
LAUNCH PAD FOR EDUTAINMENT SOFTWARE SUITE

By

K.A.S.N.Sumathipala

(03/AS/010)

This thesis is submitted in partial fulfíllment o f the requirement for the degree o f Bachelor o f Science

in Physical Sciences o f the Facuhy o f Applied Sciences, Sabaragamuwa University o f S il Lanka

Department o f Physical Sciences & Technology

Faculty o f Applied Sciences

Sabaragamuwa University o f Sri Lanka

Belihuloya

M ARCH2009

DECLARATION BY CANDIDATE

I hereby declare that this tbesis is my own work and effort and that it has not been submitted

anywhere for any award. Where other sources o f information have been used, they have been

acknowledged.

Date K.A.S.N.Sumathipala

CERTIFICATE OF APPROVAL

We hereby declare that this thesis is from the student’s own work and effort, and

of information used have been acknowledged. This thesis has been submitted witb our approv

Dr. R.G.N. Meegama

Sénior Lecturer

Department o f Statistics & Computer Science

Faculty o f Applied Sciences

University o f Sri Jayewardenepura

Nugegoda.

(Signature/Intemal supervisor)

(Date)

Mr. R. Maddegoda

Consultant- Technology

Virtusa Corporation

Sir Chittampalam A. Gardiner Mw

Colombo 2.

.......................... J g g f . ..

(Signature/Extemal supervisor)

......o7 - ~ 2e.?.ñ......

(Date)

Dr. C.P.Udawatte

Head o f the Department

Department o f Physical Sciences

Faculty o f Applied Sciences

Sabaragamuwa University

Belihuloya.

(Signature/Head o f the Department)

(Date)

111

Affectionately Dedicated To My Loving Family
Members and Teachers

IV

ACKN O WLEDGEMENT

“This project would have not been successful without the support o f many individuáis”.

First and foremost I wish to thank my interna] supervisor Dr.R.G .N .M eegam a, whose wisdom,

expertise, constant guidance and encouragement have enabled me accomplish success from this

seemingly impossible task. My deepest gratitude is extended to my externa! supervisor Mr. R.

Maddegoda whose wisdom has helped the project immensely.

I express my sincere gratitude to all my team mates in the training and development team, fellow

Virtusans and Virtusa Corporation for providing me the opportunity to carry out my industrial

training at Virtusa Corporation.

And I express my sincere gratitude to Dr .CJP.Udawatte, Head of the Department, Department of

Physical Sciences, Facuhy o f Applied Sciences, Sabaragamuwa University o f Sri Lanka, for

guiding me toward a successful completion.

My deepest gratitude goes to my mother, my father for empowering me with sufíicient discipline

and experience for which have helped me in make successes such as this a possibility.

I would also like to express m y heart-felt gratitude tow ards the lectures o f Sabaragam uw a

U niversity and all my friends and peers for supporting me throughout this project in so many

different ways.

ABSTRACT

tn order to increase the usage o f computers among primary grade students, an Interactive

environment in which users can easily maneuver within the screen, is proposed. This project

involves creating a game environment for such students.

Agite software development methodology which refers to a group of software development

methodologies that are based on similar principies is used for this project. According to the main

requirements, the proposed system is developed using simple yet attractive games for primaiy

grade students o f schools in Sri Lanka. An initial requirements analysis was conducted in order to

identify user and system requirements. The requirement o f this project was achieved by

interviewing the subject matter experts, reviewing similar applications and reading sample

documents. Unifíed Modeling Language (UML) was used to convert the requirements into an

analysis model. For potential users, such as students, and teachers and their corresponding tasks,

the terms of UML diagram were identifíed. The analysis model was then translated into a design

model. To verify this system, class diagrams, sequence diagrams, logical system architecture

diagram and entity relational diagrams were designed. The system was implemented using the Java

language wheré Eclipse Europa is used as the Integrated Development Environment (IDE) to

implement Java, which is a sepárate java editing tool. The user interfaces and images were

implemented by using Blend and GNU Image Manipulation Program (G1MP) and Flash

CS3.Evaluative feedbacks were requested in each project meeting with team members. The

components were tested individually and ñnally the integrated system was tested. At the end of the

development process, the main objective o f the project was achieved and the M inistry -0 f

Educatien was satisfíed with the functionalities, usability, security and reliability o f the system.

