIFEROUS ROCK, PINK TO LIGHT BROWN	<u> _ </u>	
5 81 g-11 0g/d 9 P 1	T N= 27	1 111111			PINK COLOUR CLATEY SAND, WASH	~	
6-80 U Z S P 1	T N= 18	1 111111			SAMPLE OF COMPLETE WEATHERED ROCK COMPLETELY WEATHERED GARNETIFEROUS	~_	
MILL MILL					ROCK, PINK TO LIGHT BROWN	~~	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	N = 15				COMPLETELY WEATHERED MICACEOUS ROCK WHITISH TO LIGHT BROWN]]]]} .
> 0						~~	
9·96 O SPT	N = 14	1 111111] E		COMPLETELY WEATHERED ROCK ,	\~~\!\\\	
1098	N=46	1 1111111	EXECUTI		COMPLETELY WEATHERED ROCK, WHITISH	<u></u>	
			Z W		TO PINK AND REDDISH BROWN	~	
12 26 3/0 4/0 > 9.9 12 26 12:24 CC	N= 44	1 111111	38		·	~~	
13-17 5/0 - 0.4		1 111111	HAVE		WEATHERED GARNETIFEROUS		
			1 1 1		GNEISS, DISCOLOURED	ا _{~~}	
		1 111111	TESTS			ا _~ ~	
15 59 6/0 17/0 11:1		20			GARNETIFEROUS BIOTITE GNEISS DISCOLOURED, FINE TO MEDIUM GRAINED		
GRAY	1 11	R MO	BIL!		FULLY DEVELOPED GNEISSIC TEXTURE MAIN COMPONENTS Gu, F4, BI	_~_	
	1 1	₹ 0	PERMEABILITY		FROM 16 49 TO 20 24 WEATH FRACTURED ZONE AT 20:24, 20 44, 20:69 WEATH	-~- ,	
17-84 RAO 8/0 10-7			9 6		F/J	-~- 1]]]	
BROWNISH	I	1 (111111	9			-´	
BRO	III F	' °				- <u>,</u> -}	
20-69 19/0 10 2		┧╤╫┪║			-	<u> </u>	
21-69	I F	Μō				[-]	
	IF		, _ _ _		AT 21-75 WEATH J/05° AT 21-69, 22-90 F/J FROM 22-70 - 22-94 J/80°	_~_[.
22 91	, ==	4	3 6.8		AT 23-24, 23-29, 23-94, 25-25,	-~-H]]]]
₩	I F	* MO	4 10-2		25-70 WEATH F/J AT 22-50, 24-15, 25-27 F/J	<u> -~- </u>	
0 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8			5 16.0	1 (3.43.1.23.30)	AT 23 80, 24 05 WE J/15° . AT 23 31, 23 77 J/20°	- <u>¯</u> -	
			3 7.8	6 79		- <u>~</u> -	
25 75 Part 8 48 200	1 5	2 T	25-75		AT 25 90, 26 67, 27 00 SL. WEATH F/J	- <u>, -</u>	
26-15	I F		- 3 0-1 6 NIL	00 1111111	FROM 27-0 ~ 27-25 WEATH J/70	- <u>-</u>]]] -[
27 20 27 32 27 75	I F	331HH	3 NIL I NIL	00	AT 27-5, 27 75 F/J	_~]	
<u></u>				5A - T -	84		

BORELIOLE LOG FOR ENGINEERING PURPOSES TAB. 13

<u>'</u> —																										CUEET	~~	1
	F	E	Α	TU	RE	- K	Р	DA	М	A)	xıs														B.H	H. KP3 OF 02	02	ĺ
 -					DA.			I -				İF	DAT	Λ		'	٠	ï	έĒ	Y	WEATH	FRING				OCK STRENGTH		
31						170'91	11 0	3 ×					691 4		.19.m.					JOINT SEPARATION	sell .warenseba					MH/m²		ı
					7 5) 0		•	· •				-	777- 3		IR eraugh			:•		V avery tight a 0 tem T Stight 0 1-L Ome MOSmoord: spot 1.0-5 Omm	moleriel rempirish		72.0	N.		. A 4100		
		• • •											N) 217		Statist		· e .			0 seter > 20mm	highly		M			### B 1.0-5.00 C 5.0-75.00		l
				117. J	ROTAF Ix	• •			'I FVAT				M) 186	.92		COV				P.L.Stanoint load atranger	maderate11		4			mederately strong 25 0-50 00		1
		AN:			3 F IT RY			- 1	464'V] 6	COV	/E R Y	(%)	UCS Bunipelal campiess La	1.05*	ř	111		$\Pi \Pi$	streng 50 0-100 00		
		108							FARIN	G] ,	0 0	r%	,	# Birrer ground water		- 1	Ш	A		very strong 100.0-250 00 estronety strong > 250 00		
					ATE:		r-:		OCATI					 DU 13	l. :;	b)\/E	DV	GENERAL DES	CRIPTION	, 	111	E	ICIN	NEERING ASPECTS	<u> </u>	1
	-	RIL		16	I E	STS	13	T	ITS				T	BILI'I	$\overline{}$	1	<u>-00</u>	7 .		roth type, colour , gra		1			<u> </u>	TEETING ASI ESTS	(. '	
			DRILL ANTER ICOLDINADSS	9 .			ا ا				يةا		BARS)	1		'	er E			ferture and structure	(mossive,						-	
	ADVANCE	CEMENT	3	-EVELS	۱.	5	9	ROUGHNESS	3 20 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8					R 1.055 Litres/mmute	٤ :		Ž	;	•	creaved fainted lines borided, aneissour lise	Provides, etc.	8	2			RE MARKS	3	ĺ
. 4			5	•		4€ SULT	1 367	3	4 noo	6 E	į.	30T TOM	SSURE	2 5	LUGFÜH 3.			ę (ь	state or for joint spot weethering, otteration		A P HIC	E47HER	:	-	with respect to excavation, growting,		l
ñ	94117	CASING	3	4074		•	10,	2	2 F 2 -	77	8	1	Sind	ANTER	100		6			lithologica' cheracteri strength , joints	sties .	8 8 1	3	1	Ď	permediality, rack audity,	1	1
	6	3		" "				11	. 89	š'	١.	٩	•	1		6			100			1		١, ١	!	etc.)		1
9.75	23/10	2840		3.4		1	ı	s 1	-	Ш	l	2875		1	ŀ	Ш			11	AT 28.7 F/J				П	Ш			l
3 - 75		707	١	23.	1	1	Ť		711	Ш	2723		1	NIL	00	Ш		FH	$\ \cdot\ $	1 .			Ш	Ш			28 - 75	ı
1- 79	- 1	ı	-	-	1		1	R	<u>- </u>	Ш	l	ĺ	3 6	NIL	00	Ш	Н	Ш	11			[. 1 1	Ш	11		29 7 9	1
,,,,			1					11	Ш	Ш	l		3	NIL	00	Ш			11	AT 29.32, 29.75		~~			Ш	,		١
) 75	279	-+	١	-		1	-	H	$\exists \Vdash$	hll	<u>2053</u>	30.7]	-		Ш			11:	1		~~		$\ $			30 -7 5	A
5-8 1	-		ł		Ī	1	1	S			1		1 1	NIL	00	Ш		$\ \cdot\ $				~~			$\ \ $		31 - 6 1	
3 1				ŀ		1			$\parallel \parallel \parallel$		1	·	3 6	NIL	00				H	CHARNOCKITIC GNEISS, FINE TO MEDIUM GR	AINED, MASSIVE	**		$\ \cdot\ $	$\ \ $			1
3 -80		- [1		1	l	ī	s	-	III			3	NIL	00	Ш	Ш	Ш		TO GNEISSIC, MAIN CO	MPONENTS	47.45			$\ \ $		32 30	l
	ı	-[١		-	ļ	п			Ш		l	Ĭ	NIL	00	\mathbb{H}		111	1	1		4. 4		Ш	Ш	,	1	1
3 -78	26/0	ı	1	9.6 97.1	d	ł	ᄪ	+-+	- P	Ы	32.96	33.75	·	l		Ш	Ш	Ш	14	GARNETIFEROUS BIOTI	TE GNEISS,	22	Ш	П			33 76	1
1.66	- 1	- 1	ļ	[]	1	1		P]		l	1	1	9.6	15.15	Ш	H	Ш	Ш	LIGHT GREY, MEDIUM GRAINED, MAIN COMPON	TO FINE	.		11	11.		34-65	•
		1	1		1	1	11	3		Ш	İ		3	14.6	10.91			Ш	11.	j				Ш	Ш		1	1
' 02 1-81	١	- 1	1		l		1	3 M		Ш			6 3	18.5	11.2	Ш		-11	H	AT 82.62, 83.10, 83.	40 SL. WETH	~~		Ш	$\ \ $		35 02 35 51	I
94	i		1		ł	ļ	4	Ri	-	M				10.0		Ш			₩	FROM 32.81-33.22	J/85°	~~		П	Ш		35 94	
9-48 3-86	70	940 8A	1	201		l	1	SN	<u> </u>	Ш	36.92	36.48				Ш	1	H		AT 36.44, 38 2,36. AT 36.48, 36.68,36.		~~		Ш	Ш		36 49	
""	ŀ	-1		Ţ.		l	i	SR 1		Ш			١.	7.0	9.9	Ш		Ш	Ш	36 86 F/J IRON ST	· 4, 50-2	~~	111	Ш	Ш		36 88	ı
. 84	- [- [ᆈ		1	l	Ī	SM		Ш			3	9.2	6.5	Ш	1	##	h	FROM 36 67-36.86 J AT 36.97, 37.24, 37.3		7.7	111	Π	Ш		37.54	l
1.33	-	-1	E IS			l l	I.	SR		Ш		ł	6.	12.0	4 87	Ш	Ш	Ш	14	CHARNOCKITIC GNEISS.		-		11	Ш		38 -33	İ
,.09	040	- [ĭ,			i	_	SLS) I I I I I	Ш			3	9.8	6.96	Ш	I	Ш	Ш	FINE TO MEDIUM GRA			Ш	Ш	Ш		39 09	ı
-46	ı	-1	1	0.8 8.7	l	Į	막	RISRIV		Ш	•	ŀ	'	7.5	10.65	Ш		Щ	Ш	FROM 37.05 - 37.26,		25.25	Ш	П	Ш		39.46	1
.	- 1	1	1		1	ł		SR		Ш		40.44				Ш	\parallel	Ш	H	37.22 - 37.34, 37.38 - 3 37.7 - 37.02, 38 1 - 38.2		20		Ш	Ш		i	1
3 4 4		-	Ì			l	ī	R 1	-		40.16			١. ـ		И	$\ \cdot \ $		Ш	AT 39.14, 39.25, 39.		44	Ш	Ш	Ш		40-44	1
	Mo	- 1	1	11.2		1	п	RM	r q				3	5. O 7. O	6.76 4.85	Ш		Ш	Ш	IRON STAINED J.	ar, 40.44	45.45	Ш	П	Ш			1
1-61	\neg	-	1	DVI		1			וור	Ш			6	9.5	3.80	Ш	H		Ш	FROM 39.46 - 39.65		JAN	111	Ш	Ш		41-61	
	- [-				l	П	S	' 	Ш			3	7.4	5.12	Ш		$\ \cdot\ $		AT 40.64, 40.66, 40.	.68, 41.35, 41.47	12.0	111	П	Ш			ļ
2 91		1	١	Í		ľ	_	<u>i</u>	-114	Ш		ì	۱ '	5.2	7.03	111		111	H	FROM 41.61-41.8, 41.	82-41.90,	44	Ш	П	Ш			
3 4 0	-	1	1				ш	SUM	411	Ш	43.29	43.68				Ш	-	Ш	Ш	41.96 - 42 01, 41.92 - 4 42.72 - 43.16 J/75° CHARNOCKITIC GNEISS,1		22	Π	Ш	Ш		43 98	
	- 1	-					n	SLM	10	Ш	75.5	ŀ	,	3.0	4.05	Ш	1].	Ш	Ш	COURSE GRAINED, GRE		3.4		П	Ш			1
4.71	쌕	-	1	11.2	l		H		-{	Ш		1	3	4.7	3.25	Ш	11.	111	.	FROM 48.47- 43.6 B	48.65-48.77	4.4	$\parallel \parallel \parallel$	Ш	Ш		44-71	l
ľ	ļ	1		ł	İ		╙	RM	ra	П			6	6.7	2.68		ĮĮ.	Ш		J/75°		22		Ш	Ш			ı
-71	ı	1		1	1				71111	Ш			3	5 i 3.3	3.53	$\{\}\}$	$\ $	Ш	11	CHARNOCKITIC GNEISS	MEDIUM	2.4	111	Ш	Ш		45-71	
	-	.1					"	RT					'	١٠٠٠			11			GRAINED, GREYISH FROM 45.52 - 45.68,	46.05-48 17	22		\prod	$\ \ $			
3 81							닒	RI	- 		46.7	48.81	,	3.8	5.17	H	11	Ш	Ш	46.75 - 46.81, 46.85-	47.05,	4		$\ \ $			46-81	
							1 1	RM	1 1 1 1		1		3	5.4	3.76		11.	1	H	47. 25 - 47.55, 47.70 - 4 47. 75 - 47.90, 47.95 - 41		22		$\ \ $. 1	1
, 09	2/1			11.2	ĺ	}	니	$\perp \perp$	ДЩ,				6 3	7.6 5.9	3.06				Щ	ON J. Surface traces of		44		$\ \ $	$\ \ $		48 09	
1	١			الم	1		Щ	RT					[]	4. 2			1	Hf	Ш			22					48 98	ŀ
-98	1			1	1	~	ī	RT	· [[]							H	11	$\ \ $		AT 48.85, 50.03,50.0	/3	24				,		
	1	1			l		ایا	RI	-				[\parallel	[H]		FROM 49.08 - 50.22	02 Hos. OF J/80	4.0		$\ $				1
	1	1														$\ \ $	11		$\ \ $			4		$\ \ $	Ш		,	ł
22	**	+	4	+-	 	-	Н	$\vdash \vdash$	-##	Щ		50.2		ļ		Ш	#	Ш	₩	ļ		24	+++	₩	₩		50 22	1
- 1	1	1						ню	ηE	1	ю	PLE	TED	АТ	THE	6	ŧΡ	141		OF 50·22 m.				$\ \ $	Ш			1
			1	1	1		۱۱								1		$\ $		$\ \ $					$\ \ $				
		1			1					Ш					1		\parallel		$\ \ $					$\ \ $,	1
														١.				Ш							Ш		1	l
	ł			ļ								1		١٠			$\ $		$\ \ $					$\ \ $!		
	١		1			1						1		l								1 1		$\ \ $!	1
	-					l								١.	٠.		\parallel		$\ \ $					11				1
		\perp	1	\perp		<u> </u>	Ш	ĿĹ	<u> </u>	Ш		L_		l	L	Ш	Щ	Ш	Ш		 	لــــــــــــــــــــــــــــــــــــــ	Ш	Щ	Ш			J
																			00	_								

BOREHOLE LOG FOR ENGINEERING PURPOSES TAB. 13

	1	FF	ΔΤ	UF	RE .	k	(P	······		R W	YS												B.I	H KP7	SHEET OF 02	1
					DATA			- -				DAT	Ā				ΚE		WEATH		3		RC	OCK STR	ENGTH	-
					MPLETI		. iò.9		COOR	DINAT				JOINT R		1 6 6	_	JOINT BEPARATION Vavery tight < O.Limin T pright, O.1-1 Omm	seil (unconsolic material	oted	and a			MH /w	< 1.00	_
1	TERR ACHIN			•	8): - Y 128			- i		DINATI		R) 56 .		A araugh BRasiighiig B asmooth		•	٠.	MOamderat open 1.0-50mm O sopen > 50mm	completely highly t						10-500	
1					ROTAR	Y	•					M) 6.3	55	Statlicker RE	COVER	_	÷	OTHER BYMBOLS P.L.S.I spoint load strength	moderately		圈			C moderniely slice	5 0-25 0 10 25 0 50 11	
	OREM		(L,011 . M . sd L		X D 8Y:			- 1		TION RYICAL		,		Sec.	CORE	VERY	r (%	inder U.C S Buniquial compressive	esightty					strong !	59 6 100 0	
			ED A Arde		78:				ARIN			,			R.Q.D	(*/	61	Thirst ground water Trock somete Wender somete			Ш		Ш	extremety strong	•	
			ING		TEST	rs	J	OIN.				MEA	BILIT	Y	REC	OVI	ER	GENERAL DES	CRIPTION			E	VGI	NEERING	ASPECTS	Ц .
	T								9			ARS) ding)	ge)	į	*			rock type, colour, gra texture and structure	(massive,				E			
3	ADVANCE	CASING / CEMENT	DRILLING	LEVELS		5	2	E 38	-0.30m -1.00m -1.00m -1.00m	H	T,	2 8	waten Loss (total Litres/minute)	1 5 7	, A.		*	cleaved , inliated, lines bonded, aneissone , to	orphyritic, etc	507	9		STRENGTH	REMA		
N T d W	ě.	9	0,0	3	183		1351	ROUGHNESS EPARATION	1000	9 6	801 TOM	PRESSURE nanometer	on #1	TO GE ON	NECO.	AND	٥	scale as for joint spa weathering, afteration	, minor	APHIC	BATHER	1		(with respec	grouting ,	
	DAILY	8	RATE OF	WATER			THIO	2 3	.59		2	PRESSUR!	WATER total Lit	PERMEASURE LUCE ON	00		e e	lithological character strength , joints	,	5	*		ROCK	etc. 1	y, rack qualit	y,
			\$1 I		1	Ì				:) 	Ι.	7.	\ 	\) 	ΪÎΙ		TOP SOIL - FINE TO	COARSE GREVISH	·:"		ďΤ	П			Ť.
0 97					- 1				Ш						Ш			BOULDER		 : : 			$\ \ $			ľ
1. 45	-				•				$\parallel \parallel$				1				Ш	BOULDER (HORNBLEND	- 810TITE	٠4.			\parallel			
2.49			1	11					$\parallel \parallel$						Ш	Ш	Ш	GNEISS)		Δ.			\parallel	l		-
									$\parallel \parallel$									GNEISS)	E BIOTITE	۵.		Ш		1		
5.71	,				Ì			$\ \ $	$\ \ $									BOULDER ZONE WITH	RIVER SAND	<u>۵</u> .						'
4 57	20/10	4.87			ļ		1	RW	₩	Ш					 	₩	H	HORNBLENDE - PIOTITE		~~	1	ΗI				1
1.,,			<u>-</u>												1111		$\ \ $	GRAINED POLIATED. N				$\ \ $				1.
1			EAMY		ł				Ш	5.0	<u>_</u>	01	47.5	121.79	1111	Ш	Ш	OU,81, HO, FS FROM 7.98 - 8.06 J/I	CHL. FILLED	~~		$\ \ $	\parallel			1
6. 79	}	П	ók log		l				,	"	٦	03	50.2	52.29	Ш		111	FROM 8.01-8.85J/85	° WEATH.	22	Ш	Ш	Ш	Ì		6
1			Š	3.07	İ		ı	sv	3 1 11			06	47.0 52.2			$\ \ $	Ш		•	22.2	Ш		Ш	İ		1.
8.06	}		200 000 000	21.46	l		П	SI	1144		<u>_8.0</u>	01	54.0	138-46		Ш	Ш			2.5	Ш		\parallel			e
I				П			0	SR		8.0	٦	01	54.1	139.4		Ш	Ш	FROM 875 TO 14.79 B		تت		Ш	\parallel	1		
9.83	240		ځ	308			п	RC	114			03	45.8	43.50		H	剒	GRAINED, HIGHLY QU.		~~	M					,
	П		CREAMY	2540	1		1	R T	1111			06	23.0	1	1111	Ш		AT 10.5 J/85°		~~	Ш	Ш	\parallel		-	
11.25			5	П	1			R T	1111		11.2	03	32.4 39.5	1	1911	$\ \ $	Ш			×:×		$\ \ $	Ш			,,
1			,	11					711	11.2	=	01	h		1111			FROM 12 79 - 13.02 J	'o 20	~~	Ш	Ш	\parallel			
12.75			GREY	2.78				ST				03	NIL	00	1111	Ш	\prod	FROM 13.91-14.95 J/		~~	Ш	Ш	\parallel			12
	72/10		CREAMY/	2340	1		П	S 1				03						FROM14.65 -14.79 J/ FROM14.60-14.70 J/		~~	$\{\}\}$	$\ \ $	\parallel			
			E				m	s	,		142	3 01	1			Ш		ZONE			Ш	Ш	\parallel	İ		l.,
14.23			3				n	- R 1	111	14.2	3	01	49.5	160.7	1111	Ш	Ш	FROM 14 79 10 23.37	HODNE! FNDF -				\parallel			14
	П		16 ancw	П			щ	S 1	111			03	62.9	68.0	Ш			BIOTITE GN., GREYISH AT 15.4, 15.6, 15.62 J		22		$\ \ $	\parallel	ł		10
5.77		f	-	3.19 2310			ī	St. 1				06	82.3 59.7	64.6	1111		$\parallel \parallel$	FROM 15 90- 16.05 SL		~~				1		"
İ							nı	R				01	1	143.5		Ш	$\ \ $	AT 15 87, 16.16, 16.8,	17.2 F/J	~~						
17. 31	f						H	\vdash	11	17.	17.3	01	<u></u>	 	 	$\ \ $	111	AT 19.26, 19.46, 19.6	1. 20. DE 37F	22			\parallel			17.
17, 72			AMY	$\ \ $			I	RI				03							., 20.00 0/1	~~			\parallel			17.
19. 0		·	CREAMY				-	-	1 -			06	NIL	00				F/J TECTONIZED ZO		~~			\parallel			19.
				3.03 73/0			ı	RT				01	1	1				FROM 23.37 10 24.6	7 B10TITE	~~						
20.42		-	4	П			Ц		114		20.4	4		L	Ш			GNEISS, LIGHT GREY, H		~ ~	$\ \ $		\parallel			20.
	2410		GREY	$ \ $	- 1			SLT		20.	12	01	74.5	794. 26	1111	$\ \ $		BIOTITE GNEISS, GRE		~~		$\ \ $	$\ $			
21.84			5					1	Щ.			66	54.7 42.4	51.5 22.81	HH.		Ш	1.		~~				1		21.
			CREAMY	25/0			ı	SL T		-		03	56.0	57.5				:}		~~		$\ \ $		1		
23.37			5	•	-	1			Ш		23.3	01	586	1 52.8	$ \cdot$		Ш			~~				1		28
							ш	RT		23.	37	01	21.6	57.29		H							$\ \ $.
24.67	23/10						\vdash		-			03	22.6	23.60	Ш		$\ \ $]		~~						24.8
			GREY	3.01								06	17.8	9.74						~~				1		1
,,,,		- 1	\								262	03	20.5 25.1	21.42 66.5						~~				1		
26.27			CREAMY				П		1111	26.2		01	21.7	58.56				1					Ш	}		26.:
27 57			E C	295				_				03 06	21.8	23.18 7.29				1						1	•	27.5
	Ш			2841			Ш	┙	الللا	Щ_		03	19.9	21.15	Ш	Ш	ĿÜ	1		<u>~~</u>	ш	Ш	Ш	<u> </u>		