vi

CONTENTS

ACKNOWLEDGEMENT...v

ABSTRACT..vi

CONTENTS...vii

LIST OF ABBREVIATION S ... xi

LIST OF FIGURES... xii

LIST OF TABLES... xiii

CHAPTER 1 INTRÓDUCTION..: 1

1.1 INTRODUCTION OF VIRTUSA.. 1

1.2 VIRTUSA GAME DEVELOPMENT SPECIALINTEREST GROUP...............................1

1.3 PROJECT OVERVIEW.. 2

1.4 MAJOR CHALLENGES..2

1.5 OBJECTTVES...2

1.5.1 Overall Objective...3

CHAPTER 2 REVIEW OF LITER ATURE.. 4

2.1 JAVA PROGRAMMING LANGUAGE.. 4

2.2 ECLIPSE EUROPA IDE...6

2.3 GIMP (GNU IMAGE MANIPULATION PROGRAM)... 6

2.4 BLENDER... 7

2.5 MYSQL.. 7

2.6 JASPERREPORTS... 8

2.7 IREPORT... 8

2.7.1 Features o f iReport..8

2.8 BRIEF HISTORY OF GAM ES... 9

2.9 GAME ENGDMES...10

2.10 FREE AND OPEN SOURCE GAME ENGINES...11

2.11 UNIFIED MODEL1NG LANGUAGE.. 13

2.12 USE CASE DIAGRAMS... 13

• mVil

2.12.1 Elemente of Use Case Diagram...13

2.13 CLASS D1AGRAMS..14

2.14 SEQUENCE DIAGRAMS... 14

2.15 OBJECT ORIENTED DESIGN1NG.. 14

2.16 OBJECT ORIENTED TERMS AND CONCEPTS..15

2.16.1 C lass...15

2.16.2 Objects..15

2.16.3 Property & M ethods..15

2.16.4 Association...*..................16

2.16.5 Aggregation... 16

2.16.6 Inheritance... 17

2.16.7 Encapsulation...17

2.16.8 Polymorphism.. 18

2.17 QA TESTTNG...18

2.17.1 Testing Levels..19

2.17.2 Test Cases.. 20

7.17.3 Test Data... 21

CHAPTER 3 TECHNOLOGICAL DEVELOPMENT.. .22

3.1 INTRODUCITON TO SOFTWARE DEVELOPMENT METHODOLOGY................ 22

3.1.1 Software Development Process.. 22

3.1.2 . Agile Development... 22

3.2 GAME DEVELOPMENT LIFE CYCLE... 24

3.3 SORRA CONSTRUCT RAPID GAME AUTHORING SYSTEM................................. 25

3.3.1 Features o f Scirra Construct.. 25

3.4 JMONKEY ENGINE... 26

3.4.1 LWJGL.. 27

3.4.2 JO G L... 27

3.4.3 Features of JMonkey Engine...21

3.5 REALITY FACTORY... 28

vui

3.5.1 Featuresof Reality Factoiy.. 28

CHAPTER 4 UML DESIGNING.. 30

4.1 USE CASE DIAGRAM.. JO

4.1.1 Use Case Descriptions.. 31

4.2 CLASS DIAGRAM...36

4.3 SEQUENCE DIAGRAMS... 37

4.3.1 Teacher can add games to the Launch Pad..37

4.3.2 Teacher can Remove Games from the LaunchPad... 38

4.3.3 Teacher can filter the games..*................. 39

4.3.4 Teacher can play games.. 40

4.3.5 Teacher can view student reports...41

4.3.6 Student can play gam es.. 42

4.3.7 Student can view reports... 43.

CHAPTER 5 GAME CONCEPTS & ANALYSIS... 44

5.1 ASCENDING TRAIN (OR DESCENDING TRAIN)... 44

5.2 ODD/EVEN NUMBER SEPARATOR... .45

5.3 DISTANCE AND DIRECTTONS (TREASURE HUNT)................................,.................46

5.4 VIRTUAL SHOP... .47

CHAPTER 6 SYSTEM DEVELOPMENT..49

6.1 DEVELOPMENT ENVIRONMENT...49

6.1.2 . Software Environment.. 49

6.2 API USED FORIMPLEMENTATION.. 49

6.3 INTEGRATING DEVELOPMENT ENVIRONMENT.. 50

6.4 REPORT GENERATION.. 51

CHAPTER 7 SYSTEM TESTING & DEPLOYMENT... 52

7.1 TEST STRATEGY..52

7.2 UNIT TESTING.. 52

7.2.1 Test Cases.. 53

7.3 SYSTEM TESTING..56

ix

7.4 DEPLOYMENT ENVIORNMENT... 56

7.4.1 Hardware Requirements...56

7.4.2 Software Requirements... 56

CHAPTER 8 CONCLUSION...57

8.1 CONCLUSION...57

8.2 FUTURE CON SIDERATION...57

REFERNCES...58

INDEX.. 60

x

LIST OF ABBREVIATIONS

GDSIG Game Development Special Interest Group

CSR Corporate Social Responsibility

UML Unifíed Modeling Language

JVM Java Virtual Machine

IDE Integrated Development Environment

SQL Structured Query Language

JDBC Java Database Connectivity

GUI Graphical User Interdice

FPS First Person Shooters

RPG Role-Playing Game

OOP Object Oriented programming

FRS Functíonal Requirement Specification

SRS System Requirement Specification

QA Quality Assurance

SIT System Integration Testing

GPL General Public License

LWJGL Light Weight Java Game Library

JOGL Java OpenGL

OpenGL Open Graphics Library

OpenAL Open Audio Library

jME jMonkey Engine

API Application Programming Interface

XI

L IS T O F F IG U R E S

Figure 2.9 Aggregation.. 16

Figure 2.7 An example o f a Dog Class... 16

Figure 2.8 Associations... 16

Figure 2.10 Inheritance...17

Figure 2.11 Example o f Encapsulation Concept..18

Figure 3.1 Agile Development Model... .23

Figure 3.2 Game Development Life Cycle...24

Figure 3.4 A Demo Game Created with Scirra Construct...26

Figure 3.6 A Game Created with jMonkey Engine.............. ;.. 27

Figure 3.8 A Game Created with Reality Factory.. .29

Figure 4.1 Gives the use case diagram for the game...30

Figure 4.2 Class Diagram.. 36

Figure 4.3 Teacher Add Gámes...37

Figure 4.4 Teacher remove games.. 38

Figure 4.5 Teacher Filter Games...39

Figure 4.6 Teacher can play gam es.. 40

Figure 4.7 Teacher view reporta..41

Figure 4.8 Student play gam es..42

Figure 4.9 Student view reports...43

Figure 5.2 Odd/Even Number Separator... 45

Figure 5.1 Ascending Train... 45

Figure 5.3 Treasure Hunt... 46

Figure 5.4 Virtual Shop... 48

Figure 6.1 Development Environment... 50

Figure 6.2 iReport Development Environment..51

Figure 7.1 QA Testing..52

Figure 7.2 Pre Requisite.. 53

Figure 7.3 Expected R esult... 54

Figure 7.4 Logging Screen.. 54

Figure 7.5 Student Last Played Gam e... 55

Xll

L IS T O F T A B L E S

Table 2.1 Game Engine OverView..12

Table 4.1 Add Game Use Case Description.. 31

Table 4.2 Remove Game Use Case Description.. 32

Table 4.3 Filter Game Use Case Description.. 33

Table 4.4 View Reports Use Case Description... 34

Table 4.5 Launch Game Use Case Description... 35

Table 4.6 Teacher Add Games... 37

Table 4.7 Teacher remove games... 38

Table 4.8 Teacher Filter Gam es.. 39

Table 4.9 Teacher can play games.. 40

Table 4.10 Teacher view student reports..41

Table 4.11 Student play games... 42

Table 4.12 Student view reports... 43

Table 5.1 Ascending Train..44

Table 5.2 Odd/Even Number Separator... 45

Table 5.3 Treasure Hunt.. 46

Table 5.4 Virtual Shop.. 47

Table 6.1 Software Development Environment...49

Table 7.1 Test Case 1 ... 53

Table 7.2 Test Case 2 ...55

Table 7.3 Deployment o f the software... 56

xm

INTRÓDUCTION

CHAPTER1 INTRODUCTION

l i l INTRODUCTION OF VIRTUSA

Virtusa Corporation is a leading global technology innovation Services provider that creates

competitive advantage for its clients. Virtusa was founded in 1996 by the prominent technology

entrepreneur, Kris Canekeratne, who has assembled a strong leadership team from well-known

companies like Infosys, IBM, Aether, 3Com and John Keels._Previously known as eRUNWAY,

Inc., Virtusa has grown beyond being an efficient provider o f product and application development

Services to being the partner o f choice in creating competitive advantage for its clients using

technology Solutions.

Headquarters in Westborough, MA, Virtusa employs the finest global technology talent, spread

across its Advanced Technology Centers in the US, India and Sri Lanka. It also has sales and

marketing offices in several locations around the world.

1.2 VIRTUSA GAME DEVELOPMENT SPECIAL INTEREST GROUP

Virtusa Game Development Special Interest Group (Game Dev SIG) is a knowledge sharing group

that is open for anyone who is interested in game development within Virtusa.

Virtusa Game Development Special Interest Group (GDSIG) is currently working on an intemal

project to develop few simple Computer games for kids. This project is focusing on implementing

simple Computer games in any technology, creating attractive 2D or 3D arts for kids, integrating

sound effects. This is a voluntaiy project and anyone can work for this project in their spare time.

1

ENTRODUCTION

1.3 PROJECT OVERVIEW

As a part of the Corporate Social Responsibility (CSR) initiatives o f Virtusa, GDSIG involves in a

voluntary project to provide edutainment software for primary school children in Sri Lanka. The

purpose of this proposed system is to develop simple games in an interactive and an attractive

manner aiming primary grade students attending schools o f Sri Lanka.

At the moment, the system consists of several educational games in different format without any

integration into a unique system. Moreover, the existing system is developed solely for

entertainment without concentradng on leaming tools. It contains action and racing games that

may improve only hand coordination movement of students. In order to further develop the

scenario, we propose to change the core o f the system with the manipulation o f Ihe whole

environment.

1.4 MAJOR CHALLENGES

The major challenges of this project áre:

• To gather requirements - by interviewing, organizing formal discussions and reviewing

sample documents.

• To develop a concrete understanding of the game concepta.

• To acquire technical skills this related to graphics programming.

1.5 OBJECTIVÉS

Implement consolé Software for the Edutainment software suite. Our major objective is to

develop the game portal which is the first interface user can see. Teachers can select the

games for their students and students can play games through it. Also students can see the

results and can their game skills.

2

ENTRODUCTION

.1 Overall Objective

• Developing Educational Computer Games for Children o f Sri Lankan Schools

• Develop the Mathematical skills o f students

• Provide instructions in both Sinhala and Tamil languages

• Report Demonstration

• Increase market opportunities

• Take Latest technology for students

• Measure the progress of students

3

REVIEW OF LITERATURE

CHAPTER 2 REVIEW OF LITERATURE

To achieve the objectives of this project, in-depth knowledge o f the following topics were used.

• UML Diagrams

• Object Oriented Programming principies

• Java 5.0

• Eclipse Eurapa IDE 2.0

• Scirra Construct

• JMonkey Engine

• Reality Factory

• Blender

• Gimp

• MySql

• iReport

• Jasper Reports

2.1 JAVA PROGRAMMING LANGUAGE

In 1991, a small group of Sun engineers called the "Green Team" believed that the next wave in

computing was the unión o f digital consumer devices and computers. The Green Team

demonstraled their new language with an interactive, handheld home-entertainment controller that

was originally targeted at the digital cable televisión industry. Unfortunately, the concept was

much too advanced for them at the time. But it was just right for the Internet, which was just

starting to take o ff In 1995, the team announced that the Netscape Navigator Internet browser

would incorpórate Java technology [www4].

The language derives much o f its syntax from C and C++ but has a simpler object model and fewer

low-level facilities. Java applications are typically compiled to byte code that can run on any Java

virtual machine (JVM) regardless o f Computer architecture.

Today, Java not only permeates the Internet, but also is the invisible forcé behind many o f the

applications and devises that power our day-to-day lives [www5]. From mobile phones to

handheld devices, games and navigation Systems to e-business Solutions, Java is everywhere!

4

REVIEW OF LITERATURE

In our project we have used the latest versión o f Java 5.0 as the programming Language. Basically

we have used java 2D graphics package for our graphical requirements. Also Java has more

advantages over the other programming languages like,

• Java is easy to leam.

• Java was designed to be easy to use and is therefore easy to write, compile, debug, and

leam than other programming languages.

• Java is object-oriented. Ib is allows you to create modular programs and reusable code.

• Java is platform-independent.

One of the most significant advantages o f Java is its ability to move easily ffom one Computer

system to another. The ability to run the same program on many different systems is crucial to

World Wide Web software, and Java succeeds at this by being platform-independent at both the

source and binary levels.

In other word java has several disadvantages which we have to concern like,

Performance: Java can be perceived as significantly slower and more memory-consuming

than natively compiled languages such as C or C++ [wwwéj.

Look and feel: The default look and feel o f GUI applications written in Java using the

Swing toolkit is very different fforn native applications. It is possible to specify a different

look and feel through the pluggable look and feel system o f Swing.

Single-paradigm language: Java is predominantly a single-paradigm language. However,

with the addition o f static imports in Java 5.0 the procedural paradigm is better

accommodated than in earlier versions o f Java.

5

REVIEW OF LITERATURE

2.2 ECLIPSE EUROPA IDE

In this project we have used Eclipse Europa as the Integrated Development Environment

[wwwl5]. Eclipse is a multi-language software development platform comprising an IDE and a

plug-in system to extend it. It is written primarily in Java and is used to develop applications in this

language and, by means o f the various plug-ins, in other languages as well— C/C++, Perl, PHP

and more. We have used Eclipse to code java classes, compile them and run those classes. Eclipse

Europa IDE is one o f the updated and a modified versión o f Eclipse IDE.

2.3 GIMP (GNU IMAGE MANIPULATION PROGRAM)

The GIMP (GNU Image Manipulation Program) f is a ráster graphics editor used to process digital

graphics and photographs [www8]. GIMP is a fireely distributed piece o f software for such tasks as

photo retouching, image composition and image authoring. It works on many operating systems, in

many languages. In this project Gimp is used to design the user interfaces, graphics etc.

6

REVDEW OF LITERATURE

2.4 BLEN D ER

Blender is a free 3D graphics application. It can be used for modeling, UV unwrapping, texturing,

rigging, water simulations, skinning, animating, rendering, particle and other simulations, non-

linear editing, compositing, and creating Interactive 3D applications [wwwl2]. Blender is available

for several operating systems, including Microsoft Windows, Mac OS X, Linux, QUX, Solaris,

NetBSD, FreeBSD, and OpenBSD with unofficial ports for BeOS, SkyOS, AmigaOS, MorphOS

and Pocket PC. Blender has a robust feature set similar in scope and deptb to other high-end 3D

software such as Softímage, Cinema 4D, 3ds Max, Lightwave and Maya. These features inelude

advanced simulation tools such as rigid body, fluid, clotli and soft body dynamics, modifíer based

modeling tools, powerful character animation tools, a node based material and compositing system

and Python for embedded scripting.

2.5 MYSQL

MySql, the most popular Open Source SQL database management system, is developed,

distributed, and supported by MySql AB. MySql AB is a commercial company, founded by the

MySql developers [wwwl 1].

• MySql is a database management system.

A database is a structured collection o f data. It may be anything from a simple shopping

list to a picture gallery or the vast amounts ó f information in a córporate network. To add,

access, and process data stored in a Computer database, you need a database management

system such as MySql Server.

• MySql is a relational database management system.

A relational database stores data in sepárate tables rather than putting all the data in one

big storeroom. This adds speed and flexibility. The SQL part o f “MySql” stands for

“Structured Queiy Language.” SQL is the most common standardized language used to

access databases and is defíned by the ANSI/ISO SQL Standard.

• MySql software is Open Source.

7

REV1EW OF LITERATURE

Open Source means that it is possible for anyone to use and modify the software. Anybody

can download the MySql software from the Internet and use it without paying anything.

• The MySqi Database Server is veiy fast, reliable, and easy to use.

2.6 JASPER REPORTS

Jasper Reports is the best open source reporting engine available for Java community [wwwlój. It

is developed by a small big genius called Teodor Danciu. Jasper Reports has always had one lack:

it doesn't provide an adapted tool to visually design reports. Jasper Reports provides the necessary

features to generate dynamic reports, including data rétrieval using JDBC (Java Database

Connectivity), as well as support for parameters, expressions, variables, and groups. Jasper Reports

also ineludes advanced features, such as custom data sources, scríptlets, and sub reports.

2.7 IREPORT

IReport is a program that helps users and developers that use the Jasper Reports library to visually

design reports [wwwl4]. Through a rich and very simple to use GUI, iReport provides all the most

important ftmetions to create nice reports in little time.

2.7.1 Features of iReport

• 98% of Jasper Reports tags support

• Visual designer with tools for draw rectangles, lines, ellipses, text fields, charts, sub

reports...