BOREHOLE LOGSFOR ENGINEERING PURPOSES TAB. 13

FEATURE - KP WATERWAYS		В	H KP7 SHEET OZ
DRILLING DATA BORTHOLE DATA			ROCK STRENGTH
Paralletines (tighes). A complete Britis in all a complete	(Ravery raugh Wavery light will non mate	and the state of t	A int
HIND TYPE JOY 188 PLEVATION (FOLLAR) NO. 485	B springer to page a figure high	6832 4 B 4 4 5	6 507500
48 GARREL, BIT N. W. FIMAL DEPTH	ACOUST THE BENEFIT OF STREET STREET		nigerentory allowing FM et fier eite
AB BEGRAD AT! BEARING	gerängte. Gipt Grand mitter	* : 	.e.g atemin freit fr & mar eret auf felt fe fent felt
DRILLING TESTS JOINTS FERMEABILIT	M	NIIIIII	MERINO ASPECTS
	tues tyre, tolbin ; eriffe si	iles (1.
	election of the first between the bar between the bar between the content, countries or principles	flow y y	REMARKE
THE CAME OF THE CA	e con the found about point	i y g h	estimation, positing,
ELWAND STREET	bitioning offerming in the printer of the printer o	4 2 0	potentiality to a littletty.
	na 77		1
			>0 10
	19170 PARALLEL PZJ		
	97 70 PROM 90 87 10 88 78 HOR	1000 P MIOP	R15.10.7
1 1 1 03 510	AR 7R TO PINE BRAINER	APRILIM S. S.	
)	1376		AP PO
1 3 1 0 7 0 1/3	41.8	3 78	
" "	10 10 10 11 AF 85 40, 85 60, 55 64 4	J/60	88 84
1	70 39		
3042 01 13 7 max 3042 01 NIL	AT BE BE GOOD FILE	J/48 "	35.47
	00		
2004 54.4 .	0.0 PHOM 38 78 TO 41 49		10.78
III III O O OR NIL	OO ONBIRG. LIGHT THRY, HIGH	-	
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	00		40.47
	20 40		
5 03 / 5 06 0 / 15 05 0	7 87		
	00	.,,,,,,	40 %/
	Prom at 40 45 64 8 Pt BNP100, LIGHT DORY, VERY		41 40
111 20 1	71 40	,,,,	
	11 99 At 48 97,48 18, 48 19,48 3	38 AND .~~	4P 81
11 91 1 01 26 3	23.70 46.98 BILIGA FILLED J/ R402 FROM 48.78 44.95 J/R5	·c	
111 ft 0	PRIM 49 84 10 80 i i iloni Biolite anfiés, Lient de Dana, coi nuarb bi-Aichi a	IEV WITH	4 4 41
34 01 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1 0 0 0 0 0 1 0	32 40		
[11 27		40.30
5" 0 hull 1 n 1	46 81	:::	
	1111111111		47 In
	18.18	-:- <u> </u>	
	8 55 1 4 1	<u> ~~ </u>	49.07
m/re	00	725	No ft
HICLE COMMETED AT THE	DEPTH OF STILL M.		
<u> </u>	L	علىمادا داماداداسه مستعدد ومستعدد	.le., lean marketinian eta aran eta aran eta PURPOSES TAB. 13

-						1 11	DE.			ĸ E		w _A	TFI	5 /V	 //Y	<u></u>			_		_			}					BI	H KPB	HEET)
-							DA									DAT	A					ΚE		<u> </u>	WEAT			7		OCK STRE		
-	MA DR CO FO	TERRICHITI	FD: NG NG NAR	TION TYP ME REL . LA	11.91 18 (1 HC	DAY	OMPLE 191' OY 12 ROTAR	TED: B Y	.11.1		X-C Y-C ELE ELE FIN INC VER	OOR VATI VATI AL C	DINAT DINAT ON I ON I EPTH	E. COL	LAR!) 31 6) 11 A	57 37		nale CO	ed VER	VER	1%	JOINT SEP! Vevery tight Tatight MOundariat on Geopen OTMER S PL. StapeInt i U.C. S. munication strengt Tatight	Q I mm 0 1-1 0mm en I.O-5 0mm > 5 0mer y MBOLS and strength I compressive h	completely highly 1 moderately	idated .				MN / m² A weak B C maderately strong strong very strong extremely strong	* 1 00 1.0 - 5.00 5.0 - 75 00 25 0 - 50 00 50 0 - 400 00 (00, 0 - 250.00 > 250.00	, ,
1	ij		RII					STS	J	101	NT		7				3ILIT	Υ	R	EC	OVI	R	GENER	AL DES	CRIPTION	1	,	Ε	NGI	NEERING A	SPECTS	
	08PTH (DAILY ADVANCE	CASING/CEMENT	DRILL WATER (COLOR, LOSS)	RATE OF DRILLING	ا ـ ا	1837	RSULT	JOINT SET NO.	ROUGHNESS	١.	0.03-6.30m 0.30-1 00m seacing	FROM TOP		\Box	PRESSURE (BARS) (manometer reading)	"MATER LOSS (10tol Litres/minute)	PERMEASULIT A/See		Ö	AND	* • •	scale on fa weathering, lithological strength,	d structure inted, lines eissone, po r joint spo alteration character joints	e (massive, aled, flow arphyritic, etc acing), i, minor istics,	GRAPHIC	MEATHERISS		ROCK STRENGTH	REMAR (with respect excavation, q permeability, etc.)	to routing ,	JE 941 (8)
13	006 1 2 11-8 2 45 3 91 3 - 48 5 - 59 6 5 6 5 7 1	्रम्पा करो। स्थाप	2.43 ft.	CREAMY DARK BROWN CREAMY DRY DRILLING DAILLING DAILLING	SATE OF			ne ar	I I I I I I I I I I I I I I I I I I I	R R R R	0 0 0 MO MC MC MC MC	0.20-0.00 0.00 0.00 0.00 0.00 0.00 0.00	3, =			PRESSURE	waren (HORRENT		CORE	AND	0	weathering, lithological strength, of the strength, of th	alteration character joints OIL - YELL LAYEY SAN OIL - REDDI D OIL - DARK C GNESS, MINANTE, EXTURE TAN NES OCCASIO - 4.75 WI - 11-11 WE - 15-18 F/: H	SROWN SROWN SROWN LIGHT MASSIVE, PARTS TED ALONG NALLY, EATHERED	· · · · · · · · · · · · · · · · · · ·	WEATHER			excavation, q permeability,	rouling ,	0 1 1 2 - 3 5 - 4 6 7 7 - 5 9 9 9 9 11-11 115-07 16-05
2	002	u/u				4 62 11/11		1	Τ	R DLE	T .	C O	MPL	ET	ED	A	Th	E DE					20.02	m.		*						20.07

- 1	u	
-	:	١
	Ļ	ì
- 3	2	
- 1	C	
1	Ĺ	
	ā	į
ż		
L	1	
	ï	
1	Ľ	
_ '	u	
ŀ	-	
•	d	
٦	כמככ	
-	ā	į
	ï	١
	٠	
7	ř	i
-	7	١
à	ב כ	•
L	1	
•	d	ì
1	÷	
	•	
		,
	Ų	ļ
-	7	
-	5	
	ď	į
١	-	
•		

RAM AREA = 14.426 CM²

G.B.G	- GARNE	GARNETIFEROUS BIOTITE GNEISS	TITE GNEISS		G.Ch.G	- GARNETII	FEROL	- GARNETIFEROUS CHARNOCKITIC GNEISS	TIC GNEISS	Peg	- PEGMATITE	
B.G	- BIOTIT	BIOTITE GNEISS	٠		Ch.G	- CHARNOCKITIC GNEISS	CKITIC	GNEISS		(QR)	- QUARTZ RICH	CH
H.B.G	- HORNE	- HORNBLENDE BIOTITE GNEISS	E GNEISS		Q.F.G	- QUARTZ	FELDS	- QUARTZ FELDSPAR GNEISS		٥	-DIAMETRAL TEST	TEST
		mod -{moderately	tely sl - slightly	tly fr - frest	lsh							
Hole	Hole Depth Rock	Rock	Weathering	Moisture	Test	sample Dia.		Gauge	REMARKS	Direction	<u>ч</u>	U.C.S
	Ë	type			type	Width cm.		pressure		ģ	Kg/cm ²	MPa
						Ë		kg/cm [^] 2		foliation		Ì
	1	(1	,	c	7	<u>.</u>		•		•	
χ- γ-	رد ر	5.8.5	DOLL	ary	۱ د	<u> </u>	4.		invalid test	:		
X X 8	3.45	3.45 G.BG	pom	dry	<u> </u>	7.5	5.4	17.5		=	8.66	20.78
KK-8	4.40	4.40 G.B.G(QR)	S	dry	Δ	Ξ	5.4	20	, ,	=	24.74	59.37
KK-8	4.90	G.B.G	рош	dry	۵	8	5.4	ଥ		=	9.89	23.75
KK-8	5.55	G.B.G	рош	dry	Ω	15	5.4	14			6.93	16.62
XX-8	6.55	B.G	рош	άry	۵	8.5	5.4	45			22.26	53.43
XX-8	7.25	B.G	S	dry	۵	7.2	5.4	70			34.63	83.11
KK-8	8.55	B.G	S	dry		14.5	5.4	105		=	51.95	124.67
KK-8	8.88	G.B.G	S	dry		17	5.4	25			12.37	29.68
XX-8	10.85	G.B.G	S	dry	Ω	11.5	5.4	105			51.95	124.67
XX-8	12.22	G.B.G	#	dry		2	5.4	100	·	=	49.47	118.73
XX-8	12.40	12.40 B.G(QR)	ff	dry		16.5	5.4	160			79.16	189.97
Χ Κ-8	13.40	13.40 B.G(QR)	#	dry		13.5	5.4	110		=	54.45	130.61
XX-8	14.90	B.G(QR)	Ħ	dry	Ω	=	5.4	150			74.21	178.10
χ 8-χ	16.80	16.80 B.G(QR)	‡	dry			5.4	110		=	54.45	130.61
X Κ 8-3	25.05 G.B.G	G.B.G		đ		8.5	5.4	100			49.47	118.73
X 8-λ	26.25	G.B.G	#	dry	Ω	12	5.4	125		=	61.84	148.42
XX-8	28.25 G.B.G	G.B.G	#	dry	Ω	10	5.4	105			51.95	124.67
K K 7	8.30	8.30 G,B.G(QR)	f	dry	Ω		5.4	160			79.16	189.97
KK7	8.40	8.40 G,B.G(QR)	fr	dry	Ω		5.4	150			74.21	178.10
KK7	8.50	8.50 G,B.G(QR)	ţ	dry			5.4	110			54.45	130.61
KK7	9.93	9.93 G,B.G(QR)	#	dry	Ω		5.4	170		ı·	84.10	201.85
KK7	9.86	9.86 G,B.G(QR)	f	dry	Ω		5.4	150		j	74.21	178.10
K 7	9.76	9.76 G,B.G(QR)	fr	dry	۵		5.4	175			86.58	207.78

Table 14 Point Load Test Records

					aple	4		Point Load lest Records	ecords			
RAM A	4REA = 14	RAM AREA = 14.426 CM ²										
G.B.G		- GARNETIFEROUS BIOTITE GNEISS	OTITE GNEISS		G.Ch.G	- GARNETIF	-EROU	- GARNETIFEROUS CHARNOCKITIC GNEISS	ITIC GNEISS	Peg.	- PEGMATITE	
B.G	- BIOTIT	BIOTITE GNEISS			Ch.G	- CHARNOCKITIC GNEISS	CKITIC	GNEISS		(OR)	- QUARTZ RICH	G.
H.B.G		- HORNBLENDE BIOTITE GNEISS	TE GNEISS		Q.F.G	- QUARTZ F	ELDSF	- QUARTZ FELDSPAR GNEISS		۵	-DIAMETRAL TEST	TEST
	=	nod - modera	mod - moderately sl - slightly	ntly fr - fresh	hst		į					
Hole	Depth	Rock	Weathering	Moisture	Test	sample Dia.		Gauge	REMARKS	Direction	I.G.	U.C.S
·········	Ë	type			type	Width cm.		pressure		ŏ	Kg/cm ²	MPa
						cm.	-	kg/cm^2		foliation		
X 7 7	11.06	11.06 G,B.G(QR)	Ħ	dry	Ω		5.4	170			84.10	201.85
KK7	11.16	11.16 G,B.G(QR)	#	dry	Ω		5.4	160			79.16	189.97
KK7	11.34	1.34 G.B.G(QR)	fr		Ω		5.4	175			86.58	207.78
X X	11.42	1.42 G.B.G(QR)	f	dry	Ω		5.4	190			94.00	225.59
X 7 7	11.48	1.48 G,B.G(QR)	fr		Ω		5.4	190			94.00	225.59
X 2 7	11.75	1.75 G.B.G(QR)	fr		Ω		5.4	180	٠		89.05	213.72
X 7 7	11.67	11.67 G.B.G(QR)	fr		Δ.		5.4	220			108.84	261.21
XX	11.61	1.61 G,B.G(QR)	#	dry	Ω		5.4	160			79.16	189.97
X 7 7	12.14 H.B.G	H.B.G	₽		Ω		5.4	170			84.10	201.85
XX7	12.82	G.B.G(QR)	#		Ω		5.4	200			98.94	237.47
XX7	12.68	12.68 G.B.G(QR)	Ţ		Ω	-,.	5.4	160		1	79.16	189.97
K 7	12.52	2.52 G.B.G(QR)	fr				5.4	150			74.21	178.10
KK7	13.07	3.07 G.B.G(QR)	#		۵		5.4	150			74.21	178.10
XX7	13.15	G.B.G(QR)		đ	Ω		5.4	155			76.68	184.04
KK7	13.21	G.B.G(QR)	ţ.		Ω		5.4	. 155			76.68	184.04
KK7	13.35	3.35 G.B.G(QR)	fr		۵		5.4	200			98.94	237.47
KK7	13.42	3.42 G.B.G(QR)	. t		Ω		5.4	175			86.58	207.78
X 7 7	13.49	3.49 G.B.G(QR)	f	dry	Ω		5.4	160			79.16	189.97
KK7	13.53	3.53 G.B.G(QR)	=======================================	dry	۵		5.4	165			81.63	195.91
7	13.65	G.B.G(QR)	ff	da	Ω		5.4	200			98.94	237.47
XX7	13.74	3.74 G.B.G(QR)	f	dry	Ω		5.4	185			91.52	219.66
KK7	13.80	3.80 G.B.G(QR)	#		٥		5.4	06			44.52	
KK7	13.92	G.B.G(QR)	#		Ω		5.4	180			89.05	
KK7	13.99	3.99 G.B.G(QR)	#	dry	Ω		5.4	190		į	94.00	225.59
X 7	14.17	G.B.G(QR)	fr	dry	٥		5.4	210			103.89	249.34

Table 14 Point Load Test Records

				200		200	ומכתותפ			
FAM A	34M AREA = 14.426 C.W2									
0 1 1 1	- GARNETIFEFOUS BIOTITE GNESS	CTITE GNEISS	()); 0.550	Service Telephone	OUS CHARK	- GARNET FEROUS CHARNOCKTIC GNESS	FEG FEGWATTE	GMA TE	
m G	- EXCENTE GNESS		•	05	SEENS OFFICE SAESS	TC GNEISS		HOIE ZIENDO - (HO)	JARIZ RIC	æ
E E E	- HORNELENDE BIOTITE GNEISS	TE GNEISS	· ·	0.50	2.4472 FEL	- OLARIZ FELDSPAR GNESS	Ŋ	NAIC C	-DIAMETRAL TEST	:S:
	mod - moderately	ately si - slightly	tly frest	4,3						
Hoie	Depth Rock	Weathering	Norsure	. 138 .	sampie) Dia	Garge	SPRANEE	g juscauci P	ii.	U.C.S.
	m. type		-	, vce	Weth cm.			to Y	₹G CTP 12	Edw.
		-			Н	sc.cm/2		chiacon :		***
2	1428[GB.GGR	Į.	dry	റ്	r.	,	In.		86.33	207.73
<u>X</u>	14.36 6.3 6.25		Ğ	0	ri in		in			36.54
8	14.48 3.3.6.25)	#	dy ·	വ	rų.		155			184,54
\$	14.57 GBGGR	#	Ğ	റ	7.0		45			172.18
<u>\$</u>	14.64 GB GCF3		Ġź	ದ	5.4	•	to st	acceptance of the second secon		72.15
<u>X</u>	14.77 GBGCFR	+	g	a	rty -1		3			184.34
25	16.30 G.B.G.Th	<u></u>	d-	Ω	5.4		[65]		3	195.91
25	16.67 G.B.G(CR)	<u></u>	dry	<u></u>	ıri		170 <<===================================		<u>.</u> 	
7.5	18.19 H.B.G		Ġ	۵	 (7)	*****	1522		111.31	267.15
1505	18.24 H.B.G	Ħ	day.	O		ন	243	<u> </u>	118.73	38:58
8	18.29 H.B.G	7	ф	Ω	(r) 		<cre>ccreate Test</cre>		<u>.</u> 	
XX	18.42 H.B.G	<u>}-</u>	ζý	۵		*1				284.35
<u>5</u>	18.47 H.B.G	+	dy	ត	เก่ 	<u></u>	250[286.33
\$	18.53 H.B.G	Ħ	dry	Ω	برن درن		190			25522
257	19.07 G.B.G	#	र्दे	ਨ	ь <u>г</u>		195			165.31
8	19.15 gag	-	ڗؙڮٛ	ٔ۵	10 10	Lange a	145		71.73	172.15
87	19 <i>2</i> 2 a.a.a		ά	Ö	.r.i	4	160		-	189.37
8	19.29 G.B.G	#		ה	rų.		(1)	elektronistical de la constanta de la constant		139.24
<u>5</u>	19.77 6.3.6	#		Δ	เก่	·***	CO	-	<u>15</u>	54.35
8	19.69 a.a.a	#	day	<u>ה</u>	10		<u> </u>	ginna sana sana sana sana sana sana sana		142.48
Š	19.54 G.B.G	,±		ົດ	rt)		125			148.42
Š	19.57 G.B.G			Ω	ľ		10			155.54
55	19.51 6.8.6	<u></u>		Ω	(V)	**	130			157.35
<u>X</u>	19.45 GBG	+		۵	(r)	- 	125	technical manufacture at the		148 42
S S	35.45ja.ch.a	fr fr		ō	ικ	7	2151	-	108.38	255.27

Table 14 Point Load Test Records

					lable	<u>†</u>	III LO	Point Load lest Records	ecords			
RAM A	REA = 14	RAM AREA = 14.426 CM ²										
G.B.G	- GARN	- GARNETIFEROUS BIOTITE GNEISS	OTITE GNEISS		G.Ch.G	- GARNETIFI	EROUS	CHARNOCK	- GARNETIFEROUS CHARNOCKITIC GNEISS	Peg	- PEGMATITE	
B.G	- BIOTIT	- BIOTITE GNEISS			Ch.G	- CHARNOCKITIC GNEISS	KITIC G	NEISS		(OR)	(QR) - QUARTZ RICH	CH
H.B.G	HORN	HORNBLENDE BIOTITE GNEISS	TE GNEISS	,	Q.F.G	- QUARTZ FELDSPAR GNEISS	ELDSPA	R GNEISS			-DIAMETRAL TEST	TEST
		nod - modera	mod - moderately sl slightly	itly fr - fresh	lsh							
Hole	Depth Rock	Rock	Weathering	Moisture	Test	sample Dia.		Gauge	REMARKS	Direction	P.I	U.C.S
	Ë.	type			type	Width cm.		pressure		ō	Kg/cm [^] 2	MPa
						CM.	kg	kg/cm^2		foliation		•
X 7 7	35.39	G.Ch.G	#	dry	Ω		5.4	260			128.63	308.70
X 7	35.33	35.33 G.ch.G	#	dry	۵		5.4	270			133.57	320.58
X 7	35.26	35.26 G.ch.G	fr	dry	Ω		5.4	240			118.73	284.96
X 7	35.16	35.16 G.Ch.G	T.	dry	Ω		5.4	140			69.26	166.23
X 2 7	37.81	37.81 G.ch.G	#	. dry	Ω		5.4	225			111.31	267.15
X 7	37.91	37.91 G.ch.G	#	dry	Ω		5.4	225			111.31	267.15
X 7 7	37.97	37.97 G.ch.G	fr	dry	Ω		5.4	190			94.00	225.59
XX7	38.04	38.04 G.ch.G	fr	dry	Ω		5.4	190		•	94.00	225.59
X 7	38.10	38.10 G.ch.G	fr	dry	Δ		5.4	155	< <not incipient="" joint<="" td="" valid,=""><td></td><td>*</td><td></td></not>		*	
X 2 7	38.16	38.16 G.ch.G	fr	dry	Ω		5.4	225			111.31	267,15
XX7	40.19	40.19 G.ch.G	#	dry	Ω		5.4	250			123.68	296.83
X 7	43.80 a.F.G	Q.F.G	#	dry	Ω		5.4	140			69.26	166.23
X 7 7	44.63 Q.F.G	Q.F.G	fr	dry	Ω		5.4	160			79.16	189.97
KK7	44.68 Q.F.G	Q.F.G		dry	Ω		5.4	175		_	86.58	207.78
KK7	44.78 Q.F.G	Q.F.G	f	dry	۵		5.4	225			111.31	267.15
KK7	44.83 Q.F.G	O.F.G	fr	dry	Ω	•	5.4	250		1	123.68	296.83
KK7	45.00 a.F.G	Q.F.G	fr	dry	Ω		5.4	225			111.31	267.15
KK7	49.27 Ch.G	Ch.G	≠	dry		-	5.4	150			74.21	178.10
KK7	49.32 ch.g	Ch.G	Ŧ	dry	۵		5.4	200	200 broken along foliation		98.94	237:47
K 7	49.42 Ch.G	Ch.G	fr	dry	۵		5.4	250			123.68	296.83
KK7	. 49.59 Q.F.G	O.F.G	Ħ	dry	Ω	-	5.4	282			140.99	
KK7	42.38 Q.F.G	Q.F.G	fr	dry	۵		5.4	115		=	56.89	136.54
KK7	42.46 a.F.G	Q.F.G	fr	dry	Ω		5.4		test failed		•	*
KK7	42.52 Q.F.G	Q.F.G	fr	dry	۵	-	5.4	250		i	123.68	
KK7	42.57 Q.F.G	Q.F.G	fr	dry	۵		5.4	230			113.79	273.08

-	e	ř
	-	
	Ļ	į
	2	
	ς	ì
	L	١
	ā	
	ï	ì
k	-	
-	ú	
	ä	
	u	
F	-	
i	_	
7	Ç,	ì
- 1	ū	ì
	c	١
	_	ı
•	-	
	٠	
1	c	
٠	-	
	C	
•	ī	
٠	-	۱
	4	١
•	٧	ļ
•	۳	
	٥	
•	÷	
	C	١
-	ä	i
	٠,	•
•	_	

RAM AREA = 14.426 CM²

2 2 2 2	*- # 430	2 MO 024.41 = V3UV MAL									
G.B.G		- GARNETIFEROUS BIOTITE GNEISS	OTITE GNEISS		G.Ch.G	- GARNETIFE	- GARNETIFEROUS CHARNOCKITIC GNEISS	(ITIC GNEISS	Peg.	- PEGMATITE	
B .G	- BIOTII	BIOTITE GNEISS			Ch.G	- CHARNOCK	CHARNOCKITIC GNEISS		(O B)	- QUARTZ RICH	당
H.B.G		- HORNBLENDE BIOTITE GNEISS	TE GNEISS		Q.F.G	- QUARTZ FEI	QUARTZ FELDSPAR GNEISS		۵	-DIAMETRAL TEST	TEST
		mod - moderately	ately sl - slightly	ntly fr - fresh	sh						
Hole	Depth	Rock	Weathering	Moisture	Test	sample Dia.	a. Gauge	REMARKS	Direction	<u>-</u> .	U.C.S
	Ë	type			type	Width cm.	. pressure		ō	Kg/cm ²	MPa
						cm.	kg/cm^2		foliation		
K 77	42.67	Q.F.G	fr	dry	a	သ	5.4 150		=	74.21	178.10
KK7	42.74 Q.F.G	Q.F.G	±	- dry	۵				=	69.26	166.23
KK11	16.36	16.36 ch.G	#	đy	Ω	ري 	5.4 115			56.89	136.54
KK11	16.40	Ch.G	#	dry	Ω	<u>س</u>	5.4 80	., 1		39.58	94.99
XX11		Ch.G	Ħ		۵	د ې	5.4 155			76.68	184.04
XX	16.66 ch.G	Ch.G	#		۵	ч о	5.4 175			86.58	207.78
XX 11	16.78 ch.g	Ch.G	#		□	<u></u>	· · · · · ·	80 broken alon biotite rich layer		39.58	94.99
XX 11	16.84 ch.g	Ch.G	Ŧ		۵	ഹ	5.4 190			94.00	225.59
XX	16.90 ch.G	Ch.G	ft.		Ω	чэ 			İ	113.79	273.08
XX 11	17.02	17.02 ch.G	fr		Ω	<u></u>				113.79	273.08
XX 11	1 22.18 ch.G	ch.G	#		Δ	<u>ш)</u>			1	111.31	267.15
XX 11	1 22.24 Ch.G	Ch.G	fr		Ω	u)	5.4 245			121.21	290.89
KK11	1 22.30 Ch.G	Ch.G	fr		Ω	u) 		200 biotite rich		98.94	237.47
KK11	1 22.36 ch.G	Ch.G	fr		۵	u)	5.4 225		1	111.31	267.15
KK11		17.55 ch.G	fr		Ω	u)		110 biotite rich section		54.45	130.61
KK1	-	17.61 Ch.G	7=		Ω	u)	5.4 230			113.79	273.08
KK1	1 17.95	7.95 ch.G		dry	Ω	u)	5.4 215		=	106.36	255.27
XX 11	<u>.</u>	18.05 ch.g	fr		۵	u)	5.4 165		=	81.63	195.91
KK11	<u> </u>	18.20 ch.g			0	u)	5.4 150	150 garnet rich	=	74.21	178.10
KK11	<u>.</u>	18.37 ch.G			<u> </u>	u)		225 typical charnockite	=	111.31	267.15
X - 2	1 18.43	3 ch.G	<u></u>		Ω		5.4 240		=	118.73	284.96
KK11	1 18.75	5 Ch.G	#	dry	۵		5.4 145	145 with biotite	=	71.73	172.16
KK11		18.92 Ch.G	ff	dry	۵	47	5.4 225		=	111.31	267.15
XX11		3 Peg.	<u></u>	dry	۵		` 	175 < <not incipient="" joint<="" td="" valid,=""><td><u>.</u></td><td>*</td><td></td></not>	<u>.</u>	*	
XX 11	1 19.10	C.h.G	ţ.	dry	0	"	5.4 250			123.68	296.83

Table 14 Point Load Test Records

RAMA	REA = 14	RAM AREA = 14.426 CM ²										
G.B.G		- GARNETIFEROUS BIOTITE GNEISS	OTITE GNEISS		G.Ch.G	GARNETIFE	ROUS CHAR	- GARNETIFEROUS CHARNOCKITIC GNEISS		Peg.	- PEGMATITE	
B.G	· BIOTII	BIOTITE GNEISS		_	Ch.G	CHARNOC	- CHARNOCKITIC GNEISS				- QUARTZ RICH	G.
H.B.G	- HORN	· HORNBLENDE BIOTITE GNEISS	TE GNEISS	-	Q.F.G	· QUARTZ FE	- QUARTZ FELDSPAR GNEISS	SSI		Δ.	-DIAMETRAL TEST	TEST
		mod - moderately	ately sl - slightly	tly fr - fresh	sh							
Hole	Hole Depth Rock	Rock	Weathering	Moisture	Test	sample Dia.	a. Gauge	REMARKS		Direction	L.q.	U.C.S
	Ë	type			type	Width cm.				ŏ	Kg/cm ²	MPa
						cm.	kg/cm^2			foliation		
X 7 1	19.31	C.h.G	#	dry	۵		5.4	225		=	111.31	267.15
XX 11	19.36 c.n.g	C.h.G	fr	du	Ω		5.4	170 part coarse grained quartz		=	84.10	201.85
X 11	19.42 C.h.G	C.h.G	Ħ	dy	۵			230 typical charnockite		=	113.79	273.08
X 1	19.46 C.h.G	C.h.G	Ħ	dp	۵			250 typical charnockite		=	123.68	296.83
X 1	19.64 C.h.G	C.h.G	fr	dry	۵		5.4	190 typical charnockite	'1	=	94.00	225.59
XX 11	19.70 c.h.g	C.h.G	fr	dry	Ω			230 typical charnockite	ł	=	113.79	273.08
KK11	19.76 c.n.g	C.h.G	Ħ	dry	Ω		5.4	225 typical charnockite		=	111.31	267.15
XX11	19.82 C.h.G	C.h.G	#	dy	۵	~,·	5.4	240 typical charnockite		=	118.73	284.96
XX11	20.00 c.n.g	C.h.G	fr	dy	۵		5.4	175		=	86.58	207.78
XX11	20.06 C.h.G	C.h.G	Ħ	dry	Ω			175		=	86.58	207,78
X	20.14 C.h.G	C.h.G	fr	dry	Ω			190		=	94.00	225.59
XX 11	20.21 c.h.g	C.h.G	fr	dry	۵	~·	5.4	240		=	118.73	284.96
X 1	22.20	G.B.G	fr	dry	٥		5.4	110 broken along graphite rich area	ва	-	54.45	130.61
X 11	22.26	G.B.G	fr	du	۵		5.4	220 little graphite			108.84	261.21
X 7 1	22.32	G.B.G	+	dry	۵		5.4	185 traces of graphite			91.52	219.66
X 11	22.38	G.B.G	±	dry	Ω		5.4	240 traces of graphite			118.73	284.96
X 1	22.44 G.B.G	G.B.G	Ŧ	dry	۵		5.4	200			98.94	237.47
X 11	22.50	G.B.G	f	dry	Ω		5.4	140 <-invalid test			*	
X 11	22.60 G.B.G	G.B.G	Ħ	dry	Ω	-		200			98.94	
XX 11	22.68 G.B.G	G.B.G	f	dry	Ω		5.4	215			106.36	255.27
X 11	23.23 G.B.G	G.B.G	fr	dry	Ω		5.4	75 graphite on broken surface			37.10	
X 1	23.29 G.B.G	G.B.G	fr_	dry	۵		5.4	175			86.58	
X 1	23.35 G.B.G	G.B.G	#	dry	٥		5.4	100 traces of graphite			49.47	118.73
X 2 1	23.41 G.B.G	G.B.G	Ŧ	dry	Ω	→ ,	4.0	200 no graphite		ı'	98.94	
X 1 1	23.46	G.B.G	fr	dry	ā		5.4	175			86.58	207.78

- (u	ı	
-	ř	÷	
1	٠	J	
3	2		
- (C	2	ļ
1	Ĺ	j	
7.000	á	i	
2	:		
ſ	2		
_			
7	ï	ř	١
1	ž	1	١
.1	u	Ų	١
١	_		
1			
٦	Ċ	1	į
7	ä	i	
	٤	ï	١
(Ç	ì	١
_		J	
•	٠		
1	c		
•	=		
1	c	1	ĺ
	۹	ī	
٠		۰	
۹	ς	Í	
•	ř	í	
•	•		
	_		
	Ų	ŀ	۱
	ï	ī	
	٠		
1	¢	C	į
۱			
•			

G.Ch.G - GARNETIFEROUS CHARNOCKITIC GNEISS

G.B.G - GARNETIFEROUS BIOTITE GNEISS

RAM AREA = 14.426 CM²

B.G - BIOTITE GNEISS

Ch.G - CHARNOCKITIC GNEISS

Peg. - PEGMATITE (QR) - QUARTZ RICH

5 n	200				5					3	י חטומ או האסאי	
H.B.G	- HORNB	- HORNBLENDE BIOTITE GNEISS	TE GNEISS		Q.F.G	- QUARTZ	FELDS	- QUARTZ FELDSPAR GNEISS		۵	-DIAMETRAL TEST	TEST
	E	mod - moderately	ately sl - slightly	tly fr - fresh	lsh							
오음	Depth	Rock	Weathering	Moisture	Test	sample	Dia. (Gauge	REMARKS	Direction	P.I	U.C.S
	E	type			type	Width cm.		pressure		75	Kg/cm ²	MPa
						cm.	_	kg/cm^2		foliation		3
KK11	24.18	G.B.G	fr	dry	۵		5.4	100	00 biotite rich area traces of graphite	=	49.47	118.73
X 1	24.24	G.B.G	#	du)	۵		5.4	140	traces of graphite	=	69.26	166.23
XX11	24.30 G.B.G	G.B.G	fr	dry	Ω		5.4	135	traces of graphite	=	66.79	160.29
KK11	24.36 G.B.G	G.B.G	#	dry	Ω	7	5.4	82	85 broken along foliation with graphite and biotite	=	42.05	100.92
X 11	24.45	G.B.G		dry	Ω		5.4	180		=	89.05	213.72
XX11	24.88 G.B.G	G.B.G	#	dry	Ω		5.4	100	100 broken along biotite rich layer	<u>=</u>	49.47	118.73
KK11	24.94 G.B.G	G.B.G	fr	dry	۵		5.4	ဓ	broken along biotite rich layerwith graphite	=	14.84	35.62
XX 11	25.00 G.B.G	G.B.G	Į.	dry	Ω		5.4	110	110 broken along biotite rich layer	=	54.45	130.61
XX11	25.22 G.B.G	G.B.G	fr	dry	۵		5.4	150		=	74.21	178.10
XX 11	22.28 G.B.G	G.B.G	fr	dry	۵		5.4	75		=	37.10	:89.05
XX 1	22.34 G.B.G	G.B.G	Ħ	dry	Ω		5.4	100		=	49.47	118.73
XX 11	1 22.40 G.B.G	G.B.G	fr	dry	۵		5.4	140		=	69.26	166.23
X 11	1 22.46 G.B.G	G.B.G	#	dry	۵		5.4	165		=	81.63	195.91
XX 11	27.48 G.B.G	G.B.G	<u></u>	dry	Ω		5.4	190		=	94.00	225.59
X 11	1 27.54 G.B.G	G.B.G	<u></u>	dry	۵		5.4	202	205 no graphite	=	101.42	243.40
XX	1 27.60 G.B.G	G.B.G	-t	dry	Ω		5.4	202		=	101.42	243.40
X	1 27.66 G.B.G	G.B.G	<u>+</u>	dry	Ω		5.4	160		=	79.16	189.97
<u>X</u>	1 27.72 G.B.G	G.B.G	#	dry	Ω		5.4	225	225 quartz rich	=	111.31	267.15
X 1	1 27.78 G.B.G	G.B.G	7=		۵		5.4	140	140 biotite rich	=	69.26	166.23
X 12	1 28.06 ch.g	Ch.G	Ħ		۵		5.4	65	65 invalid test	=	*	
X F	1 28.12 G.B.G	G.B.G	#	dry	۵	-	5.4	150		=	74.21	178.10
<u>X</u>	1 28.18	G.B.G	#		۵		5.4	110		=	54.45	130.61
X 1.	1 28.24 G.B.G	G.B.G	fr		Ω		5.4	125		=	61.84	148.42
XX 11	1 28.30 G.B.G	G.B.G		dry	Ω		5.4	145		=	71.73	172.16
X 7	1 28.46	G.B.G	fr	dry	D		5.4	95			47.00	112.80

Table 14 Point Load Test Records

				- I able 14		ğ	POINT LOAD LEST MECONDS	ecords			
RAM ARE	34M AREA = 11,426 CM/2										
0.8.Q	- GARNETIFERCUS ROTITE GNEISS	SIOTITE GNEISS	.,	63.00	S. S. S. S. S. S. S. S. S. S. S. S. S. S	ERCUS (CHARNOCK	- GABNETHERCUS CHARMOCKITIC GNEISS	edi n.	EVENTANOSE -	
ന ന	- BIOTTE GNEISS		•	57.0	GEARNOCKITIC GNEISS	CKITCE	NEISS		fr. U	- CUARTZ RICH	.
Hag.	- HORNBLENDE SIOTITE GNEISS	THE GNEISS	•	0.50	- CUARTZ FELDSFAR GNEISS	RESCHE	A GNEISS		rì		TEST
	тод - тосе	mod - moderately sl - slightly	itly fr - fresh								
Hole ID	Hole i Depth Rock	Weathering	Moisture	1.881	sampiei Dia.		Gauge	REMARKS	Cirecton	c.	U.C.S
Ë	r. type			type	Wicth cm.		pressure		15	14gcm/2	MPa Pa
				~	Ę). - -	kg/cm^2		i triedon		
<u>K</u>	28.50 G.a.G		<u>d</u>	ត		5.4	105			51.95	124.57
<u>K</u>	28.56 6.3.6	Je	ğ	Ö	····	5.4	125		abiling	51.84	148.42
<u>K</u> <u>K</u> 41	28.62 G.a.G	#	dy	۵		رن <u>ب</u>	110		100 100	54.42	130.61
X 2 2	28.68 6.3.5	Ė	dy	Ö		5.4	100		**************************************	49.47	118.73
<u>K</u>	28.74 G.B.G	*	Ġ	Ω		5.4	120	,	eindige.	59.37	142.48
KK11 2	28.80 6.3.6	Ŀ	g	Ω		5.4	125	•	Eponychin Mile Male un bij	97.	148.42
XX 11 2	28.86 G.3.G	45	ਨ੍ਹੇ	۵		5.4	105		A straight of the straight of	. 51,65	124.57
8 41	28.94 G.E.G	Þ	ç	Ω		بر. برد	3		pin.	32.16	77.18
XX 11	29.00 G.B.G	E	Ę,	מ		5.4	105		######################################	53.53	124.57
XX 12	29.56 G.s.c	ţ	क्रि	Ω		5.4	180			8 8.03	213.72
KX11	29.62 G.a.G	F	Ę,	Ö		5.4	180			88	213.72
XX 1 2	29.68 G.B.G	F	Ę,	<u></u>		5.4	170		## 10 10 10 10 10 10 10	84.10	231.65
XX 1-1	29.74 G.3.G	12	dr	۵	. p. (100)	رن 4.	170		April Me we made	20.13	201.85
8 411	29.80 G.a.g	-	G	_ក		ν Vi	183		7.3	<u>8</u>	195.91
<u>\$</u>	23.88 ය. ෙ	声	Ĝ	<u></u>		ri)	165		Easter St.	æ :83	195.51
秦	29.94 GBG	1	ğ	ದ		5.4	165		South to Mark I	23.	195.91
5 4 3	30.00 a.s.a	Ŧ.	dıx	۵	- Lond	5. 	210			102.85	249.34
G.3.G - (- GARNETIFERCUS BIOTITE GNEISS	SICTITE GNEISS		GC1.G -	CARNETT	ERCUS!	CHARNOCK	- GABNETIFIERCUS CHARNOCATIC GNEISS	Ŗ,	- SEGMATITE	
	BIOTITE GNESS		_	, 040	CHARNOCKTIC GNEISS	CKTC	NEISS		Œ,	- CUARTZ RICH	5
HBG -	- HORNBLENCE BIOTITE GNEISS	TITE GNEISS	•	0.5.6	-CUARTZ FELTSPAR GNESS	KESST III	A GNEISS		D-CAN	D-DIAMETRALTEST	

TABLE 15 (1/4) PERMEABILITY TEST RECORDS

KK 205 DAM SITE (NEW)

TABLE :15	5 (1./4) PERME	ABILITY TEST RECORDS
KK205 DA	AM SITE (NEW)
hole no	DEPTH M.	Permeability m/min.
KK36	1.50	9.291916E-07
KK37	1.58	6.385027E-07
КК39	1.50	>1.858383E-04