• Built-in editor with syntax highlighting for write expression

• Support o f all JDBC compliant databases

• Support for sub reports

• Facilities for fonts

8

REVEEW OF LITERATURE

2.8 BR1EF HISTORY OF GAMES

Computer games were introduced as a commercial entertainment médium in 1971, becoming the

basis for an important entertainment industry in the late 1970s/early 1980s in the United States,

Japan, and Europe [wwwl8]. The first generation o f PC games was often text adventures or

Interactive fiction, in which the player communicated with the Computer by entering commands

through a keyboard. The first text-adventure, Adventure, was developed for Ihe PDP-11 by Will

Crowther in 1976, and expanded by Don Woods in 1977. By the 1980s, personal computers had

become powerful enough to run games like Adventure, but by this time, graphics were beginning

to become an important factor in games.

Prior to game engines, games were typically written as singular entibes. Thus, most game designs

through the I980s were designed through a hard-coded rule set with a small amount o f level and

graphics data. The term "game engine" aróse in the mid-1990s, especially in connection with 3D

games such as first-person shooters (FPS). Modem game engines are some of the most complex

applications written, frequently featuring dozens of finely tuned systems interacting to ensure a

finely controlled user experience. The continued refinement o f game engines has created a strong

separation between rendering, scripting, artwork, and level design. First-person shooter games

remain the predominant users o f third-party game engines, but they are now also being used in

other genres. As game engine technology matures and becomes more user-fiiendly, the

applications of game engines has broadened in scope, and are now being used for serious games:

visualizaron, training, medical, and militaiy simulation applications.

9

REVTEW OF LITERATURE

2.9 GAM E EN G IN ES

The game engine is generally the library o f core functions used in the game, usually related to

graphics, input, networking and other systems. Another way to understand what a game engine is

would be considering them as the non game-specific parí of the game, so we can have several

games ranging from RPGs to FPSs using the same engine. There are many game engines that are

designed to work on game consoles and desktop operating systems such as Linux, Mac OS X, and

Microsoft Windows. The core functionality typically provided by a game engine ineludes a

rendering engine (“renderer”) for 2D or 3D graphics, a physics engine or collision detection (and

collision response), sound, scripting, animation, artificial intelligence, networking, streaming,

memory management, threading, and a scene graph.

Game engines provide a suite o f visual development tools in addition to ieusable software

components. These tools ate generally provided in an integrated development environment to

enable simplified, rapid development o f games in a data-driven manner. These games engines are

sometimes called "game middleware" because, as with the business sense o f the term, they provide

a flexible and reusable software platform which provides all the core functionality needed, ríght

out o f the box, to develop a game application while reducing costs, complexities, and time-to-

market—all critical factors in the highly competitive game industry.

Some game engines only provide real-time 3D rendering capabilities instead of the wide range of

functionality required by games. These engines rely upon the game developer to implement the rest

o f this functionality or assemble it from other game middleware components. These types of

engines are generally referred to as a "graphics engine," "rendering engine," or "3D engine" instead

o f the more encompassing term "game engine." However, this terminology is inconsistently used

as many full-featured 3D game engines are referred to simply as "3D engines." A few examples of

graphics engines are: Realm Forge, Truevision3D, OGRE, Crystal Space, Genesis3D, Irrlicht and

JMonkey Engine.

10

REVIEW OF LITERATURE

2.10 FREE AND O PEN SO URC E GAM E EN G IN ES

These engines are available for free use, but without the source code being available under an opea

source license. Many of these engines are commercial products which have a free edition available

for them.

• Adventure Game Studio — Mainly used to develop third-person pre-rendered adventure

games, this engine is one o f the most popular for developing amateur adventure games.

• Build engine — A first-person shooter engine used to power Duke Nukem 3D

• dim3 — Freeware 3D JavaScript engine for the Mac (although finished games are cross

platform).

• DX Studio — Real-time professional 3D engine and editing suite produced by World

weaver Ltd

• Game Maker Lite - Object-Oriented game development software with a scripting

language as well as a drag-and-drop interface

• JMonkeyEngine — An open-source, BSD licensed Java scene graph engine.

A comprehensive list of game engines is shown in Table 2.1

11

REVffiW OF LITERATURE

Table 2.1 Game Engine OverView

Ñame Language Platfonn License Graphics Sound Scripting

AgateLib .NET Windows
/ Mono

Free 2D vía Direct3D or
OpenGL

Yes No

AGL
Engine

C++ Windows Commercial 2D via DirectDraw,
Direct3D or OpenGL

Yes No

C4
Engine

Windows
, Mac,
PS3

Commercial 3D Yes Visual
Scripting

DXGame
Engine

VB6 Windows Free 2D+ via Direct3D Yes No

Game
Maker

Delphi Windows Free and
Commercial

2D/3D Yes Its own
scripting
language(G
ML)

Ghost
Engine

C++ Windows Engine code
is
Zlib/libPNG
-licensed

3D via
OpenGL/DirectX,

No

Jet3D C/C++ Windows Free 3D via DirectX

JGame Java Windows
,Unix,
MacOSX

Free (BSD) 2D Yes No

jMonkey
Engine

Java Windows
, Linux,
MacOS
X

Free (BSD) 3D via LWJGL Yes -
OpenAL
Sound

Yes
jMonkey
Scripting
Framewoik

The
RealFeel
Engine

VB6 Windows
XP/Vista

Free (Closed
Source)

2D Yes No

Reality
Factory

None
needed

Windows Génesis 3D
license

3D via Genesis3D
(DirectX)

Yes Yes

Visual3D
.NET

.NET 2.0
(C#)

Windows
, Xbox
360

Commercial,
Free Student
Commercial
&Non-
commercial

3D via DirectX or
XNA

Yes C#,
VB.NET,
C++.NET,
J# (Java),
JScript.NET
(JavaScript),
IronPython,
Visual
Programmin
g/Modeling

12

REVIEW OF LÍTERATURE

2.11 U N IFIE D M O D ELIN G LANG UAG E

The Unified Modeling Language (UML) is a graphical language for visual izing, specifying,

constructing, and documenting the artifacts o f a software-intensive system [www9]. The UML

offers a standard way to write a system's blueprints, including conceptual things such as business

processes and system functions as well as concrete things such as programming language

statements, database schemas, and reusable software components. UML is a 'language' for

specifying and not a method or procedure. The UML pgi] is used to define a software system; to

detail the artifacts in the system, to document and construct - it is the language that the blueprint is

written in. The UML may be used in a variety of ways to support a software development

methodology (such as the Rational Unified Process) - but in itself it does not specify that

methodology or process. UML defines several types of diagrams: class, use case, sequence,

collaboration, activity, diagrams etc.

2.12 USE CASE D IA G RA M S

The Use case diagram is used to identiíy the primary elements and processes that form the system.

The primary elements are termed as "actors" and the processes are called "use cases." The Use case

diagram shows which actors internet with each use case.

2.12.1 E lem en ts o f U se C ase D iag ram

• A ctor - An actor portrays any entity that performs certain roles in a given system. The

different roles the actor represents are the actual business roles o f users in a given system.

An actor in a use case diagram interaets with a use case. For example, for modeling a

banking application, a customer entity represents an actor in the application. Similarly, the

person who provides Service at the counter is also an actor.

• Use Case - A use case in a use case diagram is a visual representation o f disdnet business

fiinctionality in a system. The key term here is "distinct business fimetionality." As the

first step in identifying use cases, you should list the discrete business functions in your

problem statement. Each of these business functions can be classified as a potential use

case.

13

REV1EW OF LITERATURE

2.13 C LA SS D IA G R A M S

Class diagrams are widely used to describe the types of objects in a system and their relationships.

Class diagrams model class structure and contents using design elements such as classes, packages

and objects. Classes are composed of three things: a ñame, attributes, and operations. Class

diagrams also display relationships such as containment, inheritance, associations and others. The

association relationship is the most common relationship in a class diagram. The association

shows the relationship between instances o f classes. Another common relationship in class

diagrams is a generalization. A generalization is used when two classes are similar, but have some

differences. Class diagrams are used in nearly all Object Oriented software designs. Use them tó

describe the Classes of the system and their relationships to each other.

2.14 SEQUENCE DIAGRAMS

A Sequence diagram depicts the sequence of actions that occuf in a system. The invocatión o f

methods in each object, and the order in which the invocation occurs is captured in a Sequence

diagram. This makes the Sequence diagram a veiy usefiil tool to easily represent the dynamic

behavior of a system. A sequence diagram is made up of objects and messages.

2.15 OBJECT ORIENTED DESIGNING

Object-Oriented programming (OOP) is a programming paradigm that uses "objects" and their

interactions to design applications and Computer programs. Object-orientation is so called because

this method sees things that are part of the real world as objects. A phone is an object in the same

way as a bicycle, a human being, or insurance policies are objects. In eveiyday life, we simplify

objects in our thinking - we work with models. Programming techniques may inelude features

such as encapsulation, modularily, polymorphism, and inheritance. It was not commonly used in
«

mainstream software application development until the early 1990s. Many modera programming

languages now support OOP. For the software engineer, object-oriented technology encompasses

object-oriented programming languages, object-oriented development methodologies, management

of object-oriented projeets, object-oriented Computer hardware, and object-oriented Computer aided

software engineering, among others.

14

REVIEW OF LITERATURE

Many of the terms commonly used in object-oriented technology were originally used to describe

object-oriented prograraraing (coding) concepts. Specifícally, although the terms were borrowed

from a non-computer-soñware perspective, they were first used extensively to describe concepts

embodied in object-oriented programming languages, such as Smalltalk, C++, Java, and EifFei.

2.16 OBJECT ORIENTE© TERMS AND CONCEPTS

2.16.1 Class
A class is used to describe something in the world, such as occurrences, things, extemal entities,

roles, organization units, places or structures. A class describes the structure and behavior o f a set

o f similar objects. It is often described as a témplate, generalized description, pattem or blueprint

for an object, as opposed to the actual object, itself. Once a class o f ítems is defined, a specifíc

instance of the class can be defined. An instance is also called “object”.

2.16.2 Objects
Objects are the physical and conceptual things we find in the universe around us. Hardware,

software, documents, human beings, and even concepts are all examples o f objects. The class of

Dog defines all possible dogs by listing the characteristics and behaviors they can have; the object

Lassie is one particular dog, with particular versions o f the characteristics. A Dog has fur; Lassie

has brown-and-white íur. Objects are thought o f as having State. The State o f an object is the

condition o f the object, or a set o f circumstances describing the object. We also think o f the State o f

an object as something that is intemal to an object. For example, if we place a message in a

mailbox, the (intemal) State o f the mailbox object is changed, whereas the (intemal) State o f the

message object remains unchanged.

2.16.3 Propérty & Methods
Properties in a class are used to present the structure o f the objects: their components and the

information or data contained therein. An instance o f a class has the properties defined in its class
-

and all o f the classes from which its class inherits.

Methods in a class describe the behavior of the objects. It represents a function that an instance of

the class can be asked to perform.

Figure 2.7 depicts an example of a Dog class.

15

REVIEW OF LITERATURE

i Dog
¡Aíslame : String
!^>W ágh t: integer
I^B read : String

! ^sitQ
; ^rnnQ iii

Figure 2.1 An example of a Dog Class

2.16.4 Association
An association is a relationship between different objects of one more classes. A simple example

of an association is the relationship among an enterprise, departments and employees is shown in

figure 2.8

Enterpri se i consists of
Z j 1

*f- -
L

rs “ ^ — r 1 consists of f Department |__ _ _J
i *ii . . i

Employee
□ 1

Figure 2.2 Associations

2.16.5 Aggregation
Aggregation is a special form of association. Aggregation is the composition of an object out of a

set o f parts. A car, for example, is an aggregation of tires, engine, steering wheel, brakes and so on.

Aggregation represents a “has” relationship: a car has an engine. Instead of aggregation, some

people talk about “whole-part ” hierarchy. For example, figure 2.9 shows, where an Enterprise

represents a “whole” end and Department represents a “part” end.

. Enterpri se
: 1

consists of >̂Mame
Department |

1 consists o f : Employee ¡
^employO
r̂ecruitO

:1 1. * *---------
L__

Figure 2.3 Aggregation

16

REVLEW OF LITERATURE

2.16.6 Inheritance

Inheritance is the property whereby one class extends another class by including additional

methods and/or variables. The original class is called the super class of the extending class, and the

extending class is called the subclass o f the class that is extended. Since a subclass contains all o f

the data and methods o f the super class plus additional resources, it is more specific. Figure 2.10

shows an example, where Circle and Rectangle inherit from GeomFigure and own all attributes

and methods from GeoFigure.

Figure 2.4 Inheritance

2.16.7 Encapsulation
Encapsulation means as much as shielding. Each object-oriented object has a shield around it.

Objects can't ’see' each other. They can exchange things though, as if they are interconnected

through a hatch. Figure 2.11 shows the concept o f the encapsulation. It sepárales the external

aspects o f an object from the intemal implementation details of the object, which are hidden from

other objects. The object encapsulates both data and the logical procedures required to manipúlate

the data.

17

REVIEW OF LITERATURE

Figure 2.5 Example of Encapsulation Concept

2.16.8 Polymorphism
Polymorphism indicates the meaning o f “many form.” In object-oriented design, polymorphism

present a method can has many definitions. Polymorphism is related to Overloading and

Overriding. Overloading indicates a method can have different definitions by defining different

type of parameter. Overriding indicates that subclass and parent class have the same methods,

parameters and retura types.

2.17 QA TESTING

Software Testing is an empirical investigation conducted to provide stakeholders with information

about the quality o f the product or Service under test, with respect to the context in which it is

intended to opérate [www26]. This ineludes, but is not limited to, the process o f executing a

program or application with the intent o f fínding software bugs.

A primary purpose for testing is to detect software failures so that defeets may be uncovered and

corrected. This is a non-trivial pursuit. Testing cannot establish that a product ftinctions properly

under all conditions but can only establish that it does not function properly under specifíc

conditions. The scope o f software testing often ineludes examinadon of code as well as execudon

of that code in various environments and conditions as well as examining the aspeets o f code: does

it do what it is supposed to do and do what it needs to do. In the current culture of software

development, a testing organization may be sepárate frora the development team. There are various

roles for testing team members. Information derived from software testing may be used to correct

the process by which software is developed.

A common source o f requirements gaps is non-functional requiiements such as testability,

scalability, maintainability, usability, performance, and security. Software faults occur through the

following process. A programmer makes an error, which results in a defect in the software source

18

REVEEW OF LITERATURE

code. If this defect is executed, in certain situations the system wiU produce wrong resulte, causing

a failure. Not all defects wül necessarily result in failures.