Permeability m/min 5.789328E-06 3.997393E-06 3.666679E-06 5.046817E-06 4.386700E-06 3.324215E-06 1.127231E-05 1.216598E-06 1.673358E-06 1.157866E-05 1.882781E-05 3.619715E-07 4.372149E-06 1.929776E-05 8.683992E-06 2.186074E-06 4.451561E-06 4.242693E-06 2.045178E-06 2.737980E-06 2.025566E-06 2.198179E-06 1.020168E-06 1.457383E-06 2.769028E-06 TABLE: 20 (2 /4)PERMEABILITY TEST RECORDS DEPTH M. 16.025 10.625 13.525 12.075 0.725 2.175 3.625 5.075 1.725 2.935 0.725 0.775 7.725 9.175 3.495 4.835 14.9 6.4 7.4 8.3 9.3 KK205 DAM SITE(OLD) KK-10 KK-10 KK-10 KK-10 KK-10 KK-10 KK-10 KK-10 hole no KK-10 KK-10 KK-10 KK16 KK16 KK16 KK18 KK 20 KK9 KK9 KK9 K K 9 8 8 18 **KK20** ■ KK10 ▲ KK16 * KK18 ♦ KK9 16 4 7 PERMEABILITY VS. DEPTH 10 8 DEPTH M. 2.000000E-05 1.600000E-05 1.800000E-05 1.400000E-05 1.200000E-05 8.000000E-06 1.000000E-05 6.000000E-06 4.000000E-06 2.000000E-06 0.0000000E + 00oəs/ PERMEABILITY M

RECORDS - KK 205 (OLD)

TABLE 15 (2/4) PERMEABILITY TEST

	э.	TABL	TABLE 15 (3/	74) PERMEABILITY		TEST RECOR	RECORDS - KK 230	230			
							TABLE:	TABLE: 20 (3 / 4)) PERMEABILI	PERMEABILITY TEST RECORDS	
					; ;			•			1
				PERMABILITY Vs. DEPTH	TY Vs. DE	FPTH	hole no		DEPTH M.	Permeability m/min.	1 .⊆
	1.600000E-05						KK1		0.64	1.207172E-05	l i
		4					KK1		1.93	5.535620E-06	i i
	1.400000E-05	,	*				KK1		3.305	2.963272E-06	
эә					<u>L</u>		KK1	•	4.485	5.865251E-06	
s/I	1.200000E-05			•		■ DRILL HOLE KK1	KK3		0.725	1.447332E-05	
N .						OBILL HOLE KK2	KK3		2.175	1.286517E-06	
71JI8	יייייייייייייייייייייייייייייייייייייי						ККЗ		3.625	1,399088E-05	i . i
3 V 3					•		KK3		5.075	1.224202E-05	
MA]	1						KK3		6.525	3.109084E-06	
	8.0000000E-06						ККЗ		7.975	1.554542E-06	
							KK3		9.2	6.347019E-07	_
	6.0000000E-06			•			KK3		10.2	5.863659E-07	
								1			
	4.00000E-00			*							
	2.000000E-06 +				*						
		*			»	*					
J	0.0000000E+00 +				-		7				
	0	2	4	6 0 FEDTH M	ω	10	12				
	•			ב ביל							

RECORDS - KP PLAN TABLE 15 (4/4) PERMEABILITY TEST

TABLE: 16 RESULTS OF ANALYSIS OF WATER OBTAINED FROM DRILL HOLES AT KK 230 DAM AXIS

	SPECIMEN 1 from drill hole KK2	SPECIMEN 1 from drill hole KK3
Sodium(as Na) , mg/l	7	7
Potassium (as K) , Mg/I	4	. 4
Calcium (as Ca) , mg/l	16	16
, Magnesium (as Mg) , mg/l	4	4
lon (as Fe), mg/l	0.5	0.6
Manganese (as Mn) ,mg/l	0.03	0.03
Chloride (as Cl) , mg/l	7	7
Bicarbonate (as HCO ₃), mg/l	26	26
Fluoride (as F) at 25 °C , mg/l	0.03	0.13
Sulphate (as SO ₄) .mg/l	11	13
Total hardness (as CaCO3) ,mg/l	137	138
Electrical conductivity at 25 °C , μs/cm	300	300
pH at 25 °C	7.1	7.2
Acidity (as CaCO ₃), mg/l	less than 1	less than 1
Total alkalinity (as CaCO ₃), mg/l	42	42

Figures

WORK TIME SCHEDULE OF GEOLOGICAL INVESTIGATIONS AND PROGRESS

 <u></u>			T:																	٦	د		٦
1993	NAC															N	_0_						
	DEC															17.8.92	17.8.9					Work Time Schedule And Progress	
	NO N															ble as af	ble as of					e And	
	ОСТ															not available	not available		Y VAL)		-	Schedul	
	SEPT															Results n			FEASIBILITY REPORT (FINAL)		FIGURE: 3	Time	
	AUG				 -					_	-						ETT Results	•			Ļ	No.	
	JULY				-							,		I	-				FEASIBILITY REPORT(DRAFT)		ROJECT	ule Ganga J	
1992	JUNE						1							╂		-		•	FEASIBILITY REPORT(DRA		WER P	Joint Venture Kukule Ganga NK, EVI & LI	CECB, TEAMS, RDC
-	MAY J																		u. _{[L}		DROPO	Joint Ver	CEC
	APRIL N								· .												JGA HY	Lanka Energy	Board
	MAR AP						I									-					KUKULE GANGA HYDROPOWER PROJECT	Government of Sri Lanka Ministry of Power and Energy	Ceylon Electricity Board
					-		╁														KUKU	Governa Ministry of	Ceylon F
	N FEB		,	-			-			<u> </u>		-							L ORT		<u>-</u>		
	C JAN					-					_						_		CONCEPTUAL DESIGN REPORT				
	/ DEC			-			-	. [1									CONC				
1661	NON .					-	-		I	-						ļ							
=	ОСТ																		٠				
	SEP		•						٠														
	-	W	Σ	Σ	Σ	Σ	Σ.	E	Σ	Σ		ž											
YTITNVIIO		100. 41	70.13	220.80	186.60	185.00	510.00	900.00	1500.00	500.00	900.00 M	2200.00		IS No.	10 No.								
ō	3	O.	7	52	8-	<u>e</u>	Ñ	06	35	8	8	22											
	,		l S	TE	VTED)	TED)		AND	TE	XTED)	ED)	•	OF.	TED)	S	CTED)	s						
OCATION		DAM SITE	ER WAY	DAM SI	ELIMINA E	SELEC	ERWAYS	SITE	DAM SI	ELIMIN/	SELECT	ERWAYS	TATION	SELEC	ERWAY	SELEC E	ERWAY						
· c		KP DAM	KP WATER WAYS	KK 230 DAM SITE	KK 205 (ELIMINATED) DAM SITE	KK 205 (SELECTED) DAM SITE	KK WATERWAYS	KP DAM SITE AND	KK 230 DAM SITE	KK 205 (ELIMINATED) DAM SITE	KK 205(SELECTED) DAM SITE	KK WATERWAYS	INTERPRETATION OF	KK 205 (SELECTED) DAM SITE	KK WATERWAYS	KK 205 (SELECTED) DAM SITE	KK WATERWAYS						
				×	אַ <u>ס</u>	ΧQ	<u>×</u>	**	×	ΧO	X0	×	≧0	-	2 2 2	ORY							
MATI NAOW	-	DRILLING						SEISMIC	SURVEY					TECT D	ī.	LABORATORY	TESTING						
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		DR						SE	S					H	J -	LĀ	¥ 						

of Sri Lanka is essentially an extension of dia which forms part of the Gondwana geologically remote times. It has neither submerged by the sea nor has it been the violent crustal upheavals which have led tion of the great mountain chains of the only major submergence was in Tertiary Miocene sediments were laid down and elevated to form the north western belt of cluding the Jaffna Peninsula and the off s. The various geological formations in the country are summarised below, age and starting with the oldest.

Formations

(a) Charnockite to Sedimentary Series (Highland Series).

Quartzites, quartz-schists, granulites, garnet-sillimanite graphite schists, sillimanite gneisses, cordierite gneisses, calc-gneisses, crystalline limestone, dolomites and charnockites.

(b) Vijayan Series – granites, granitic gneisses, biotite gneisses, biotite-hornblends gneisses, pegmatites and charnockites.

Sandstones, arkoses, grits, shales and carbonaceous shales.

Garnet-sillimanite-graphite schists

These rocks are distinctive because of the large size of the garnets. Sillimanite and graphite are common and the garnets are often surrounded by sheaves of sillimanite.

Ouartzites

Quartzites are perhaps the most prominent members of the Series and occur as ubiquitous bands, several hundreds of metres in thickness in places, which can be traced for many kilometres along the strike. They are widely distributed but attain their greatest development in parts of the hill country and in the region of Minneriya and Polonnaruwa, terminating on the east coast at Trincomalee.

Crystalline Limestones

Marbles occupy a very prominent place in the Series and occur interbanded with quartzites, charnockites and garnet sillimanite-graphite schists. The association with the last named rock type is particularly striking in the Matale and Matale North districts.

Wollastonite-bearing granulites gneisses

Wollastonite-scapolite-diopside gneisses are distributed in the south-west coastal region between Kalutara and Ahangama and they are best developed in the immediate neighbourhood of Galle.

Cordierite gneisses

A distinctive group of cordierite-bearing rocks occur in

Miocene

These rocks which are mainly limestones are best developed in the Jaffna peninsula. The limestones vary in texture from porous to massive, highly fossiliferous rock capped by thin layers of red soil of the 'terra rosa' type. The thickness of the limestone is probably of the order of several hundred metres.

The miocene limestones of the peninsula extend southwards along the north-west coastal belt towards Puttalam. Near the southern end of the belt the limestones are well exposed; they resemble the Jaffna limestones in appearance and in chemical composition but in this region are interbedded with aranaceous limestones.

Pleistoceme

Red earths and gravels

The pleistocene consists of two formations – an upper red earth formation and a lower gravel deposit. The two formations are fairly well defined though locally they appear to merge into each other both vertically and laterally. The red earth varies considerably in thickness from a few metres up to 30 metres.

The gravels are mottled and show various shades of red and brown in a grey clayey matrix. The gravel which consists mainly of quartz grains is not always present and their distribution is patchy. Where they are absent, the red earths directly overlie Miocene or Precambrian rocks.

00.6

Locations of Seismic Events

FIGURE: 6

:

Joint Venture Kukule Ganga NK, EWI & LI CECB, TEAMS, RDC Government of Sri Lanka Ministry of Power and Energy Ceylon Electricity Board

KUKULE GANGA HYDROPOWER PROJECT
Government of Sri Lanka
Ministry of Power and Energy
NK, EWI & LI
CEVIOR Electricity Board
CECR. TEAMS. RDC

Venture Kukule Ganga
SWI & LI
CECB, TEAMS, RDC
SCOR, TEAMS, RDC
STORM FIGURE: 8 (2 / 2)
Geological Map of Dam Site Areas
Secondary Cecb, TEAMS, RDC
SA - F - 17

:

Ţ

(FOR LOCATION OF THIS SECTION SEE FIG. NO. 2(1/6),8(1/2)

B - B

SECTION

NOTE : FOR LOCATIONS SEE FIG. 2 (1/9), FIG.12

5A - F - 23	- A2	
KK 20	CECB, TEAMS	(tDA)
Headr	NK, EWI & LI	Ceylon Electricity Board
Geotec	Joint Venture Kukule Ganga	
FIGURE	KUKULE GANGA HYDROPOWER PROJECT	KUKULE GANGA H

Geotechnical Sections of Power House Area,
Headrace Intake, Tailrace Outfall.
KK 205 (New)

No.2 (2/6) FIG. 8 (2/2) SECTION ALONG A-A (FOR LOCATION OF THIS SECTION SEE KK 10 KK 20 SEISMIC LINE KK-3-S

240

250

230

220

. 250

260

- 240

. 550

- 200

180

.081

200 190

210

9

170

150

09 09

210

SCALE: 1:1000

NOTE OUTLINES OF STRUCTURES PROJECTED INTO THE GEOTECHNICAL SECTION; LEGEND SEE FIG. 10 (1/2)

SCALE - 1: 1000

KUKULE GANGA HYDROPOWER PROJECT

Government of Sri Lanka
Ministry of Power and Energy
Ministry of Power and Energy
Ceylon Electricity Board

CECB, TEAMS, RDC

FIGURE: 16

Geotechnical Section Along Desander

Geotechnical Section Along Desander

Geotechnical Section Along Desander

Geotechnical Section Along Desander

Of KK 205 Dam (Old)

RIGHT BANK 2-6 3 4 - 10 m Ħ Grade Grade Right KUKULE GANGA HYDROPOWER PROJECT 200 247 m MSL METRES Grade II - IX: DAM CREST LEVEL Flood Plain Alluvium Grade Z DISTANCE 30-SCALE : Vertical 1: 1000 Horizontal I: 1000 500 LEFT BANK WEATHERING Grade I -Grade METRES 200 NI ELEVATION

DAM AXIS N 62'E

OF

ORIENTATION

Geotechnical Section Along Dam Axis

K-D Plan.

Joint Venture Kukule Ganga NK, EWI & LI CECB, TEAMS, RDC

Government of Sri Lanka Ministry of Power and Energy **Ceylon Electricity Board**

FIGÜRE: 25

GEOLOGIC LOG OF TEST PIT No. I LOCATION - KK 205 DAM / DESANDER

- I. BLACK CLAYEY TOP SOIL
- 2. YELLOWISH BROWN CLAYEY GRAVELLY SAND (ALLUVIUM)
 (ROUNDED GRAVEL 5-25 mm)
- 3. SUBROUNDED
 WEATHERED BOULDERS (30 Cm Im)
 OF GARNETIFEROUS GNEISS WITH ROUNDED GRAVEL (ALLUVIUM)

KULE GANGA HYDROPOWER PROJECT	
formment of Sri Lanka	Joint Venture Kukule Ganga
by of Power and Energy	NK, EWI & LI

CECB, TEAMS, RDC

n Electricity Board

Figure 27 (1/24)
Geologic Log of Test Pit

- I. BLACK CLAYEY TOP SOIL
- 2. YELLOWISH SANDY CLAY
- 3. REDDISH SANDY GRAVEL WITH COBBLES OF WEATHERED GNEISS
- 4. MODERATELY WEATHERED STRONG GARNETIFEROUS BIOTITE GNEISS
- 5. CORE STONES

KUKULE GANGA HYDROPOWER PROJECT		Figure 27 (2/24)
Government of Sri Lanka Ministry of Power and Energy	Joint Venture Kukule Ganga NK, EWI & LI	Geologic Log of Test Pit
Ceylon Electricity Board	CECB, TEAMS, RDC	Georgie Eog of Test 11

GEOLOGIC LOG OF TEST PIT No. 3 LOCATION - KK 205 DAM / DESANDER

- I BLACK CLAYEY TOP SOIL WITH HUMUS
- 2 RESIDUALSOIL, YELLOWISH/ REDDISH BROWN CLAYEY SAND WITH GRAVEL
- HARD MODERATELY TO HIGHLY WEATHERED GARNETIFEROUS BIOTITE GNEISS WITH FRESH CORE STONES
- 4 COMPLETELY WEATHERED ROCK (REDDISH BROWN CLAYEY SAND)

KUKULE GANGA HYDROPOWER PROJECT		Figure 25 (2/24)
Government of Sri Lanka Ministry of Power and Energy	Joint Venture Kukule Ganga · NK, EWI & LI	Figure 27 (3/24) Geologic Log of Test Pit
Ceylon Electricity Board	CECB, TEAMS, RDC	Geologie Dog of Test Tie

- I. BLACKISH CLAYEY TOP SOIL WITH HUMUS
- 2. RESIDUAL SOIL, YELLOWISH BROWN CLAYEY SAND, MEDIUM GRANED
- 3. COMPLETELY WEATHERED AMPHIBOLITE
 (YELLOWISH BROWN CLAYEY GRVEL WITH COBBLES)

KUKULE GANGA HYDROPOWER PROJECT		Figure 27 (4/24)
Government of Sri Lanka Ministry of Power and Energy	Joint Venture Kukule Ganga NK, EWI & LI	Figure 27 (4/24) Geologic Log of Test Pit
Ceylon Electricity Board	CECB, TEAMS, RDC	Geologie 20g of 2 est 2 to

GEOLOGIC LOG OF TEST PIT No. 5 LOCATION - KK 205 DAM/ DESANDER

- I. BLCK CLAYEY TOP SOIL WITH HUMUS
- 2. HARD HIGHLY WEATHERED ROCK WITH FRESH AMPHIBOLITE CORE STONES
- 3. RESIDUAL SOIL CLAYEY GRAVEL

KUKULE GANGA HYDROPOWER PROJECT

Government of Sri Lanka Joint Venture Kukule Ganga

Ministry of Power and Energy Ceylon Electricity Board Joint Venture Kukule Ganga NK, EWI & LI

CECB, TEAMS, RDC

Figure 27 (5/24)
Geologic Log of Test Pit

GEOLOGIC LOG OF TEST PIT No. 6 LOCATION - KK 205 DAM / DESANDER

- I. . BLACK CLAYEY / SILTY TOP SOIL WITH HUMUS
- 2. RESIDUALSOIL YELLOWISH BROWN CLAYEY SAND/GRAVEL
- 3. BROWNISH RED HIGHLY WEATHERED ROCK, HARD

Government of Sri Lanka
Ministry of Power and Energy

KUKULE GANGA HYDROPOWER PROJECT

Joint Venture Kukule Ganga

NK, EWI & LI

CECB, TEAMS, RDC

Figure 27 (6/24)
Geologic Log of Test Pit

- I. BLACK CLAYEY TOP SOIL WITH HUMUS
- 2. RESIDUAL SOIL YELLOWSH BROWN CLAYEY COARSE SAND / CLAYEY GRAVEL WITH COBBLES
- 3. REDDISH BROWN / REDDISH COMPLETELY WEATHERED GARNETIFEROUS ROCK WITH HIGHLY WEATHERED CORE STONES. WEAK (CLAYEY SAND / COARSE GRAVEL WITH COBBLE UPTO 30 Cm.)

KUKULE GANGA HYDROPOWER PROJECT		Figure 27 (7/24)
Government of Sri Lanka Ministry of Power and Energy	Joint Venture Kukule Ganga · NK, EWI & LI	Figure 27 (7/24) Geologic Log of Test Pit
Ceylon Electricity Board	CECB, TEAMS, RDC	Geologie Log of Test Tie

- BLACK CLAYEY TOP SOIL WITH HUMUS
- 2. RESIDUAL SOIL BROWN VERY CLAYEY COARSE SAND / GRAVEL
- 3. REDDISH LATERITE. WEAK
- 4. REDDISH BROWN COMPLETELY WEATHERED GARNETIFEROUS ROCK (VERY CLAYEY SAND/GRAVEL WITH WEATHERED COBBLES 30 40 cm)

KUKULE GANGA HYDROPOWER PROJECT		Figure 27 (8/24)
Government of Sri Lanka Ministry of Power and Energy	Joint Venture Kukule Ganga NK, EWI & LI	Geologic Log of Test Pit
Ceylon Electricity Board	CECB, TEAMS, RDC	

- I. BLACK CLAYEY TOP SOIL WITH HUMUS
- 2. BROWN CLAYEY COARSE SAND WITH COBBLES, PLANT ROOTS
- 3. HARD REDDISH LATERITE
- 4. REDDISH BROWN VERY CLAYEY SAND
- 5. WEAK COMPLETELY WEATHERED GARNETIFEROUS ROCK

KUKULE GANGA HYDROPOWER PROJECT		Figure 27 (9/24)
Government of Sri Lanka Ministry of Power and Energy	Joint Venture Kukule Ganga NK, EWI & LI	
Ceylon Electricity Board	CECB, TEAMS, RDC	

GEOLOGIC LOG OF TEST PIT No. 10 LOCATION - KK 205 DAM / DESANDER

- I. BLACK TOP SOIL CLAYEY SAND WITH ROOTS
- 2. REDDISH LATERITE
- 3. YELLOWISH BROWN VERY CLAYEY COARSE SAND/CLAYEY FINE SUBANGLAR GRAVEL

KUKULE GANGA HYDROPOWER PROJECT		Figure 27 (10/24)
Government of Sri Lanka Ministry of Power and Energy		
Ceylon Electricity Board	CECB, TEAMS, RDC	Geologie 130g of Test Tit

GEOLOGIC LOG OF TEST PIT No. II LOCATION - DEPRESSION AT PANGALAELLA

I. BLACK SILTY TOP SOIL

2. YELLOWISH BROWN SILTY FINE / MEDIUM SAND

KUKULE GANGA HYDROPOWER PROJECT		
Government of Sri Lanka Ministry of Power and Energy	Joint Venture Kukule Ganga NK, EWI & LI	Geologic Log of Test Pit
Ceylon Electricity Board	CECB, TEAMS, RDC	Good To See The See Th

GEOLOGIC LOG OF TEST PIT No. 12 LOCATION - DEPRESSION AT PANGALAELLA

- I. CLAYEY BLACK TOP SOIL
- 2. GRAVELLY CLAY

KUKULE GANGA HYDROPOWER PROJECT		Figure 27 (12/24)
Government of Sri Lanka Ministry of Power and Energy	Joint Venture Kukule Ganga	
Cevion Electricity Board	CECR. TEAMS, RDC	Geologie 20g of 1 and 1 it

GEOLOGIC LOG OF TEST PIT No. 13 LOCATION - DEPRESSION AT PANGALAELLA

- I. BLACK CLAYEY TOP SOIL
- 2. YELLOWISH FINESAND / SILT

KULE GANGA HYDROPOWER PROJECT

wernment of Sri Lanka. Itry of Power and Energy Ion Electricity Board Joint Venture Kukule Ganga NK, EWI & LI CECB, TEAMS, RDC Figure 27 (13/24)
Geologic Log of Test Pit

GEOLOGIC LOG OF TEST PIT No.14 LOCATION - DEPRESSION AT PANGALAELLA.