2.17.1 Testing Levels

• Unlt Testing
The primaiy goal of unit testing is to take the smallest piece of testable software in the application,

isolate it from the remainder of the code, and determine whether it behaves exactly as you expect

Each unit is tested separately before integrating them into modules to test the interfaces between

modules. Unit testing has proven its valué in that a large percentage of defects are identified duríng

itsuse.

The most common approach to unit testing requires drivers and stubs to be written. The driver

simulates a calling unit and the stub simulates a called unit. The investment of developer time in

this activity sometimes resulte in demoting unit testing to a lower level of priority and that is

almost always a mistake. Even though the drivers and stubs cost time and money, unit testing

provides some undeniable advantages. It allows for automation of the testing pfocess, reduces

difficulties o f discovering errors contained in more complex pieces of the application, and test

coverage is oñen enhanced because attention is given to each unit.

• Integration Testing
'Integration testing' called abbreviated I&T is the phase of software testing in which individual

software modules are combined and tested as a group. It follows unit testing and precedes System

testing.

Integration testing takes as its input modules that have been unit tested, groups them in larger

aggregates, applies tests defined in an integration test plan to those aggregates, and delivers as its

output the integrated system ready for system testing.

The purpose of integration testing is to verify fímctional, performance and reliability requirements

placed on major design Ítems. These design Ítems are exercised through their interfaces using

Black box testing, success and error cases being simulated via appropriate parameter and data

inputs. SimiíTated usage of shared date areas and inter-process communication is tested and

individual subsystems are exercised through their input interface. Test cases are constructed to test

that all componente within assemblages internet correctly, for example across procedure calis or

process activations, and this is done after testing individual modules, i.e. unit testing.

The overall idea is a "building block" approach, in which verified assemblages are added to a

verified base which is then used to support the integration testing of further assemblages.

Some different types o f integration testing are big bang, top-down, and bottom-up.

19

REVIEW OF LITERATURE

• System Testing

System testing o f software is testing conducted on a complete, integrated system to evalúate the

system's compliance with its specifíed requirements. System testing falls within the scope of black

box testing, and as such, should requiie no knowledge of the inner design of the code or logic

[www27]. System testing is performed on the entire system in the context of a Functional

Requirement Specification(s) (FRS) and/or a System Requirement Specification (SRS). System

testing is an investigatory testing phase, where the focus is to have almost a destructive attitude and

tests not only the design, but also the behavior and even the believed expectations of the customer.

It is also intended to test up to and beyond the bounds defined in the software/hardware

requirements specifícation(s). System testing ineludes the Load testing and Stress testing. Once the

Load testing and Stress testing is completed successfully, the next level o f Alpha Testing or Beta

Testing will go ahead.

• System Lntegration Testing

System lntegration Testing (S1T), in the context o f software systems and software engineering, is a

testing process that exercises a software system's coexistence with others. System integration

testing takes múltiple integrated systems that have passed system testing as input and tests their

required interactions. Following this process, the deliverable systems are passed on to acceptance

testing.

Systems integration testing (S1T) is a testing phase that may occur after unit testing and prior to

user acceptance testing (UAT). Many organizations do not have a SIT phase and the fírst test of

UAT may include the fírst integrated test of all software components.

2.17.2 T est C ases

In software engineering., the most common defínition o f a test case is a set of conditions or

variables under which a tester will determine if a requirement or use case upon an application is

partially or fjjlly satisfíed. It may take many test cases to determine that a requirement is fiilly

satisfied. In order to fully test that all the requirements of an application are met, there must be at

least one test case for each requirement

I f the application is created w ithout form al requirem ents, then test cases can be written

based on the accepted normal operation o f program s o f a sim ilar class. Test cases are not

written at all but the activities and results are reported after the tests have been run. W hat

characterizes a formal, w ritten test case is that there is a known input and an expected

20

REVDEW OF LITERATURE

output, w hich is worked out before the test is executed. The known input should test a

precondition and the expected output should test a post condition.

A test case includes:

• The purpose of the test.

• Special hardware requirements, such as a modem.

• Special software requirements, such as a tool.

• Specific setup or confíguration requirements.

• A description of how to perform the test.

• The expected results or success criteria for the test.

7.17.3 Test Data

A set o f data created for testing new or revised applications. Test data should be developed

by the user as w ell as the program m er and m ust contain a sample o f every category o f

valid data as w ell as m any invalid conditions as possible.

21

TECHNOLOGICAL DE V ELOPMENT

CHAPTER 3 TECHNOLOGICAL DEVELOPMENT

3.1 INTRODUCTION TO SOFTWARE DE VELOPMENT METHODOLOGY

3.1.1 Software Development Process
Software Engineering is conceraed with concepts, processes and tools that support the tiraely and

cost effectíve development of quality software. A software development process is a structure

imposed on the development of a software product. Synonyms include software lifecycle and

software process. There are several models for such processes, like Waterfall process, Iterative

process, Prototyping, Spiral etc.

3.1.2 Agile Development
Agile software development is a group of software development methodologies that are based on

similar principies [wwwl][www2]. In the late 1990’s several metiiodologies began to get

increasing public attention. Each had a different combination of oíd ideas, new ideas, and

transmuted oíd ideas. The peak time of agile software development evolved in the mid 1990s as

part of a reaction against "heavyweight" methods, as a typical example by a heavily regulated,

regimented, micro-managed use of the waterfall model for software development, the processes

that software engineers actually perform effectíve work.

There are many specifíc agile development methods. Most promote development iterations,

teamwork, collaboration, and process adaptability throughout the life-cycle of the project [www3].

Agile chooses to do things in small increments with minimal planning, rather than long-term

planning. Iterations are short time firames which typically last from one to four weeks. Each

iteration is worked on by a team through a full software development cycle, including planning,

requirements analysis, design, coding, unit testing, and acceptance testing when a working product

is demonstrated to customers. These are known as iterations with a full project consisting o f

several hundred iterations. However, the chief aim is to produces a functional, usable piece of

software in each iteration. So, iteration is actually as a mini-project that includes all the same

planning, design, programming and testing as in a large project. Because of the short nature of

these iterations, agile is seen as a lower risk software development model. ff the iteration doesn't

work, it can be modified without causing significant delays or cost overruns. It also cuts out much

of the buieaucracy and restrictíons of heavier-weight models. Ideally, at the end of each reiteration

the software should be ready, or at least almost ready, for reléase. At this point, the team re-

evaluates tiie entire project and decides on the next step.

22

TECHNOLOG1CAL DEVELOPMENT

Because of its focus on fast tumaround times, the agüe model encourages person-to-person

communication. Very often, software development teams using this model will work together in an

open-plan office with all meetings being held face to face.

The following are other features that describe software development projects that use agüe

methodologies:

• The fast tumaround time and the regular delivery of working software should ensure

customer satisfaction

• Late changes can be handled easily, or even welcomed

• Progress is measured by the delivery of working software

• Clients and developers communicate regularly face-to-face

• All meetings within the development team are held face-to-face

• All developers are highly competent and trustworthy

Figure 3.1 ¡llustrates the agile Ufe cycle

Figure 3.1 Agile Development Model

Analysis & DesignRequírements

Irnp temen tation

Planning

D eploym ent
fnitial

Planning

Evaluaron
Testing

23

TECHNOLOGICAL DEVELOPMENT

3.2 GAME D EV ELO PM EN T LIFE CYCLE

The diagram in Figure 3.2 shows the development life cycle of games. According to the cycle, the

first phase defines the Game Concept, where depends upon collected requirements as highlighted

in the original project proposal. Basically, primary schools need mathematical and language

concepts so as to facilítate the leaming environment of students. Under the pre-production,

resources that need to implement the system are collected which includes modeled games as well

as the developing aspects. Because of prototyping method, we can clarify all the artifacts in the

system. The testing and releasing phases are completed next.

Figure 3.2 Game Development Life Cycle

24

TECHNOLOGICAL DE V ELOPMENT

3.3 SCIRRA CONSTRUCT RAPID GAME AUTHORING SYSTEM

Construct is free powerful and easy to use development software for both DirectX 9-based games

and applications [www23]. Tt ineludes an event based system for defining how the gante or

application will behave, in a visual, human-readable way - easy enough for complete beginners to

get results quickly. Optionally, advanced users can also use Python scripting to code our creations.

Construct is not a commercial software project, and is developed by volunteers. It is 100% free to

download the fuil versión - no nag screens, adverts or restricted features at all.

3.3.1 F e a tu re s o f S c irra C o n s tru c t

Create games and applications with:

• Super fast hardware-accelerated DirectX 9 graphics engine

• Add múltiple pixel shades for special effeets, including lighting, HDR, distortion, lenses

and more

• Advanced rendering effeets like motion blur, skew and bump mapping (3D lighting)

• Innovative Behaviors system for defining how objeets work in a flexible way

• Physics engine for realistic object behavior

• Place object on different layers for organizing display, paralleling, or whole-layer effeets -

also freely zoom individual layers in and out with high detail

• Python scripting for advanced users - however, Construct's Events system is still powerful

enough to complete entire games without any scripting.

• Smaller, faster specialized runtime for applications

Construct is developed open source under the General Public Lácense (GPL). This means we can

download and use Construct for free, but it also means that the underlying source code - the code

that defines how the program works - is also freely available. This means other programmers are

free to fix errors in the code and make their own contributions to construct.

Figure 3.4 depiets a demonstration of Scirrra construct.

25

TECHNOLOGICAL DEVELOPMENT

Figure 3.3 A Demo Game Created with Scirra Construct

3.4 JM O N K E Y ENGINE

jME (jMonkey Engine) is a high performance scene graph based graphics APE jME was built to

fulfill the lack of full-featured graphics engines written in Java [www21], Using an abstraction

layer, it allows any rendering system to be plugged in. Currently, both LWJGL and JOGL

OpenGL bindings are supported. jME is completely open source under the BSD license.

jME was created by Mark Powell in 2003 while he was investigating OpenGL rendering. After

discovering LWJGL he decided that Java (his language of choice) would be perfect for his own

graphics tools. These tools soon grew into a primitive engine. After reading David Ebery's 3D

Game Engine Design, scene graph architecture was implemented. It was then that jME became

part of Sun's Java.net software repository.

26

TECHNOLOGICAL DEVELOPMENT

3.4.1 L W JG L

The Lightweight Java Game Library (LWJGL) is a solution aimed directly at professional and

amateur Java programmers alike to enable commercial quality games to be written in Java.

LWJGL provides developers access to high performance cross platform libraries such as OpenGL

(Open Graphics Library) and OpenAL (Open Audio Library) allowing for State of the art 3D

games and 3D sound. Additionally LWJGL provides access to controllers such as Gamepads,

Steering wheel and Joysticks. All in a simple and straight forward API.

3.4.2 JO G L

JOGL (Java OpenGL) are a set of bindings to OpenGL that are officially supported by Sun.

3.4.3 F ea tu res of JM onkey Engine

• jME is scene graph based architecture. The scene graph allows for organizaron of the

game data in a tree structure, where a parent node can contain any number of children

nodes, but a child node contains a single parent. Typically, these nodes are organized

spatially to allow the quick discarding of whole branches for processing.

• jME's camera systeni uses frustum culling to through out scene branches that are not

visible. This allows for complex scenes to be rendered quickly, as typically, most of the

scene is not visible at any one time.

• jME also supports many high level effects, such as: Imposters (Render to Texture),

Environmental Mapping, Lens Fiare, Tinting, Particle Systems, etc.

• jME supplies the user with easy to use, but powerful application classes for building the

application. Jumping into jME should be a quick and painless process. With a small

learning curve.

Figure 3.6 gives a scene developed using JMonkey Engine.

Figure 3.4 A Game Created with jMonkey Engine

27

TECHNOLOGICAL DEVELOPMENT

3.5 R E A L IT Y FA C TO R Y

Reality Factory is a program that - in conjunction with other tools - allows us to create l 51 and 3rd

person perspective games without programming! Reality Factory is built on top of the powerñil

Genesis3D Open Source engine and suppoits all major 3D graphics cards. Reality Factory

provides most of the tools we need to make a game [wwwl9]. We will still need a program to

create actors (characters and props in our game) and software to make textores with, but what we

won't need is a C/C++ compiler and a couple of coders to build our engine for us. By using objects

called "entities" which you place in our world, we can set up a game - with audio effects, múltiple

soundtracks, and special effects. Reality Factory is intended to be a "rapid game prototyping tool" -

it is able to make playable, interesting games across a wide range of genres but it's not optimized

for any ONE kind of game.

3.5.1 Features of Reality Factory

• Complete game & machine creation system without requiring any programming

knowledge.

• Predefíned character and camera Controls provide l 5* and 31*1 person viewpoints,

changeable on-the-fly in-game as desired

• Complete interactive conversation engine, complete with a GUI conversation tree builder

for writing your conversation Scripts

• Customizable script editor for creating scripts

• Basic physics, collision detection

• Per vertex, light mapping, radiosity

• Dynamic colored (RGB) lighting

• Projected Shadows

• Basic multi-textoring, bump-, sphere-, mip-mapping, procedural textores

• Video AVI & animated GIF support for cut scenes and animated level textores

• Dynamic texturing effects such ás procedurals, animations and morphing

• Key ñame animation, skeletal animation, animation blending

• Customizable effects & explosions system

• 3D audio engine with mp3, wav and support

Figure 3.8 has a scene of a game created using Reality Factory.

28

TECHNOLOGICAL DEVEEOPMENT

Figure 3.5 A Game Created with Reality Factory

29

UML DESIGNING

CHAPTER4 UML DESIGNING

4.1 USE CASE D IA G RA M

Figure 4.1 Givesthe use case diagramfortfaegame.

• Teacher - Teacher represents the main actor of the system. Teacher can add games to the

portal remove games £rom the system, filter games; he/she can view the student progress.

Also teacher acts like the administrator of the entire system.

• Student - Student represents the second main role of the system. Student is the final end

use o f the system. Student can play the games which only teacher permits him to play.

Also he can select the level of the game he wants to play from ñnished levels. Student can

see the progress of their subject knowledge.

• Logging - Logging use case is entirely based on the security of the system. To advance the

system first of all actors have to log on to the System.