- I. BLACK CLAYEY TOP SOIL
- 2. CLAYEY GRAVEL
- COMPLETELY / HIGHLY WEATHERED ROCK (COBBLES WITH YELLOWISH CLAYEY SAND 80% COBBLES 30Cm.)
- YELLOW HIGHLY WEATHERED ROCK, STRONG

KUKULE GANGA HYDROPOWER PROJECT		T' 07 (14/04)
Government of Sri Lanka		Figure 27 (14/24) Geologic Log of Test
Ministry of Power and Energy		
Ceylon Electricity Board	CECB, TEAMS, RDC	

1) st Pit

GEOLOGIC LOG OF TEST PIT No.15 LOCATION - DEPRESSION AT PANGALAELLA

- I. BLACK CLAYEY TOP SOIL
- 2. REDDISH CLAYEY GRAVEL (2-150 mm) WITH RARE COBBLES
- 3. MOTTLED REDDISH YELLOW GRAVELY CLAY (WEAK LATERITE)

OPOWER PROJECT
Int Venture Kukule Ganga

Ministry of Power and Energy Ceylon Electricity Board Joint Venture Kukule Gange NK, EWI & LI CECB, TEAMS, RDC Figure 27 (15/24)

Geologic Log of Test Pit

GEOLOGIC LOG OF TEST PIT No. 16 LOCATION - DEPRESSION AT PANGALAELLA

- I. BLACK CLAYEY TOP SOIL
- 2. YELLOWISH CLAYEY GRAVEL WITH RARE COBBLES

KUKULE GANGA HYDROPOWER PROJECT

Government of Sri Lanka Joint Venture Kukule Ganga

Ministry of Power and Energy Ceylon Electricity Board Joint Venture Kukule Ganga NK, EWI & LI CECB, TEAMS, RDC Figure 27 (16/24)
Geologic Log of Test Pit

GEOLOGIC LOG OF TEST PIT No 17 LOCATION - SWITCHYARD AREA

- I TOP SOIL WITH ROOTS, CONSIST OF COBBLES (IRREGULAR SHAPE)PEBBLES (MAX, SIZE = IOCm) IN A MATRIX OF SLIGHTLY CLAYEY SILTY SANDY MATERIL BLACKISH TO DARK BROWN
- 2. COARSE SAND TO MEDIUM GRAVEL IN A MATRIX OF SLIGHTLY
 CLAYEY SILTLY SAND POORLY GRADED OCCATIONAL WEATHERED BOULDERS
 UP TO 0.4 m YELLOWISH BROWN
- 3. COMPLETELY WEATHERED ROCK QUARTZ RICH REDDISH BROWN

KUKULE GANGA HYDROPOWER PROJECT		Figure 27 (17/24)
Government of Sri Lanka Ministry of Power and Energy	Joint Venture Kukule Ganga NK, EWI & LI	Geologic Log of Test Pit
Ceylon Electricity Board	CECB, TEAMS, RDC	

GEOLOGIC LOG OF TEST PIT No.18 LOCATION - SWITCHYARD AREA

- L. TOP SOIL CONTAINING ROOTS ORGANIC MATTER. VERY SLIGHTLY CLAYEY SILTY GRAVELLY SAND WITH PEBBLES. BLACKISH
- 2 PEBBLE, COBBLES, BOULDER LAYER IN A MATRIX OF CLAYEY SANDY GRAVELLY MATERIAL (PREDOMINENTLY COARSE MATERIAL MAX. SIZE OF BOULDERS 0.6 m)

KUKULE GANGA HYDROPOWER PROJECT		
Government of Sri Lanka Ministry of Power and Energy	Joint Venture Kukule Ganga NK, EWI & LI	
Ceylon Electricity Board	CECB, TEAMS, RDC	

Figure 27 (18/24)
Geologic Log of Test Pit

GEOLOGIC LOG OF TEST PIT No. 19 LOCATION - SWITCHYARD AREA

- I. BOULDERS AND PEBBLES MAX. SIZE 15-20 Cm. IN A MATRIX OF VERY SLIGHTLY CLAYEY SILTY SAND WITH ROOTS. DARK BROWN TO BLACKISH
- 2. RESIDUAL SOIL YELLOWISH BROWN CLAYEY SAND WITH OCCATIONAL CORE STONES
- 3. COMPLETELY WEATHERED ROCK
- 4. HIGHLY TO MODERATLY WEATHERED ROCK EXPOSED AT THE BOTTOM OF THE PIT. BIOTITE GNEISS

KUKULE GANGA HYDROPOWER PROJECT		
Government of Sri Lanka Ministry of Power and Energy	Joint Venture Kukule Ganga NK, EWI & LI	
Ceylon Electricity Board	CECB, TEAMS, RDC	

Figure 27 (19/24)
Geologic Log of Test Pit

GEOLOGIC LOG OF TEST PIT No. 20 LOCATION - SWITCHYARD AREA

- 1. TOP SOIL WITH ROOTS VERY SLIGHTLY CLAYEY SILTY SAND WITH PEBBLES AND ORGANIC MATTER YELLOWISH BROWN TO BLACK
- 2. VERY SLIGHTLY SILTY SAND MATRIX WITH GRAVEL YELLOWISH BROWN
- 3. COMPLETELY TO HIGHLY WEATHERED ROCK

KUKULE GANGA HYDROPOWER PROJEC		
Government of Sri Lanka Ministry of Power and Energy	· Joint Venture Kukule Gang NK, EWI & LI	
Ceylon Electricity Board	CECB, TEAMS, RDC	

Figure 27 (20/24)
Geologic Log of Test Pit

GEOLOGIC LOG OF TEST PIT No. 21 LOCATION - SWITCHYARD AREA

- I. TOP SOIL WITH ROOTS DARK BROWN TO BLACKISH CLAYEY SAND
- 2. COARSE SAND TO MEDIUM GRAVEL IN A MATRIX OF SILGHTLY CLAYEY SILTY SAND OCCATIONAL BOULDERS (SIZE 0.2-0.3 m.) ROOTS PENETRATED DEEPLY YELLOWISH BROWN
- . 3. COMPLETELY WEATHERED ROCK YELLOWISH BROWN

KUKULE GANGA HYDROPOWER PROJECT		
Government of Sri Lanka Ministry of Power and Energy	Joint Venture Kukule Ganga NK, EWI & LI	
Ceylon Electricity Board	CECB, TEAMS, RDC	

Figure 27 (21/24)
Geologic Log of Test Pit

GEOLOGIC LOG OF TEST PIT No. 23

LOCATION - OUTFALL AREA

į

- I TOP SOIL WITH ROOTS SILTY SANDY GRAVEL WITH ORGANIC MATTER BLAKISH
- 2. PEBBLES IN SILTY SANDY MATRIX YELLOWISH BROWN
- 3. HIGHLY TO COMPLETLY WEATHERED ROCK
- 4. MODERATLY WEATHERED ROCK BIOTITE GNEISS WITH GARNETS

KUKULE GANGA HYDROPOWER PROJECT		Figure 27 (22/24)	
Government of Sri Lanka	Joint Venture Kukule Ganga	Figure 27 (22/24)	
Ministry of Power and Energy	NK, EWI & LI	Geologic Log of Test Pit	
Ceylon Electricity Board	CECB, TEAMS, RDC		

GEOLOGIC LOG OF TEST PIT No. 24

LOCATION - OUTFALL AREA

- I. TOP SOIL WITH ROOTS PEBBLES & COBBLES IN A CLAYEY SILTY SANDY MATRIX BLACKISH
- 2. BOULDERS & COBBLES IN A MATRIX OF SILTY SAND BLACKISH TO DARK BROWN BOULDER UP TO 0.5 m
- 3. COMPLETELY TO HIGHLY WEATHERED ROCK

AT THE BOTTOM OF THE PIT HIGHLY TO MODERATLY WEATHERED ROCK IS EXPOSED

KUKULE GANGA HYDROPOWER PROJECT

Government of Sri Lanka
Ministry of Power and Energy
Ceylon Electricity Board

KUKULE GANGA HYDROPOWER PROJECT

Joint Venture Kukule Ganga
NK, EWI & LI

CECB, TEAMS, RDC

Figure 27 (23/24)

Geologic Log of Test Pit

GEOLOGIC LOG OF TEST PIT No. 25 LOCATION - OUTFALL AREA

- I. TOP SOIL WITH ROOTS (WITH ORGANIC MATTER BOULDERS COBBLES AND PEBBLES IN A MATRIX OF CLAYEY SILTY SANDY MATERIAL DARK BROWN TO BLACKISH MAX. SIZE OF BOULDERS-0.5m
- 2. COM. WEATHERED ROCK.

 AT THE BOTTOM OF THE PIT H. W. TO M.W ROCK IS EXPOSED

KUKULE GANGA HYDROPOWER PROJECT		
Government of Sri Lanka	Joint Venture Kukule Ganga	

Ministry of Power and Energy Ceylon Electricity Board Joint Venture Kukule Ganga NK, EWI & LI CECB, TEAMS, RDC Figure 27 (24/24)
Geologic Log of Test Pit

THE DEMOCRATIC SOCIALIST REPUBLIC OF SRI LANKA

MINISTRY OF POWER AND ENERGY

CEYLON ELECTRICITY BOARD

KUKULE GANGA HYDROPOWER PROJECT

FEASIBILITY STUDY

SR5B Construction Materials

August 1992

Joint Venture Kukule Ganga

Nippon Koei Co., Ltd. Electrowatt Engineering Services Ltd. Lahmeyer International Gmbh Counterpart Engineers

Central Engineering Consultancy Bureau
TEAMS & RDC

FEASIBILITY STUDY OF KUKULE GANGA HYDROPOWER PROJECT

SR5A CONSTRUCTION MATERIALS

TABLE OF CONTENTS

			Page
Annex	5B.1	Concrete Aggregate Materials	5B.1 1
	1.1	Petrographic examination	5B.1 1
	1.2	Specific gravity and absorption	5B.1 10
	1.3	Unit weight of drilled core	5B.1 11
	1.4	Unconfined compression test	5B.1 12
	1.5	Elastic moduli	5B.1 13
	1.6	Potential Reactivity (chemical method)	5B.1 33
	1.7	Clay lumps and friable particles	5B.1 37
	1.8	Abrasion test by Los Angeles method	5B.1 38
	1.9	Soundness test	5B.1 40
	1.10	Ten percent fines	5B.1 43
	1.11	Results of quality control tests on concrete	
		aggregates during construction of the	
	•	Samanalawewa Project	5B.1 46
Annex	5B.2	Embarkment Materials	5B.2 1
		Summary of laboratory tests on soils of borrow area basins study	in the three
Annex	5B.3	Water Quality Test for Concrete	5B.3 1
Annex	5B.4	Inspection Report on Alkali-Aggregate Reaction	
		in Concrete Work	5B.4 1

Annex-5B.1

Concrete Aggregate Materials

1.1 Petrographic examination

Appendix A - 1

Petrographic Examination and Drill Hole log

Dam Site Quarry (No. KK4)

Drill hole log

Depth(m)	<u>Description</u>	<u>Section</u>	Sample for Petrographic Work
0 - 9.74	Weathered Soil overburden.	4 A	
9.74-11.70	Garnet quartz feldspar rock.(Garnet granulite). Not weathered Not fractured Foliation not developed Granular rock.	4 B	Piece No.19 for petrographic work at 11.70 m depth.
13.80-17.01	Hornblende biotite gneiss with charnockitic bands. 3 types of fracture planes. Occasional pegmatitic layers. Foliation developed. 45° dip*	4 C	Piece No.31 for petrographic work at 15 m depth.
17.01-19.56	Charnockite, Fractures not found. Foliation not developed. Coarse grained pegmatitic layers found.	4 D	Piece No.56 for petrographic work at 18.36 depth.
19.56-20.21	Garnet biotite granitic gneiss. Fractures not developed. Foliation well developed.	4 E	

* Considering the drill hole is vertical.

Petrographic Examination

Dam Site quarry (No. KK4)

No. of samples tested = 3.

Depth (m)	Sample No.
11.7	4B / 19
15.00	4C / 31
18.36	4D / 56

Sample No. 4B/19

General Description

Rock type: Garnet quartz feldspar rock

(Garnet granulite)

Colour : Light Colour.

Nature : Heterogeneous rock. Medium grained.

Mineral Content

Model Analysis: (500 grains)

Ouartz -34 %

Feldspar - 38 % (Microcline 18%, Orthoclase 12%

Plagioclase 8%)

Garnet 16 % Biotite -6 %.

Fe ore - 2 % (Magnetite & Hematite)

Accessories - 4 % (Apatite, Sphene, Monozite, Rutile)

Calcareous or highly

soluble minerals - No CaCO3 or other highly dissolvable

minerals.

Clays Except few grains of sericite and

chlorite no clay minerals are found.

Biotite is the only flaky mineral found with approx. 6 % in the total rock. Flaky minerals

Very low flaky mineral content.

Arrangement of grains

Medium grained. Well interlocked. Grain Size

Garnet appear as pokioblastic grains.

Minor fractures none.

Cataclastic/Sheared grains - none.

Foliations/Schistosity - not well developed. Granular

rock.

Sample No. 4C/31

General Description

Rock type: Hornblende biotite gneiss.

Colour : Dark Colour.

Nature : Homogeneous. Fine grained.

Mineral Content

Model Analysis: (500 grains)

Quartz - 30 %

Feldspar - 28 % (Microcline 12%, Orthoclase 7%

Plagioclase 9%)

Biotite - 18 %

Hornblende - 12 %

Pyroxenes - 6 %
Fe ore - 4 % (Magnetite & Hematite)

Accessories - 2 % (Calcite, Sphene, Apatite,

Monozite, Muscovite)

Calcareous or highly

soluble minerals - CaCO3 occurs less than 0.25% of the r

Clays - none.

Flaky minerals - Biotite is the only flaky mineral fc

8 % of the rock.

Fairly high content.

Arrangement of grains

Grain Size - fine grained. Well interlocked.

Minor fractures - none.

Cataclastic/Sheared grains - none.

Foliations/Schistosity - Well developed foliation.

Alternate layers of Biotite, Hornblende and Pyroxene with Quartz and Feldspar make the

foliation.

Sample No. 4D/56

General Description

Rock type: Charnockite

Colour : Dark Colour.

Nature : Heterogeneous rock. Coarse to medium

grained.

Mineral Content

Model Analysis: (500 grains)

Quartz - 30 %

Feldspar - 36 % (Microcline 13%, Orthoclase 10%

Plagioclase 13%)

Pyroxenes - 14 % (Mainly hypersthene)

Biotite - 10 % Hornblende - 6 %

Fe ore - 2 % (Mainly Magnetite)

Accessories - 2 % (Calcite, Apatite,

Monozite, Sphene)

Calcareous or highly

soluble minerals - Calcite contains less than 0.25% in the

rock.

Clays - Few sericite grains are found. No clays.

Flaky minerals - Biotite is the only flaky mineral found.

Content is approximately 10 %.

Arrangement of grains

Grain Size - Coarse to medium grained.

Very large grains of Biotite occur as

pokioblasts.

Minor fractures - 1 minor fracture was found for 2 cm²

area of the thin section.

Cataclastic/Sheared grains - none.

Foliations/Schistosity - not developed.

Power House Quarry (No. KK5)

Drill hole log

Depth(m)	<u>Description</u>	<u>Section</u>	Sample for Petrograph Work
0 - 3.30	Soil overburden	5 A	- -
3.30-12.50	Hornblende biotite gneiss. Weathered rock. Highly fractured. 2-3 well developed joint patterns. Well developed foliation with 70° dip*	5 B	-
12.50-13.20	Rock same as 5 B. Not weathered and less fractured compared to 5 B.	5 C	Piece No. for petrograph work at 12.90 m.
13.20-20.13	Biotite gneiss with occasional garnet patches. Not weathered. Fractures not well developed. Vertical fracture pattern exist*. Dip at 70° Flaky mineral content (mainly biotite) is less compared to 5B and 5C.	5 D	Piece No.6 for petrograph work at 19.00 m depth.

* Considering the drill hole is vertical.

Petrographic Examination.

Power House Quarry (No. KK5)

No. of samples tested = 2.

Depth (m)	Sample No.
12.90	5C / 34
19.00	5D / 60
	,

Sample No. 5C/34

General Description

Rock type: Hornblende biotite gneiss

Colour : Dark Colour.

Nature : Homogeneous. Fine grained.

Mineral Content

Model Analysis: (500 grains)

Quartz 28 %

Feldspar -27 % (Microcline 10%, Orthoclase 7%

Plagioclase 10%)

Hornblende -14 %

> Biotite -20 %

Pyroxenes -5 % Fe ore -3 % (Magnetite & Hematite)

Accessories - 3 %

Calcareous or highly

soluble minerals

- Calcite content is less than 0.1 %. No

other minerals.

Clays none.

Flaky minerals Biotite is the only flaky mineral for

20 % of biotite content. This is high, and effects the flakiness of the rock

(Calcite, Sphene, Apatite, Monozi)

Arrangement of grains

Grain Size Fine grained. Well interlocked.

Minor fractures none.

Cataclastic/Sheared grains - none.

Foliations/Schistosity - well developed.

Sample No. 5D/60

General Description

Rock type: Biotite gneiss(quartz feldspar gneiss)

Colour : Light Colour.

Nature : Heterogeneous - Medium to coarse

grained.

Mineral Content

Model Analysis: (500 grains)

Quartz - 48 %

Feldspar - 42 % (Microcline 22%, Orthoclase 12%

Plagioclase 8%)

Biotite - 6%

Accessories - 4 % (Sericite, Magnetite, Muscovite,

Apatite)

Calcareous or highly soluble minerals - none

Clays - Feldspar grains alteration into clay

has been observed. However clay

content(Kaolinite) is less than 1 %.

Flaky minerals - Biotite is the only flaky mineral found.

6 % of biotite. This is very low and does not effect the flakiness of the

rock.

Arrangement of grains

Grain Size - Medium to coarse grained. Well

interlocked.

Edges of feldspar grains show

alteration into clays.

Minor fractures - none.

Cataclastic/Sheared grains - none.

Foliations/Schistosity - Foliation not well developed.

However occasionally biotite rich layers show foliation

pattern.

- 1.2 Specific gravity and Absorption
- 1.3 Unit weight of drilled core

Specific Gravity and Absorption, Unit Weight.

ASTM Standard : C 127 - 84

Kukule Ganga Hydro Electric Project Feasibility Study. Project :

Sample Type : A (for drilled Cores)

1. Location: Dam Site Quarry Borehole No. KK4

Depth (m)	n) 9.75	75	12.15	13	13.80	14.	14.80	15.	15.80 16.80	.80	17.	17.80	18	18.80		20.	20,20
Specific	Bulk	2.84 2.69	2.69		2.77	2.74	2.83	2.82	2.77 2.74 2.83 2.82 2.62 2.71 2.73 2.76 2.76 2.61 2.63 2.65	2.71	2.73	2.76	2.76	2.61	2.63	2.65	
	Bulk(SSD) 2.84 2.70	2.84	2.70		2.77	2.74	2.83	2.83	2.77 2.74 2.83 2.83 2.64 2.72 2.73 2.77 2.76 2.61 2.64 2.66	2.72	2.73	2.77	2.76	2.61	2.64	2.66	
·	Apparent 2.86 2.73	2.86	2.73		2.78	2.76	2.84	2.83	2.78 2.76 2.84 2.83 2.67 2.72 2.74 2.77 2.77 2.62 2.65 2.67	2.72	2.74	2.77	2.77	2.62	2.65	2.67	
Absorption %	uc	0.2 0.5	0.5		0.2	0.3	0.1	0.1	0.2 0.3 0.1 0.1 0.7 0.2 0.2 0.1 0.1 0.2 0.2 0.4	0.2	0.2	0.1	0.1	0.2	0.2	0.4	
Unit Weight (kg/m³)	ight	2815	2815 2646		2638	2710	2808	2802	2638 2710 2808 2802 2601 2692 2691 2750 2743 2575 2594 2609	2692	2691	2750	2743	2575	2594	2609	

2. Location: Power House Quarry Borehole No. KK5

20.0				_	572
5	2.66	2.67	2.68	0.2	2636 2625 2572
19.5	2.65 2.68 2.66 2.68 2.64 2.68 2.67 2.63 2.66 2.66 2.65 2.66	2.66 2.68 2.66 2.69 2.64 2.68 2.68 2.64 2.66 2.66 2.66 2.67	2.66 2.69 2.67 2.70 2.65 2.69 2.69 2.65 2.67 2.67 2.66 2.68	0.1 0.2 0.2 0.2 0.2 0.2 0.2 0.1 0.2 0.2	2636
.5	2.66	2.66	2.67	0.1	2631
18.5	2.66	2.66	2.67	0.2	2623
5.	2.63	2.64	2.65	0.2	2628
17.5	2.67	2.68	2.69	0.2	2604 2663 2622 2646 2627 2660 2631 2628 2623 2631
2	2.68	2.68	2.69	0.2	2660
16.5	2.64	2.64	2.65	0.2	2627
15.5	2.68	2.69	2.70	0.2	2646
15	2.66	2.66	2.67	0.2	2622
14.5	2.68	2.68	2.69	0.2	2663
4-	2.65	2.66	2.66	0.1	2604
ις.	2.69	2.69	2.69	0.1	2653
13.5	3.13 3.16 2.69	3.16	3.17	0.1 0.1 0.1	3087 3134 2653
52	3.13	3.13	3.13 3.17 2.69	0.1	3087
12.5	Bulk	Bulk(SSD) 3.13 3.16 2.69	Apparent	u	ght
Depth (m)	Specific	פופעורא		Absorption *	Unit Weight (kg/m³)

1.4 Unconfined compression test

Unconfined Compression Test

ASTM Standard D2938 - 79

Project : Kukule Ganga Hydro Electric Project Feasibility Study.

Sample Type : A (for drilled cores)

1. Location : Dam Site Quarry Borehole No. KK4

Depth (m) 9.75	75	12.15	13.80 14.80	14.	80	15	15.80 16.80	08.9	17.	17.80	18	18.80		5	20.20
Unconfined Compressive Strength (MPa)	102.60 25.88	25.88	16	55 8	31.15	32.32	33.01	69.08	74.01	97.55 81.15 32.32 33.01 69.08 74.01 103.02 81.15 37.15	81.15	37.15	27.38	3 25.69	66

2. Location : Power House Quarry Borehole No: KK5

0.0	
19.5 20.0	3.06
19.5	76 4
	5 56.
	56.5
18.5	38
,	1 51
٠. دي	45.
17.5	66.
	5 56
	50.6
16.5	6.98
	23 5(
15.5	64.
15	1.18
	69 7
14.5	84.
_	87.46 84.69 71.18 64.23 56.98 50.65 56.99 45.21 51.38 56.56 56.76 43.06
	. 19
13.5	82.98 85.19
-	82.9
2.5	Unconfined 82.05 Compressive Strength (MPa)
Depth (m) 12.5	ned sive
th (m	Unconfined Compressive Strength (MPa)
Dep	Uncon Compr Stren (MPa)

1.5 Elastic moduli

Appendix A - 4

Elastic Moduli

ASTM Standard: D 3148 - 80

Project: Kukule Ganga Hydro Electric Project Feasibility

Study.

Sample Type : A (for drilled cores)

Test Date: 02 - 04 - 92

Rate of Loading = 160 N/s or 1 tonne/min

Physical Description: Refer to Annexure A-1

Moisture Condition : Laboratory air - dry

1. Location: Dam Site Quarry Borehole No. KK4

Depth (m): 9.75 - 12.15

Specimen diameter = 54.5 mm height = 126.0 mm

Applied Load (tonne)	Stress (MPa)	Axial Strair (μm/m)
1.00	4.21	88
2.00	8.41	149
3.00	12.62	198
4.00	16.82	256
5.00	21.03	312
6.00	25.23	386
7.00	29.44	514
8.00	33.64	663

Stress Vs Axial Strain curve is shown in figure A.4.1.

Ultimate Strength = 35.24 MPa

Young's modulus

Average Modulus for Linear Portion = 78.6 GPa

Depth (m): 13.80 - 15.80

Specimen diameter = 54.9 mm height = 119.5 mm

Applied Load (tonne)	Stress (MPa)	Axial Strain (μπ/m)
1.00	4.14	93
2.00	8.29	163
3.00	12.43	223
4.00	16.58	288
5.00	20.72	356
6.00	24.86	428
7.00	29.01	488
8.00	33.15	530
9.00	37.30	572
10.00	41.44	619
11.00	45.58	674
12.00	49.73	721

Stress Vs Axial Strain curve is shown in figure A.4.2 Ultimate strength = 53.87 MPa.

Young's modulus.

Average Modulus = 64.4 GPa for Linear Portion

Specimen diameter = 54.6 mm height = 125.8 mm

Applied Load (tonne)	Stress (MPa)	Axial Strain (μm/m)
1.00	4.19	35
2.00	8.38	84
3.00	12.57	135
4.00	16.76	177
5.00	20.95	223
6.00	25.14	274
7.00	29.33	316
8.00	33.52	363
9.00	37.71	405
10.00	41.90	447

Stress Vs Axial Strain curve is shown in figure A.4.3

Ultimate Strength = 71.81 MPa.

Young's modulus

Average Modulus = 90.1 GPa. for Linear Portion

Depth (m): 15.80 - 17.80

Specimen diameter = 54.6 mm height = 125.7 mm

Applied Load (tonne)	Stress (MPa)	Axial Strain (um/m)
1.00	4.19	144
2.00	8.38	274
3.00	12.57	540

Stress Vs Axial Strain curve is shown in figure A.4.4

Ultimate strength = 25.14 MPa.

Young's modulus

Average Modulus = 29.1 GPa for Linear Portion

Specimen diameter = 54.6 mm height = 125.4 mm

Applied Load (tonne)	Stress (MPa)	Axial Strain (/um/m)
1.00	4.19	70
2.00	8.38	126
3.00	12.57	181
4.00	16.76	237
5.00	20.95	281
6.00	25.14	335
7.00	29.33	391
8 . 00	33.52	437
9.00	37.71	479
10.00	41.90	526

Stress Vs Axial Strain curves is shown in figure A.4.5

Ultimate Strength = 77.26 MPa

Young's Modulus

Average Modulus = 79.1 GPa for Linear Portion

Depth (m): 17.80 - 20.20

Specimen diameter = 54.4 mm height = 125.2 mm

Applied Load (tonne)	Stress (MPa)	Axial Strain (µm/m)
1.00	4.22	33
2.00	8.44	65
3.00	12.66	105
4.00	16.88	144
5.00	21.10	179 ·
6.00	25.32	195
7.00	29.54	260
8.00	33.77	302
9.00	37.99	344
10.00	42.21	381
11.00	46.43	428
12.00	50.65	463

Stress Vs Axial Strain curve is shown in figure A.4.6

Ultimate strength = 81.04 MPa.

Young's Modulus

Average Modulus = 106.0 GPa for Linear Portion

Specimen diameter = 54.5 mm height = 126.0 mm

Applied Load (tonne)	Stress (MPa)	Axial Strain (\(\mu \m \m \)
1.0	4.21	121
2.0	8.41	195
3.0	12.62	270
4.0	16.82	391
5.0	21.03	693

Stress Vs Axial Strain curve is shown in figure A.4.7

Ultimate Strength = 28.60

Young's modulus

Average Modulus = 56.4 GPa for Linear Portion

Specimen diameters = 54.6 mm height = 125.4 mm

Applied Load (tonne)	Stress (MPa)	Axial Strain (um/m)
1.00	4.19	70
2.00	8.78	135
3.00	12.57	186
4.00	16.76	242
5.00	20.95	293
6.00	25.14	335
7.00	29.33	377
8.00	33.52	414
9.00	37.71	451
10.00	41.90	488
11.00	46.09	521
12.00	50.28	553
13.00	54.47	595
14.00	58.66	670

Stress Vs Axial Strain curve is shown in figure A.4.8

Ultimate strength > 83.80 MPa

Young's modulus

Average Modulus = 102.2 GPa for Linear Portion

2. <u>Location: Power House Quarry Borehole No. KK5</u> <u>Depth (m): 14.5 - 16.5</u>

Specimen diameter = 54.5 mm height = 125.4 mm

Applied Load (tonne)	Stress (MPa)	Axial Strain (µm/m)
1.00	4.21	60
2.00	8.41	105
3.00	12.62	158 ·
4.00	16.82	193
5.00	21.03	237
6.00	25.23	. 270
7.00	29.44	305
8.00	33.64	340
9.00	37.85	377
10.00	42.05	414
11.00	46.26	456
12.00	50.46	502
13.00	54.67	549
14.00	58.87	595
15.00	63.08	651
16.00	67.28	684
17.00	71.49	735

Stress Vs Axial Strain curve is shown in figure A.4.9.

Ultimate strength = 74.68 MPa.

Young's modulus

Average Modulus = 110.0 GPa for Linear Portion

Depth (m): 18.5 - 20.0

Specimen diameter = 54.3 mm height = 125.4 mm

Applied Load (tonne)	Stress (MPa)	Axial Strain (¼m/m)
1.00	4.24	326
2.00	8.47	567
3.00	12.71	753
4.00	16.94	916
5.00	21.18	1070
6.00	25.42	1216
7.00	29.65	1398
8.00	33.89	1647

Stress Vs Axial Strain curve is shown in figure A.4.10

Ultimate Strength = 43.63 MPa.

Young's modulus

Average Modulus = 27.5 GPa for Linear Portion

Fig. A.4.1

Fig.A.4.2

Fig. A.4.3

Fig. A.4.4

Fig. A.4.5

Fig.A.4.6

Fig. A.4.7

Fig. A.4.8

Fig. A.4.9

Axial Strain (µm/m)

Fig. A.4.10

1.6 Potential reactivity (chemical method)

Appendix A - 5

Potential Reactivity (Chemical Method)

Sample Type = A (Using drilled cores)

ASTM Standards = C 289 - 81

(1) Dam Site Quarry (No. KK4).

Depth (m)	Concen	Concentration of SiO ₂ m mols/1		
Bepoil (III)	I	ΙΙ	III	
10.37	13.653	12.987	6.660	
17.5	22.64	11.32	29.637	
19.9	35.631	23.976	32.634	
14.78	14.319	37.962	23.976	

Power House Quarry (No. KK5)

Depth (m)	Concentration of SiO ₂ m mols/l		
Depth (III)	I	II	III
16.35	5.382	9.657	3.663
17.0	2.664	8.325	4.329
19.0	6.993	1.665	2.999
14.19	10.656	8.658	16.317

Reduction in Alkalinity

Dam site Quarry (No. KK4)

Depth (m)	Reduction in Alkalinity mmol/l		
Depth (m)	I	· II	III
10.37	360	390	165
17.5	185	265	320
19.9	245	170	420
14.78	280	180	150

Power House Quarry (No. KK5)

Depth (m)	Reduction in Alkalinity mmol/l		
Depth (III)	I	II	III
16.35	420	370	310
. 17.0	460	365	590
19.0	245	170	420
14.19	260	270	480

Interpretation of results

When the three values of R_c , S_c are plotted on the semilog graph provided, for each of the eight samples, it can be seen that the points are all lying on the innocuous side of the solid curve.

Thus the samples from both the dam site and the power house site from the depths mentioned in the report can all be considered innocuous in respect of their degree of alkali reactivity.

(Mrs.) N. Ratnayake,

Senior Lecturer.

FIG. 2 Illustration of Division Between Innocuous and Deleterious Aggregates on Basis of Reduction in Alkalimity Test

Dam Site (No. KK4)		Power House Site (No.
Depth (m)	,	Depth (m)
10.37 •		16.35
17.50 *		17.00 * .
19.90 •	200	19.00
14.78 *		14.19 m

1.7 Clay lumps and friable particles

Appendix B - 1

Soft Rock Amount

Sample Type = B (Blasted rock packed in bags)

ASTM Standard = C 142 - 78

(1) Dam Site Quarry (No. KK4).

No. of samples tested = 01.

0.00 %
0.22 %
0.15 %

(2) Power House Quarry (No. KK5)

No. of samples tested = 01.

Size Fraction (mm)	Percentage of Friable Particles
4.75 to 9.5	1.14 %
9.5 to 19.0	2.08 %
Percentage of soft (friable) particles = 2.1 %

- Note: (1) Test samples were obtained by breaking the rock samples supplied. The quantity of samples was sufficient to obtain only two size fractions (4.75 mm to 9.5 mm and 9.5 mm to 19.0 mm).
 - (2) No clay lumps were present in the test samples.
 - (3) As grading of the samples was not available, the largest percentage of soft particles in the two size fractions tested is given as the percentage of soft particles in the sample.

1.8 Abrasion test by Los Angeles method

Appendix B - 2

Abrasion Test by Los Angeles Method

Sample type : B (using blasted rock)

ASTM Standard : C - 131

Grading: A

(1) Dam Site Quarry (No. KK4)

Test No.	1	2
Los Angeles Abrasion Value(%)	36.0	37.9

(2) Power House Quarry (No. KK5)

Test No.	1	2 .
Los Angeles Abrasion Value(%)	85.8	85.6

Additional Testing

Kukule Ganga Feasilbility Study

Abrasion Test by Los Angeles Method

Sample Type : A (using material from drilled core)

ASTM Standard : C-131

Grading : A

Power House Quarry (No. KK5)

Depth : (15.31 - 17.35) m

Los Angeles Abrasion Value = 59.7 %

13. X. Temel

1.9 Soundness test

Appendix B - 3

Soundness Test

Sample Type = B (Blasted rock)

ASTM Standard = C 88 - 83.

Solution used = Sodium Sulphate Solution

No. of Cycles = 5

Test samples :- Obtained by breaking the rock samples supplied.

(1) Dam Site Quarry (No. KK4) No. of samples tested = 02

(a) Sample 1

Sieve Size (mm)	Grading of Original Sample	Percentage Passing Designated Sieve after test	Weighted Percentage Loss.
37.5 to 19.0	45.2 %	1.04	0.47
19.0 to 9.5	33.1 %	1.14	0.38
9.5 to 4.75	21.6 %	0.40	0.09

= 1.14 % Maximum percentage loss

Weighted percentage loss = 0.94 %

Qualitative examination of particles larger than 19.0 mm

Excessive splitting, crumbling or cracking was not observed.

No. of particles before test = 71 No. of particles after test = 72

= 72

(b) Sample 2

Sieve Size (mm)	Grading of Original Sample	Percentage Passing	Weighted Percentage Loss.
37.5 to 19.0	45.2	0.77	0.35
19.0 to 9.5	33.1	0.72	0.24
9.5 to 4.75	21.6	1.80	0.39

Maximum percentage loss = 1.80 % Weighted percentage loss = 0.98 %

Qualitative examination of particles larger than 19.0 mm

Excessive of cracking, splitting or crumbling was not observed

Number of particles before test = 71

Number of particles after test = 71

(2) Power House Quarry. (No. KK5)

Number of samples tested = 02

(a) sample 1:

Sieve Size (mm)	Grading of Original Sample	Percentage Passing after the test	Weighted Percentage Loss.				
37.5 to 19.0	32.9	2.36	0.78				
19.0 to 9.5	32.1	1.25	0.40				
9.5 to 4.75	35.0	2.53	0.89				

Maximum percentage loss = 2.53 % Weighted percentage loss = 2.07 %

Qualitative examination of particles larger than 19.0 mm.

Excessive splitting, cracking or crumbling was not observed Number of particles before test = 57 Number of particles after test = 60

(b) Sample 2

Sieve Size (mm)	Grading of Original Sample	Percentage Passing after the test	Weighted Percentage Loss.
37.5 to 19.0	32.9	2.1	0.69
19.0 to 9.5	32.1	1.61	0.52
9.5 to 4.75	35.0	2.40	0.84

Maximum percentage loss = 2.40 % Weighted percentage loss = 2.05 %

Qualitative examination of particles larger than 19.0 mm.

Excessive cracking, splitting or crumbling was not observed.

Number of particles before test = 52 Number of particles after test = 58

Note: (1) The maximum percentage loss given above is the largest percentage loss of the three size fractions tested.

(2) The grading of the original sample was based on the total weight of each size fraction after the rock samples were broken.

1.10 Ten percent fines

Appendix B - 4

Ten Percent Fines Value

Sample Type = B (Blasted rock)

British Standard = B S 812 : Part 3 (1975)

Test samples: Samples of standard size (10 mm to 14 mm) obtained by breaking the rock samples supplied were used.

(1) Dam Site Quarry (No. KK4)

No. of samples tested = 01.

Ten percent fines value = 150 kN.

(2) Power House Quarry (No. KK5)

No. of Samples tested = 01

Ten percent fines value = 35 kN.

Ten Percent Fines Value

Surge Shaft Site (KK 7)

Sample Type : A (for drilled Cores)

British standard: BS 812: Part 3 (1975)

Test Samples: Obtained by crushing drilled cores.

No. of samples Tested: 02.

Sample 1 :

Depth = 4.75 m to 6.90 m. Ten Percent fines value = 140 kN

Sample 2:

Depth = 9.5 m to 11.0 m

Ten Percent fines Value = 100 kN.

13. X. Tennel 6/4/92

Ten Percent Fines Value:

Power House Quarry (KK-5)

Sample Type : Sample A (drilled cores)

Depth

British Standards 135 812: Part 3 (1975)

Test Samples Test samples were obtained by breaking drilled cores.

Results Ten percent Fines value = 70 kN.

13. K. Fernal

1.11 Results of quality control tests
on
concrete aggregates during construction
of
the Samanalawewa Project

Table 3.4.6 Tests Results of Quality Control on Aggregate

Test Item	Gradation	Range
1. Specific gravity	0 - 5 mm 5 - 20 mm 20 - 40 mm 40 - 80 mm	2.71 - 2.81 2.75 - 2.85 2.78 - 2.89 2.81 - 2.88
2. Absorption (%)	0 - 5 mm 5 - 20 mm 20 - 40 mm 40 - 80 mm	0.91 - 1.28 0.54 - 0.96 0.23 - 0.58 0.13 - 0.19
3. Washing value (%)	0 - 5 mm 5 - 20 mm 20 - 40 mm	3.30 - 5.49 0.69 - 1.33 0.53 - 1.09
4. 10% finess value (kN)		65 - 120
5. Los Angeles abrasion (%)	A B	40 - 66 38 - 70
6. Flakiness index (Average)	0 - 20 mm 20 - 40 mm	19.7 - 25.3 15.0 - 25.6
7. Fineness modulus (Average)	0 - 5 mm 5 - 20 mm 20 - 40 mm 40 - 80 mm	2.42 - 2.62 6.50 - 6.79 7.81 - 7.95 8.62 - 8.95

TEST RESULTS OF MONTHLY QUALITY CONTROL

ON

CONCRETE AGGREGATES

LOT II CONCRETE MATERIAL

TABLE & RESULTS OF AGGREGATE TESTS (1/2)

								·····	0 -1	10.10			٦
	1990 MAR	2.73 2.81 2.84	1.02 0.61 0.48	4.88 0.69 0.79	110	4 4 1 1	36 21.9 28	35 20.1 26	39 2.50 0.11	38 6.76 0.06	34 7.81 0.05		
	088	.73 .80	100 0.62 0.50	4.89 0.90 0.53	110	. 24		36 19.8	8 2 0 10 • 0 10 80	35 6.74 0.09	30° 7.82 0.06	1	
	1990 19	2.736 2.840 2.870	0.55	4.33 0.98 0.76	82	ት !	25 24.7 28	25 19.8 27	49 2.42 0.11	48 6.70 0.09	37 7.84 0.07	01 8.91	
	1989 1 DEC	2.74 2.86 8.84	1.09 0.54 0.45	4.54 0.97 0.92	100	4 4 2 4	13 24 30	16 19.1 24	41 2.44 0.10	37 6.72 0.12	30 7.88 0.06	8.81	
	1989 VOV	2.83	1.11 0.76 0.51	4.69 0.86 0.80	O ₁ ;	4 4 4 6	31 23.3 29.3	33 20.3 27	53 2.44 0.11	53 6.77 0.06	47 7.90 0.04	05 8.62 0:46	
	1989 OCT	2.83	1.01	4.04 0.83 0.86	120	4 E 0 8	8 2 2 8 2 8 9 5 8	20 20.5 28.5	10 2.43 0.04	10 6.71 0.06	10 7.90 0.04	0.8 8.95	
	1989 SEP	2.83	1.14	3.79 0.89 0.63	ı	4. 2 -	323 322 322	29 22.2 31	10 2.53 0.06	10 6.73 0.05	10 7.89 0.04	0.08 0.08	
ľ	1989 .AUG	2.71 2.79 2.80	1.16 0.74 0.58	3.85	ı	4 1	07 20.9 27	04 30.5	10 2.52 0.04	10 6.71 0.04	10 7.91 0.03	03 8.79 0.03	1
.	1989 JUL	111	1 1 1	4.16 1.20 1.09	1	1 1	22.6 32.6	24 31.5	10 2.47 0.05	10 6.70 0.04	10 7.89 0.04	02 8.91	1
	1989 JUN	2.74 2.81 2.84	1.10 0.65 0.36	4.36	1	1.1	28 23.6 33.6	37 24.1 33	10 2.51 0.04	10 6.68 0.03	10 7.94 0.04	06 8.92 0.10	
	1989 MAY	2.75 2.81 2.84	1.09	4.38 0.84 0.75	ı	1 1	23 22.4	35.0	10 2.53 0.09	10 6.72 0.04	10 7.91 0.05	02 8.91	1
	1989 APR	111	111	4.51	ı	1 1	25.3 38.3	13 25.6 32	10 2.52 0.09	10 6.77 0.07	10 7.86 0.08	1	1
	1989 Mar	2.77 2.85 2.89	1.09	4.39	1	1 1	21	ı	10 2.46 0.05	10. 6.76 0.03	8 7.90 0.02	ı	
	1989 FEB	2.78 2.80 2.84 2.85	1.11 0.63 0.40 0.13	5.43	ı	1 1	1	ı	10 2.44 0.08	10 6.75 0.04	7.95	8.94 0.01	
	1989 JAN	2.78 2.82 2.83 2.88	1.28 0.56 0.23 0.16	5.30	1	1 1	l .	ı	8 2.55 0.10	8 6.50 0.05	8 7.92 0.03	8.88 0.09	
000	DEC	2.17 2.80 2.80	1.15 0.61 0.41	5.49	,	1 1	. ' :	ı	8 2.62 0.05	5 6.55 0.05	7.91	8.90 0.05	
800	NON	2.2.2 2.80 2.84 86	1.10 0.96 0.33 0.19	5.00	ı	1 1	1	1	4 2.50 0.17	5 6.57 0.03	7.88 0.02	8.88 0.04	
1000	OCT	2 2 2 2 2 2 3 3 1 8 8 8 1 8 4 8 1	0.60	3.30	ı	1 1		1	6 2.58 0.04	6.59 0.06	5 7.92 0.08	8.90 0.22	
	·	Gravity - 5 mm 20 mm 40 mm.	7	5 nm. 20 nm.	s value	se Abrasion - A, % loss	Index No. Average Maximum	No. Average Maximum	fodulus No. Average Std. Dev.	. No. Average Std. Dev.	No. Average Std. Dev.	. No. Average Std. Dev.	
	TEST	1. Specific G	20 - 20 - 20 - 20 - 20 - 20 - 20 - 20 -	, , , , , , , , , , , , , , , , , , ,	4. 10 % fines	5.Los Angelese Gradation Gradation	6.Flakiness 0 - 20mm.	20 - 40mm.	7.Fineness Modulus 0 - 5 mm. No. Aver	5 - 20пп.	. 20 - 4 mm	40 - 8 пп.	

Annex-5B.2 Embankment Materials

THREE BASINS PROJECT - KALU GANGA (ECI)

KUKULE DAM BORROW AREAS MATERIALS

SUMMARY OF LABORATORY TESTS

	,		.	_				•										
COLA. &	TION CONSOCIDY:	_	18100.	.0005	9000													\neg
PERC	RATE CM/SEC		27.20	.01759	.009833													
AR'S	COHESION		13.0	8	2							•						ᅦ
TRIAXI	2 NAT		9.3 13.3	673	28.													ᅱ
-0-	La Revert		1676	83	1200		-							·				
ACTIBN TRATIO	MAX. DRY DENS. Las/Cu FT		8.8	103.0	120.8													\dashv
COMP	OPTIMUM MOIST.		22.6	20.7	14.1													
	200 MESH		.8	28	15	 63	29	37	8	71	28	æ	55	63	92	53	6	
_	1/4" ME5H		8	8	22	901	8	ま	90L	88	69	80	3		90	26	92	
AHALYSIS	BOULDERS > 3/4		0	-	5	0	0	0	0	0	0	0	0	0	. 0	0	0	
MAL	> 5 WW 2 CBYAET		6	12	42	-	4	80	0	13	15	0	22		-	6	37	\neg
1	# COARSE SAND 0.4 - 2.0 MM		8	10	24	-	7	1	-	6	12	4	7	4	_	-	6	\neg
MECHANICAL	# MED. 5AND 0.2 - 0.5 MM		80	01	01	6	ı.	17	0	9	z	2	80	9	18	6	77	
CH	## 5.0 - 0.0		18	17	5	83	82	74	13	80	51	14	62	.82	. 08	31	17	
¥	0.002 - 0.06 WM		25	12	9				28	02		80		59		20	91	
	₹ CFYX		32	29	8													
λ11 <i>/</i>	SPECIFIC GRAV		2.73	2.74	2.81	2.72	2.63	2.69	2.62	2.67	2.68	2.60	2.76					
XBO	PLASTICITY IN		22.9	26.9		23.8	29.9	17.4	225	21.7	15.7	15.8	32.4	23.9	•	16.3		
	PLASTIC LIMIT		27.6	24.7		26.5	33.5	21.0	37.1	33.3	19.7	19.9	43.7	21.9	,	17.1		
	רוסחום רואוב	·	50.5	51.6		50.3	63.4	38.4	59.6	55.0	35.4	35.7	76.1	45.8	16.4	33.4	18.1	
	F32\CN =± DEM8!\L IM 2 \L DE M2																	
381	IN SITU MOISTI CONTENT A DRY WEIGHT																	
N	UNIFIED SOIL		₹	ጜ	AS													
	BORROW AREA		4	4	¥	4	<	<	<	<	<	<	<	<	<	<	<	
 `	SELDW G.L.					.9-,0	69	9-10	0-4	46	6-7	0-4	9*-17	0-7	9'-14"	14-16	16"-20"	
—	אול אם. פול אם.		3	- X	I W	5	5	5	9	9	۰	-	-	œ	œ	60	80	
	SAMPLE NO.	•	_	7	6	23	77	23	78	22	28	53	e	គ	33	33	34	

* At 1 TSF ** Sample at maximum dry density.

See Figure V-G for sample locations.

1			-					-	<u> </u>							*				
10 10 10 10 10 10 10 10	ENEW B	# CONSOLIDA:						.000	.9006.7											
13 15 15 15 15 15 15 15	PERC	PERCOLATION RATE CM:SEC						99/00	6/110							,	1			
10 10 10 10 10 10 10 10	- A	TRS/SQ FT						_	13.5											
1 1 1 1 1 1 1 1 1 1	SHE	Q NAT						.43	3											
1	-5-	TESIS I VICE						1400	1500											
1	ACTI	MAX, DRY DENS, LBS/CU FT						111.0	109.5											
1	COMP	OPTIMUM MOIST. CONT. % DRY WT.							17.0			-								
1		6		8	8	49		22	8		n	R	22	£	2	2	2	\$	33	23
10 10 10 10 10 10 10 10	2			8	23	98		66	8		8	8	8	8	8	22	8	23	26	90
10 10 10 10 10 10 10 10	LYSI			0	0	0		0	0		0	0	0	0	0	0	0	0	0	0
22 2 2 1 1 2	1	Z CSAVEL		=	13	5		2	2		0	-	-	-	0	7	0	60	-	0
22 2 2 1 1 2	정			4	22	2		М	7		0	0	0	-	٥	2	0	3	2	2
23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	HANI			6 0	ম	23		60	=		88	2		8	8	37	_	22	33	23
23 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	ECI			45	52	22		=	=		3	S.	ı	8	B	ង	-	7	2	53
23 3 3 3 3 3 3 2 2 2 2 2 2 2 2 2 2 2 2	2			32		46		12	11		23				20		22			22
13 13 14 15 17 18 18 18 18 18 18 18								25	27											
3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	711	SPECIFIC GRAY						2.71	2.72			2.73	2.75	2.72	2.77	2.68	2,66	2.71	2.69	2.68
1	X30	PLASTICITY IN			1				31.7			ı			'					
1		PLASTIC LIMIT		18.3		210		16.8	18.1			1		16.8	'	18.3	36.3	24.6	16.5	
2 3 3 3 2 2 2 1 1 2 2 2 2 2 2 2 2 2 2 2		רוסחום רואוב		35.1	20.8	32.8		38.6	49.8			24.8		34.1	18.2	37.3	632	65.6	35.8	
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		DENSITY																	·	
2 3 3 3 2 2 2 2 1 1 3 6 6 6 6 7 6 10 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	3 11	CONTENT												•						
2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	301	ITSION IITIS KI			-		-	 	-	-	_	-				-	_			
2 3 3 2 2 2 2 1 1 2 12 12 12 12 12 12 12 12 1	N							ס	\$ C/G											
AUGERHOLE OR'		BOKKOM YKEY		<	<	<		m	60		60	60	20	60	50	60	æ	60	æ	ø
M M M M M M M M M M M M M M M M M M M		BEFOM C'F'		-12	P	<u>b</u>					<u>.</u>	ž	-15	-12	-13°	- 15°	ge.	Þ	-16	R
A PUCES HOLE OR	1	рертн ім гее.		.s.	in .	è					ě	13.	<u>.</u>	.o.	13,	13,	6	80	Þ	2
2 4 10 11 12 11 12 1 1 1 1 1 1 1 1 1 1 1 1	, 19	AUGER HOLE O		8	2	ই		Ã	ZX		e	-	-	2	7	2	3	3	6	3
		SAMPLE NO.		33	8	\$		-	5		11	12	13	71	51	92	17	=	2	2

* At 1 TSF

** Sample at maximum dry density.

See Figure V-G for sample locations.

1 -				,															
EVEN.	LION CONSOLIDA:	 - -	-		İ										·				
PERCOLA. &	PERCOLATION RATE CM/SEC																		
AR S	LBS/SQ FT				1.								Ė						
TRIAXIAL.	Q NAT																		
-5 Z	LAS/SO ET	/ 							 										
COMPACTION	MAX, DRY DENS, LBS/CU FT			-															
COMP	OPTIMUM MOIST. CONT. R DRY WT.						-	-	-										
	200 MESH & PASS	8	ੜ			25	55	ਨ	S	47	43	39	58			-			
S	J\4" MESH R PASS	8	8			8	66	8	8	86	66	88	8						
ANALYSIS	BOULDERS > 3/4 % COBBLES &	0	0			0	0	0	0	0	0	0	0						
ANA	> 3 WW % CKAVEL	0	3			11	5	12	7	9	7	20	80						
CAL	% COARSE SAND	1	4			13	11	22	12	16	22	20	17						
MECHANICAL	% MED. SAND .0.2 - 0.6 MM	0	19			92	92	18	12	15	17	12	80						
ÆC	% FINE SAND	z	31			99	28	11	52	35	92	48	29						
_	# SILT 0.002 - 0.06 MM	22	30					31	48	4	4					. ,			
	% CLAY																		
711/	SPECIFIC GRAY	2.69	2.68																
X30	PLASTICITY IN	22.6	15.3			32.3	9'91	33.8	13.9	38.2	27.6	29.2	. 18.3						
	PLASTIC LIMIT	29.8	19.3			41.7	26.0	31.7	29.5	32.2	79.7	39.2	48.1						
	רוסחום רואוב	52.4	34.7			74.0	42.6	5.59	43.4	70.4	57.0	68.4	66.4						
	IN SITU DRY DENSITY TA UD\SA																		
эмс	IN SITU MOISTU CONTENT % DRY WEIGHT																		
l N	UNIFIED SOIL				4														
	BOKKOM YKEY	8	8			၁	၁	J	υ	υ	υ	υ	υ						
	BEFOM C'F'	'8°	11-11			0*-8*	8'-20'	0,-10,	10'-20'	.8-,0	8'-12'	12"-16"	16'-20'						
	DEPTH IN FEE'	6	80					<u> </u>	٢	_			-	<u> </u>	_	_	-	_	
8	AUGER HOLE O	*	*			13	22	2	2	15	15	15	5		_	_	_	_	
•	SAMPLE NO.	٦	22			46	47	87	64	S	51	52	23						

* At 1 TSF

** Sample at maximum dry density.

See Figure V-G for sample locations.

Annex-5B.3

Water Quality Test for Concrete

ලංකා විදාාත්මක හා කාර්මික පයෝෂණ ආයතනය

இலங்கை விஞ்ஞான கைத்தொழில் ஆராய்ச்சி நிலேயம் CEYLON INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH

த. பெ. 787 363. பௌத்தலோக மாவத்தை.

Telex

2030:4030:5 9 ஐ எஸ் ஐ ஆர் CISIR 21208 — HPT — CE 22151 — HPT — CE Attention C.I.S.I.R. තෑ. පෙ. 787 363. බෞද්ධාලෝක මාවත. කොළඹ-7, ශුී ලංකාව.

P. O. Box 787 363. Bauddhaloka Mawatha. Colombo 7, Sri Lanka.

ANALYSIS OF ONE SPECIMEN OF WATER

Report No. TS: C - 6300

REPORT TO:

Kukule Ganga Hydro Electric Project Feasibility Study, Ceylon Electricity Board, New Kelani Bridge Road, Wellampitiya.

07th May 1992

This report is issued for the information of the client. It shall not be published in total or in part without the written authority of the Director. CISIR.

The specimen of tested was/were submitted by the client. It was/They were NOT sampled by CISIR officers. The report is therefore limited specifically to this/these-specimen of

While the Institute exercises every care in respect of work entrusted to it by clients the Institute is not liable for any loss or damage howsoever caused to person or property, including property entrusted by clients to the Institute whether such loss, damage or delay may have been caused by the negligence or dishonesty of the employees of the Institute or otherwise.

Any person or any party who alters or adds or deletes or interpolates any provisions or words or letters or figures shall be liable to legal action.

ලංකා විදු ත්මක හා කාර්මික පයෝෂණ ආයතනය

இலங்கை விஞ்ஞான கைத்தொழில் ஆராய்ச்சி நிஃயம் CEYLON INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH

த. பே. 787 363. பௌத்தலோக டாவத்தை, கொழும்பு 7. ஸ்ரீ லங்கா

තෑ. පෙ. 787 363, වෙදේධාලලා්ක මාවක, කොළඹ - 7, ණී ලංකා. P. O. Box 787 363, Bauddhaloka Mawatha, Colombo 7, Sri Lanka,

විදුලි පතිවුඩ } සි අයි ඇස් අයි ආර් නැතිම } ජී සු ඇක් සු ඇත් Cables } C I S I R

Telex

C I S I R 21248 MININD CE Attention C. I. S. I. R.

:

:

දුරකථනය 93807 වළුණැඩාජීයම් 598620

ANALYSIS OF ONE SPECIMEN OF WATER

Report No. TS : C - 6300

CLIENT

Kukule Ganga Hydro Electric Project

Feasibility Study,

Ceylon Electricity Board. New Kelani Bridge Road.

Wellampitiya.

REFERENCE

Client's letters of 18th February 1992 and 22nd April

1992 (with reference DGM(GP)/KFS/30) confirmed on 27th

April 1992.

SPECIMEN

A total of approximately D6 litres of water contained

in two plastic containers each labelled as follows:

CEB

KUKULE

The contents of the two containers were mixed and treated

as one specimen.

METHOD OF :

Suitability for mixing concrete

ANALYSIS

The analysis was carried out as per British Standard Methods to test for water for making concrete (including notes on suitability of the water) BS: 3148: 1980.

Contd...02/.

The specimen/ \int tested was/ware submitted by the client. It was/They were NOT sampled by C. I. S. I. R. officers. The report is therefore limited specifically to this/these specimen/ \int .

.. Continuation Sheet 02/.

TS : C - 6300

Aggresiveness to concrete structures

The analysis was carried out as per Indian Standard Code of Practice for Treatment of Water for industrial cooling systems, IS 8188 : 1976.

Aggresiveness for turbines

The analysis was carried out as detailed in Appendix 1 of Client's letter dated 18th February 1992.

RESULTS Suitability for mixing concrete

Appearance Clear with settlable matter

Colour 30 Hazen Units

Odour Unobjectionable

pH at 20°C 5.4

Electrical conductivity at 25°C 40 µS/cm

Total dissolved solids at 180°C 35 mg/1

Suspended solids at 105°C 26 mg/l

10 mg/l Chloride (as Cl.)

11 mg/l Sulphate (as 50_3)

Nil Alkali Carbonate (as CaCO₃)

8 mg/1Alkali Bicarbonate (as CaCO₃)

Contd...03/.

The specimen/s tested was/ware submitted by the client. It was/They were NOT sampled by C. I. S. I. R. officers. The report is therefore limited specifically to this/these specimen/s.

ommanon

Aggresiveness to concrete structure	25	
pH at 20°C	-	5.4
Total residue at 180°C	-	67 mg/l
Calcium hardness (as CaCO ₃)	_	8 mg/l
Total alkalinity (as CaCO ₃)	-	8 mg/l
Ryznar Index at 20°C (calculated)	-	14.41
Langelier Index at 20°C (calculated	1)-	- 4.51
Aggresiveness for turbines		
Total dissolved solids	-	35 mg/1
Alkalinity to Phenolphthálein (as CaCO ₃)	-	Nil
Alkalinity to Methyl Orange (as CaCO ₃)	-	8 mg/1
Total hardness (as CaCO ₃)	-	12 mg/l
Chloride (as Cl)	-	10 mg/l
Calcium (as Ca)	-	3 mg/l
Magnesium (as Mg)	-	1 mg/l
Sodium and Potassium (as Na)	-	4 mg/l
Free Carbon di oxide (as ${\tt CO}_2$)	-	2 mg/l
Sulphate (as SO ₄)	***	13 mg/l

Contd...04/.

N.B.

The specimen/s tested was/were submitted by the client, It was/They were NOT sampled by C. I. S. I. R. officers. The report is therefore limited specifically to this/these-specimen/s:

... Continuation Sheet

TS : C - 6300

04/.

Residue loss on ignition at 550°C $11 \, mq/1$

pH at 20°C 5.4

Total Iron (as Fe) 1.3 mg/1

Soluble Iron (as Fe) $0.3 \, \text{mg/1}$

Suspended solids including 26 mg/l

sediments

Hardness of suspended solids 2 mg/1

(inclusive of sediments) (as CaCO₃)

COMMENTS Suitability for mixing concrete

The specimen of water analysed meets the requirements as specified in British Standards Methods of Tests for water for making concrete, BS 3148 : 1980 with respect to all parameters tested.

Aggresiveness to concrete structures

The Langelier Index and Ryzner Index indicates that the water has corrosive tendencies.

Fernando,

TECHNICAL ASSISTANT.

Dr. Nirmala M. Pieris

HEAD/ANALYTICAL CHEMISTRY SECTION.

MF:NMP:nmg. 920507.

The specimen/#tested was/ were submitted by the client. It was/They-were NOT sampled by C. I. S. I. R. officers. The report is therefore limited specifically to this/these specimen/

ලංකා විදාහන්මක හා කාර්මික පයෝෂණ ආයනනය

இலங்கை விஞ்ஞான கைத்தொழில் ஆராய்ச்சி நிலையம் CEYLON INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH

த. பெ. 787 363. டௌத்தலோக மாவத்தை.

கொழும்பு 7. ஜூ வங்கா.

වදලි පණිඩුය Br2cr2c2c3 சிற எஸ் து ஆர் Cables CISIR Telex

21208 - HPT - CE 22151 - HPT - CE Attention C.I.S.I.R.

නෑ. අප 787 363, සහිභේඛයල්න රාධන. කොළඹ-7, නි ල කාද.

P. O. Bo . . 363. Bauddhalo ce Colombo 7, Sri

தொள்பேச் \ 6936 Telephone 698/

ANALYSIS OF ONE SPECIMEN OF WATER

Report No. TS: C - 6538

REPORT TO:

Kukule Ganga Hydro Electric Project Feasibility Study, Ceylon Electricity Board, New Kelani Bridge Road, Wellampitiya.

04th June 1992

This report is issued for the information of the client. It shall not be published in total or in part without the written authority of the Director CISIR

The specimen's tested was were submitted by the client. It was They were NOT sampled by CISIR officers. The report is therefore limited, specifically to this them, specimen #

While the Institute exercises every care in respect of work entrusted to it by clients, the Institute is not liable for any lost or damage howsoever caused to person or property including property entrusted by clients to the Institute whether such loss, damage or delay may have been caused by the negligence or dishonesty of the employees of the Institute or otherwise

Any person or any party who alters or adds or deletes or interpolates any provisions or words or letters or figures shall be liable to legal action.

ලංකා විදු,ත්මක හා කාර්මික පයෙයිෂණ ආයනනය

இலங்கை விஞ்ஞான கைத்தொழில் ஆராய்ச்சி நிலேயம் CEYLON INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH

த. பெ. 787 363, பௌத்தலோக மாவத்தை, கொழும்பு 7, ஸ்ரீ லங்கா

තැ. පෙ. 787 363, පෙදේධාලෙන්ක මාවත, කොළඹ - 7, සි ලංකා.

P. O. Box 787
363, Bauddhaloka Mawatha,
Colombo 7, Sri Lanka.

21248 MININD CE Attention C. I. S. I. R.

:

:

:

:

දුරකථනය 93807 දෙසැනාරීයම් 598620 Telephone 598620

ANALYSIS OF ONE SPECIMEN OF WATER

Report No. ▼S : C - 6538

CLIENT

Kukule Ganga Hydro Electric Project

Feasibility Study.

Ceylon Electricity Board, New Kelani Bridge Road,

Wellampitiya.

REFERENCE

Client's letter of 25th May 1992 (with reference

KFS/30) confirmed on O1st June 1992.

SPECIMEN

Approximately 05 litres of water contained in a plastic

container with no label.

METHOD OF

Suitability for mixing concrete

ANALYSIS

The analysis was carried out as per British Standard Methods to test for water for making concrete (including notes on suitability of the water) BS: 3148

: 1980.

Contd...02/.

The specimen/a tested was/were submitted by the client. It was/They were NOT sampled by C. I. S. I. R. officers. The report is therefore limited specifically to this/these specimen/s?

Aggresiveness to concrete structure

The analysis was carried out as per Indian Standar Code of Practice for Treatment of Water for industrip cooling systems, IS 8188: 1976.

Aggresiveness for turbines

The analysis was carried out as detailed in Append¹

1 of Client's letter dated 18th February 1992.

RESULTS : Suitability for mixing concrete

Appearance - Clear with settle matter

Colour - 15 Hazen Units

Odour - Unobjectionable

pH at 25°C - 5.9

Electrical conductivity - 40 μ S/cm

at 20°C

Total dissolved solids - 30 mg/l

at 180°C

Suspended solids at 105°C - 12 mg/l

Chloride (as Cl) - 8 mg/l

Sulphate (as SO_3) - less than 1 mg/l

Alkali carbonate (as CaCO₃) - Nil

Alkali bicarbonate (as CaCO₃) - 8 mg/l

Contd...03/.

N.B.

The specimen/s tested was/were submitted by the client. It was/They were NOT sampled by C. I. S. 1. R. officers. The report is therefore limited specifically to this/these specimen/se

03/.

Aggresiveness to concrete str	uctui	'es
pH at 20°C		5.9
√otal residue at 180°C	-	48 mg/l
Calcium hardness (as CaCO ₃)	-	9 mg/1
Total alkalinity (as CaCO ₃)	-	8 mg/1
Ryznar Index at 20°C (calculated)	-	13.50
Langelier Index at 20°C (calculated)	-	- 3.80
Aggresiveness for turbines		
₹otal dissolved solids at 180°C	-	30 mg/1
Alkalinity to Phenolphthalein (as CaCO ₃)	-	Nil
Alkalinity to Methyl Orange (as CaCO ₃)	-	8 mg/1
Total hardness (as CaCO ₃)	-	12 mg/l
Chloride (as Cl)	-	8 mg/1
Calcium (as Ca)	-	3 mg/1
Magnesium (as Mg)	-	1 mg/l
Sodium and Potassium (as Na)	-	2 mg/1
Free carbon di oxide (as CO_2)	-	6 mg/l
Sulphate (es SO ₄)	-	less thatn 1 mg/l

Contd...04/.

N.B.

The specimen/stested was/were submitted by the client. It was/They-were NOT sampled by C. I. S. I. R. officers. The report is therefore limited specifically to this/these specimen/s.

Residue loss on ignition - 10 mg/l

at 550°C

pH at 20°C - 5.9

Total Iron (as Fe) - 0.4 mg/l

Soluble Iron (as Fe) - 0.2 mg/l

Suspended solids at 105°C - 12 mg/l

(including sediments)

Hardness of suspended solids - 2 mg/l

(inclusive of sediments) (as $CaCO_3$)

COMMENTS: Suitability for mixing concrete

The specimen of water analysed meets the requirement as specified in British Standards Methods of Test for water for making concrete, BS 3148 : 1980 wit respect to all parameters tested.

Aggresiveness to concrete structures

The Langelier Index and Ryznar Index indicates the the water has corrosive tendencies.

S.K.D Sarath Kumara, TECHNICAL ASSISTANT.

Dr. Nirmala M. Pieris, HEAD/ANALYTICAL CHEMISTRY SECTION.

SKDSK:NMP:nmg, 920604.

N.B.

The specimen/R tested was/were submitted by the client. It was/They were NOT sampled by C. 1. S. 1. R. officers. The report is therefore limited specifically to this/these specimen/s:

ලංකා විදහාත්මක හා කාර්මික පයෝෂණ ආයතනය

இலங்கை விஞ்ஞான கைத்தொழில் ஆராய்ர்சி நிலயம் CEYLON INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH

த. பெ. 787 363. பௌத்தலோக மாவத்தை. கொழும்பு 7. ஸ்ரீ வங்கா.

නැ. පෙන 787 363. බෞද්ධාදෙන්න මාවන. කොළඹ-7. මු ලංකාව P. O. Box 787 363, Bauddhaloka Mawatha, Colombo 7, Sri Lanka.

විදලි පණිඩුය <u>ණ</u>ණි Cables Telex 色に3点,4点3点から 見からか、表 。 ஆர் CISIR 21208 — HPT — CE 22151 — HPT — CE Attention C.I.S.I.R.

ANALYSIS OF ONE SPECIMEN OF WATER

Report No. TS: C - 6784

REPORT TO:

Kukule Ganga Hydro Electric Project Feasibility Study, Ceylon Electricity Board, New Kelani Bridge Road, Wellampitiya.

D4th July 1992

This report is issued for the information of the client. It shall not be published in total or in part without the written authority of the Director, CISIR.

The specimen/\$\pounds\text{sted was/were submitted by the client. It was \text{They were NOT sampled by CISIR officers. The report is therefore limited specifically to this \text{these-specimen/\$\frac{1}{2}}

While the Institute exercises every care in respect of work entrusted to it by clients, the Institute is not liable for any loss or damage howsoever caused to person or property, including property entrusted by clients to the Institute whether such loss, damage or delay may have been caused by the negligence or dishonesty of the employees of the Institute or otherwise

Any person or any party who alters or adds or deletes or interpolates any provisions or words or letters or figures shall be liable to legal action.

ලංකා මිදු,න්මක හා කෘර්මික පයෙකීෂණ ආයතනය

இலங்கை விஞ்ஞான கைத்தொழில் ஆராய்ச்சி நிலேயம் CEYLON INSTITUTE OF SCIENTIFIC AND INDUSTRIAL RESEARCH

த. பெ. 787 363, பௌத்தமீலாக மாவத்தை, கொழும்பு 7, ஸ்ரீ லங்கா තැ. පෙ. 787 363, බෞද්ධාලලා්ක මාවත, ඉතාළඹ - 7, ශී ලංකා.

P. O. Box 787 363, Bauddhaloka Mawatha, Colombo 7, Sri Lanka.

93867

598620

දුරක එයය ි ළැබීමේවිම Telephone

Telex

21248 MININD CE Attention C. I. S. I. R.

:

ANALYSIS OF ONE SPECIMEN OF WATER

Report No. TS: C - 6784

CLIENT

Kukule Ganga Hydro Electric Project

Feasibility Study,

Ceylon Electricity Board, New Kelani Bridge Road,

Wellempitiya.

REFERENCE

Client's letter of 22nd June 1992 confirmed on 07th July

1992.

SPECIMEN

Approximately 04 litres of water contained in a plastic

container labelled as follows:

Kukula Ganga

· CEB

Water

23.06.92

METHOD OF

Suitability for mixing concrete

ANALYSIS

The analysis was carried out as per British Standard Methods to test for water for making concrete (including notes on suitability of the water) BS: 3148: 1980.

Contd...02/.

The specimen/a tested was/were submitted by the client. It was/They were NOT sampled by C. I. S. I. R. officers. The report is therefore limited specifically to this/these specimen/s.

02/.

Aggresiveness to concrete structure

The analysis was carried out as per Indian Standard Code of Practice for Treatment of Water for industrial cooling systems, IS 8188: 1976.

Aggresiveness for turbines

The analysis was carried out as detailed in Appendix 1 of Client's letter dated 18th February 1992.

RESULTS : Suitability for mixing concrete

Appearance Clear Colour 8 Hazen Units Odour Unobjectionable 6.9 pH at 25°C 30 µ5/cm Electrical conductivity at 20°C Total dissolved solids at 180°C 23 mg/l2 mg/1Suspended solids at 105°C 1 mg/1Chloride (as Cl) less than 1 mg/l Sulphate (as 50_3)

Contd...03/.

Nil

23 mg/1

N.B:

The specimen/) tested was/were submitted by the client. It was/They were NOT sampled by C. I. S. I. R. officers. The report is therefore limited specifically to this/these specimen/%.

Alkali carbonate (as CaCO₃)

Alkali bicarbonate (as CaCO2)

Aggresiveness to concrete structures

pH at 20°C - 6.9

Total residue at 180°C - 28 mg/l

Calcium hardness (as CaCO₃) - 18 mg/l

Total alkalinity (as CaCO₃) - 23 mg/l

Ryznar index at 20°C (calculated) - 11.50

Langelier index at 20°C - 2.30

(calculated)

Aggresiveness for turbines

Total dissolved solids at 180°C

Alkalinity to Phenolphthalein Nil (as CaCO₃) Alkalinity to Methyl Orange 23 mg/l (as CaCO₃) Total hardness (as CaCO,) 21 mg/l Chloride (as Cl) 1 mq/1Calcium (as Ca) 7 mg/1Magnesium (as Mg) less than 1 mg/l Sodium and Potassium (as Na) 2 mg/1Free Carbon di oxide (as CO_2) 2 mg/1. Sulphate (as SO_L) less than 1 mg/l

Contd...04/.

 $23 \, \text{mg}/1$

N.B:

The specimen/s tested was/were submitted by the client. It was They were NOT sampled by C. I. S. I. R. officers. The report is therefore limited specifically to this/these specimen/s.

... Continuation She

TS : C - 6784

04/.

Residue loss on ignition at 550°C - 6 mg/l

pH at 20°C - 6.9

Total Iron (as Fe) - 0.4 mg/l

Soluble Iron (as Fe) - 0.4 mg/l

Suspended solids at 105°C - 2 mg/l

(including sediments)

Hardness of suspended solids - 1 mg/l

(inclusive of sediments) (as CaCO₃)

COMMENTS: Suitability for mixing concrete

The specimen of water analysed meets the requirements as specified in British Standards Methods of Tests for water for making concrete, BS 3148 : 1980 with respect to all parameters tested.

Aggresiveness to concrete structures

The Langelier index and Ryznar index indicates that the water has corrosive tendencies.

S.K.D Sarath Kumara, TECHNICAL ASSISTANT.

Dr. Nirmela M. Pieris, HEAD/ANALYTICAL CHEMISTRY SECTION.

SKDSK:NMP:nmg. 920704.

N.B:

The specimen/s tested was/were submitted by the client. It was/They-were NOT sampled by C. I. S. I. R. officers. The report is therefore limited specifically to this/these specimen/s.

Annex-5B.4

Inspection Report on Alkali-Aggregate Reaction in Concrete Work

KUKULE FESIBILITY STUDY PROJECT INSPECTION REPORT

SUBJECT

Alkali-aggregate reaction in concrete work

DATES OF INSPECTION:

22.04.92 to 24.04.92

PARTICIPANTS:

Mr. T. Aida, consultant Material Testing Engineer Mr. R.M. Sunil Shantha, Civil Design Engineer, CECB

LOCATIONS:

(1) Canyon(2) Laxapana

(3) Polpitiya(4) Kotmale(5) Randenigala

(6) Victoria

(7) Polgolla, Ukuwela

(8) Bowathenna

RESULTS ON INSPECTION

- (1) Summary of the inspection results is shown in Table-01. Photos and the answers to the inquiries by the personnels incharge for the operation and maintenance of the respective project are also attached.
- (2) In conclusion, some seepages are observed in some locations, mostly through the construction joints.

No electrical and mechanical troubles were reported in relation with probable cause of deformation in concrete works.

Project	Year of			Inquiry			Results of Inspection
Name	Completion	1	2	3	4	5	& Discussion
Canyon	1983	No	No	No	No	No	It was observedthat some seepage
							of water is experianced through the
							concrete walls in the MIV floor. But
						i	these are through the horizontal and
							vertical construction joints.
Old/New	1950	No	No	No	No	No	Nothing to comment
Laxapana	1974						
Polpitiya	1969	No	No	No	No	No	Nothing to comment.
Kotmale	1985	No	No	No	No	Yes	In the power station, in few locations some
							secpage of water is experianced through the
				· .			concrete walls in the turbine floor which are
							through the horizontal and vertical construction
						 	ioints.
			 	 		 	In spillway structure and plinth of the dam, some
			 	 		 	diagonal cracks are visible in concrete surface.
	· · · · · · · · · · · · · · · · · · ·					 	Most of the cracks are through horizontal
	 					-	construction joints.
	 			 		 	construction joints.
Randenigala	1986	No	No	No	No	No	In the power station, in few locations some
Kandeingala	1700	110	110	140	140	110	
							scepage of water is experienced through
	-	_				 	concrete walls in MIV floor which are through the
						-	horizontal construction joints.
Victoria	1984	No	No	No	No	No	It was observed in few locations some seepage
7 1010114		 	1	1.0	110	1.0	of water is experienced through the horizontal
		-	 			 	construction joints in MIV floor of the power
							station.
Ukuwela	1976	No	No	No	N/A	N/A	Nothing to comment.
Power Station		-				ļ	
Polgolia Dam	1976	N/A	N/A	N/A	No	No	Nothing to comment.
Bowathenna	1981	No	No	No	No	No	It was observed that some scepage of water
							is experianced through the horizontal construction
						<u> </u>	joints in the MIV floor of the power station.
	Notes:		 			 	
		1 Longitudir	al cracking	of generato	r floors of t	he power	house.
		2 Out-of-rou					
	 	3 The need					
	 	4 Jamming			Ot units III	lic powe	i none.
	-	5 Cracks in			 	 	

TABLE - 01

(1) Canyon power station - white leakage gel from the construction joint of the basement wall.

(2) Canyon power station - white leakage gel from the construction joint of the basement wall and column.

(3) Canyon power station - white leakage gel from cracks on the basement wall.

(4) Canyon power station - white leakage gel from cracks on the basement wall.

(5) Canyon power station - penstock and anchor block some cracks are visible.

(6) Kotmale power station - leakage gel from the construction joint on the wall.

(7) Upstream slope of kotmale dam.

(8) Randenigala power station - white leakage gel from the vertical construction joint on the basement wall.

(9) Randenigala dam - spillway chute. some cracks are visible along the horizontal construction joint.

(10) Victoria power station - white leakage gel from cracks on the wall of MIV floor.

(11) Ukuwela Power Station- Penstock

(12) Spillway chute of Randenigala dam.

5B.4 - 8

(13) Bowathenna Dam

(14) Downstream view of Polgolla Weir

(15) Spillway gates of Kotmale Dam.

5B.4 - 9

Hydro	Plant	Name:(Canyon		Date:_	92	104/22	
-------	-------	--------	--------	--	--------	----	--------	--

We are carring out a inspection on the Alkali-Aggregate Reaction in the existing concrete structures of CEB's power plants. Therefore, you are kindly requested to reply the following inquiry.

- 1. Do you have the following troubles in your powerhouse?
 - (1) longitudinal cracking of generator floors - yes
 - (2) out-of-round distortion of turbine openings - yes
 - (3) the need for frequent realignment of units - yes no
- 2. Do you have a trouble in spillway?
- (1) jamming of gates - yes
- 3. Do you have any cracks in dam or weir? (Please reply 4, 5 and 6 if your reply is yes.)
- 4. Where is the location of cracks or trouble if you have? N/A
- 5. What is the reason of causing cracks or trouble?
- 6. when did you find cracks or trouble?

Thank you for your cooperation.

Joint Venture Kukule Ganga

Hydro Plant Name: Old/Non Lesape Date: 22-4-52	
We care carring out a inspection on the Alkali-Aggregate Rein the existing concrete structures of CEB's power plants. Therefores you are kindly requested to reply the following inquiry.	
1. Do you have the following troubles in your powerhouse?	
(1) Tongitudinal cracking of generator floors — yes	no
(2) out-of-round distortion of turbine openings - yes	(no.)
(3) the need for frequent realignment of units — yes	no
2. Do you have a trouble in spillway?	
(1) jamming of gates - yes	no
3. Do you have any cracks in dam or weir? — yes	(
4. Where is the location of cracks or trouble if you have?	
5. What is the reason of causing cracks or trouble?	·

Thank you for your cooperation.

6. when did you find cracks or trouble?

Joint Venture Kukule Ganga

Hydro Plant Name: Somerala (Polphy) Date: 100 92
Mr. Humewars
We are carring out a inspection on the Alkali-Aggregate Reaction
in the existing concrete structures of CEB's power plants:
Therefore, you are kindly requested to reply the following
inquiry.
1. Do you have the following troubles in your powerhouse?
(1) longitudinal cracking of generator floors : (1) yes (no)
(2) out-of-round distortion of turbine openings was ino
(3) the need for frequent realignment of units and realignment
2. Do you have a trouble in spillway? A strong to be a second of the sec
(1) jamming of gates Appropriate yes in no
3. Do you have any cracks in dam or weir? * * * * * * * * * * * * * * * * * * *
4. Where is the location of cracks or strouble if you have?
5. What is the reason of causing cracks or trouble?
6. when did you find cracks or trouble?
Thank you for your cooperation.
Joint Venture Kukule Ganga

Hydro Plant Name: Wimel Da	Date: 22	/UH,	/92
----------------------------	----------	------	-----

We are carring out a inspection on the Alkali-Aggregate Reaction in the existing concrete structures of CEB's power plants. Therefore, you are kindly requested to reply the following inquiry.

- 1. Do you have the following troubles in your powerhouse?
 - (1) longitudinal cracking of generator floors yes (no)
 - (2) out-of-round distortion of turbine openings yes (ng)
- (3) the need for frequent realignment of units yes (6)
- 2. Do you have a trouble in spillway?
- (1) jamming of gates yes no
- 3. Do you have any cracks in dam or weir? yes no (Please reply 4, 5 and 6 if your reply is yes.)
- 4. Where is the location of cracks or trouble if you have?
- 5. What is the reason of causing cracks or trouble?
- 6. when did you find cracks or trouble?

Thank you for your cooperation.

Joint Venture Kukule Ganga

Hydro Plant Name: Randenigale I	Date: 23.04 91
---------------------------------	----------------

We are carring out a inspection on the Alkali-Aggregate Reaction in the existing concrete structures of CEB's power plants. Therefore, you are kindly requested to reply the following inquiry.

- 1. Do you have the following troubles in your powerhouse?
 - (1) longitudinal cracking of generator floors yes no
 - (2) out-of-round distortion of turbine openings yes no
 - (3) the need for frequent realignment of units yes no
- 2. Do you have a trouble in spillway?
- (1) jamming of gates
- 3. Do you have any cracks in dam or weir? yes no (Please reply 4, 5 and 6 if your reply is yes.)

- yes no

- 4. Where is the location of cracks or trouble if you have?
- 5. What is the reason of causing cracks or trouble?
- 6. when did you find cracks or trouble?

Thank you for your cooperation.

Joint Venture Kukule Ganga

1 Jayunssa

Hydro Plant Name: Victoria Date: 20	April	1992
We are carring out a inspection on the Alkali-Aggrin the existing concrete structures of CEB's power Therefore, you are kindly requested to reply the finquiry.	plants	•
1. Do you have the following troubles in your power	rhouse?	·
(1) longitudinal cracking of generator floors	- yes	no
(2) out-of-round distortion of turbine openings	- yes	no
(3) the need for frequent realignment of units	- yes	no
2. Do you have a trouble in spillway?		
(1) jamming of gates	- yes	no/
3. Do you have any cracks in dam or weir? (Please reply 4, 5 and 6 if your reply	- yes is yes.)	
4. Where is the location of cracks or trouble if y	ou have?	?
5. What is the reason of causing cracks or trouble	? .	
6. when did you find cracks or trouble?		
Thank you for your cooperation.		

Joint Venture Kukule Ganga

Hydro Plant Name: repended ps Date: 23 204- 52
We are carring out a inspection on the Alkali-Aggregate Reaction in the existing concrete structures of CEB's power plants. Therefore, you are kindly requested to reply the following inquiry.
l. Do you have the following troubles in your powerhouse?
(1) longitudinal cracking of generator floors and begins and
(2) out-of-round distortion of turbine openings of mayes no
(3) the need for frequent realignment of units 3 of yes no
2. Do you have a trouble in spillway? $q_{\mathbb{R}^n \cap \mathbb{R}^n} \circ p_{\mathbb{R}^n}$ $q_{\mathbb{R}^n \cap \mathbb{R}^n} \circ q_{\mathbb{R}^n \cap \mathbb{R}^n} \circ q_{\mathbb{R}^n \cap \mathbb{R}^n} \circ q_{\mathbb{R}$
(1) jamming of gates
Polgolla 3. Do you have any cracks in dam or weir? - yes no (Please reply 4, 5 and 6 if your reply is yes.)
4. Where is the location of cracks or trouble if you have?
5. What is the reason of causing cracks or trouble?
6. when did you find cracks or trouble
Thank you for your cooperation.
Joint Venture Kukule Ganga

Hydro Plant Name: Burglinne Date: 24 /04/51			
We are carring out a inspection on the Alkali-Aggregate Reac	tion		
in the existing concrete structures of CEB's power plants.			
Therefore, you are kindly requested to reply the following			
inquiry.			
1. Do you have the following troubles in your powerhouse?			
(1) longitudinal cracking of generator floors — yes	no		
(2) out-of-round distortion of turbine openings - yes (no		
(3) the need for frequent realignment of units — yes	no		
2. Do you have a trouble in spillway?			
(1) jamming of gates — yes (no		
3. Do you have any cracks in dam or weir? - yes (Please reply 4, 5 and 6 if your reply is yes.)	no		
4. Where is the location of cracks or trouble if you have?			
5. What is the reason of causing cracks or trouble?			
6. when did you find cracks or trouble?			

Thank you for your cooperation.

Joint Venture Kukule Ganga

National Digitization Project

National Science Foundation

Institute	: Sabaragamuwa University of Sri Lanka		
1. Place of Scanning	: Sabaragamuwa University of Sri Lanka, Be	elihuloya	
2. Date Scanned	:2017-10-25		
3. Name of Digitizing	g Company : Sanje (Private) Ltd, No 435/16, Ko Hokandara North, Arangala, Hokan		
4. Scanning Officer			
Name	: 5.A.c. Gadarawan:		
Signature		·	
· · · · · · · · · · · · · · · · · · ·			
Certification of Sca	nning		
I hereby certify that	the scanning of this document was carried out u	nder my supervision, according to	
the norms and standa	ards of digital scanning accurately, also keeping	with the originality of the original	
document to be accep	oted in a court of law.	# <u>*</u>	
Certifying Officer			
Designation	: LIBRARIAN		
Name	: T.N. NEIGHSOOREI		
Signature	Mr	XEI	
Date :20.1.7.:	-107-5	Ari Lanka Lanka	

"This document/publication was digitized under National Digitization Project of the National Science Foundation, Sri Lanka"