30

UML DESIGNING

• Add Gante — This use case is responsible with adding a game to the system. Only the

Teacher can add games to the portal.

. • Remove Game — This use case deais with removing existing games of the system. Only

Teacher can remove the games from the system.

• F ilter Game — This use case is responsible about the filtering of the games. According to

the students subjective knowledge Teacher can filter games.

• VIew Student Reports — Teacher can see the progress of the students by examine the

progress reports of the students.

4.1.1 Use C ase D escrip tio n s

Table 4.1 to 4.5 gives the use cases.

Table 4.1 Add Game Use Case Descríption

Use Case Number 1

Use Case Ñame Add game to the Game Launcher

Use Case

Descríption

To the game launcher pad actor named Teacher can add games according to

the student’s level.

Primary Actor Teacher

Precondition Teacher should log into the system before adding games.

Trigger Pressing the add button.

Basic Flow

1.) There are several games displayed

2.) Teacher should select games to be display in the launch pad

3.) Then teacher should press the add button to add the games

4.) Selected games added to the system.

Altérnate Flows Should select less than or equal 5 games to add to the launcher pad

Post Condition Games add to the launcher pad

31

UML DESIGNING

Table 4.2 Remove Game Use Case Descriptíon

Use Case Number 2

Use Case Ñame Remove game from the Game Launcher

Use Case

Descriptíon

To the game launcher pad actor named Teacher can remove games according

to the student’s level.

Primary Actor Teacher

Preconditíon Teacher should log into the system before adding games.

Triggér Pressing the Remove button.

Basic Flow

1.) There are several games displayed

2.) Teacher can remove the selected games

3.) Then teacher should press the remove button to remove the games

5.) Selected games removed from the system.

Altérnate Flows Should have games in between 1 and 3

. Post Condition Games remove From the launcher pad

32

UML DESIGNING

Table 4.3 Filter Game Use Case Descríption

Use Case Number 3

Use Case Ñame Filter games from the Game Launcher

Use Case

Descríption

To the game launcher pad actor named Teacher can filter what kind of games

should be in the game launcher.

Primary Actor Teacher

Precondition Teacher should log into the system before adding games.

Trigger Pressing the Filter button.

Basic Flow 1.) There are several games displayed

2.) All the games are with different game types.

3.) Teacher can select either game type is language or mathematics.

4.) After selecting the game type teacher should press on filter button.

Altérnate Flows Should select either type from the game.

—

Post Condition Display selected types o f game sin the launcher pad.

33

UML DESIGNING

Table 4.4 View Reports Use Case Description.

Use Case Number 4

Use Case Ñame View Reports

Use Case
Student actor as well as the teacher actor can check the reports. From

student’s part they can see their previous marks as well as teachers can see
Descríptíon

student’s level in each type of games.

Primaiy Actor Both Teacher and Student

Precondition
Teacher as well as the student should log into the system before adding

games.

Trigger Pressing the View Report button.

Basic Flow

Student:

1.) In each logging student can see view report button.

2.) After pressing the View report student can see their history Report.

Teacher:

3.) In each logging teach can see view report button.

4.) Teacher can view the student’s report.

Altérnale Flows

Student:

They can see only their marks

Teacher:

They can see marks on each and every student.

Post Condition Display previous records and marks.

34

UML DESIGNING

Table 4.5 Launch Game Use Case Descríptíon

Use Case Number 5

Use Case Ñame Launch Game

Use Case

Descríptíon
Student actor as well as the teacher actor can play the games.

Primary Actor Both Teacher and Student

Precondition
Teacher as well as the student should log into the system before playing the

games.

Trigger After reach to the game point in game launcher.

Basic Flow

Student:

Teacher:

1.) In game launcher it has several games.

2.) By selecting the game either student or teacher can play the game.

Altérnate Flows

Student:

Teacher:

Can play only one game at a once.

Post Condition Teacher or Student can play the game.

35

UML DESIGN1NG

4.2 CLASS DIAGRAM

Figure 42 Class Diagram

Figure 4.2 indícales tfae class diagram for the edutainment launch pad and its fiinctionalities where

the Player class is specialized into the teacher and student, the main entity classes in the system.

Given figure indicates corresponding methods and attnbutes for each and every class.

36

UML DESIGNING

4.3 SEQ U EN CE D IA G RA M S

According to the UML design the sequence diagrams is drawn as in the figure 4.3 to 4.9 and tables
4.6 to 4.12.

4.3.1 T each e r can ad d gantes to th e L aunch P ad

« requirements » L\
Teacher add games.
Teacher - Entily Class
Login - Control Class
GamePortal - Baoundary Class

Figure 4.3 Teacher Add Games

Table 4.6 Teacher Add Games

Involved Classes

• Teacher

• Login

• GamePortal
j To add a game Teacher must first log into the

Pre Condition system using usemame and password.
■ This senario explains about the class behaviors
Description when Teacher adds a game to the Launcher.

37

UML DESIGNING

4.3.2 T e a c h e r c an R em ove G am es fro m th e L a u n c h P a d

« requirements »
Teacher can remove games.
Teacher- Entity Clase
Login - Control Class
GamePortal - Baoundary Class
GameStore - Entrty Class

Figure 4.4 Teacher remove games

Table 4.7 Teacher remove games

Classes

• Teacher

• Login

• GamePortal

• GameStore
-

Pre Condition
To remove a game Teacher must first log into

the system using usemame and password.

-

This senario explains about the class behaviors

when Teacher remove unwanted games from
Descríption the Launcher. The added games were store in

the GameStore class.

38

UML DESIGNING

4.3.3 T e a c h e r can f i l t e r th e gam es

« requirements » k
Teacher can Filter games.
Teacher- EntilyClass
Login - Control Ciass
GamePortal - Baoundary Class
GameStore - Entity Class

jame (userld, gameld.gemeName.condition.lQf
l i
i i
i i
i 1
i 1
i i
i i
i i
i 1
i i
i i
i i

sValidGarr e (gamela)

addGame (gameldj

Figure 4.S Teacher Filter Games

Table 4.8 Teacher Filter Games

Classes

• Teacher

• Login

• GamePortal

• GameStore

Pre Condition
To remove a game Teacher must first log into

tile system using usemame and password.
---' This sequence diagram explains the class

Description
behaVior of the system when Teacher filters the

game in the Game Launcher.Teacher can add or

remove games from the Launcher as needed.

39

UML DESIGNING

4.3 .4 T e a c h e r can p la y gam es

« requirements » l \
Teacher can play games.
Teacher- EntityClass
Login - Control Class
GamePortal - Baoundary Class
GameStore - Entíty Class
Game - Entity Class

Teacher :Loain :GamePortal :GameStore :Game

login (userName, passWfejrd)

■isLoggedl userName)

playGame (gameld,gaheName,location,typej|

loa^Game (gameld,locaron)

^_getGamjelnfo_()_ _

launchGame () -o

Figure 4.6 Teacher can play games

Table 4.9 Teacher can play games

Classes

• Teacher

• Login

• GamePortal

• GameStore

• Game

To remove a game Teacher must first log into
Pre Condition the system using usemame and password.

This describes the class behaviors and method

Descriptíon calling of the system when Teacher play a

game.

40

UML DESIGNING

4.3 .5 T e a c h e r can v iew s tu d e n t r e p o r ts

« requirements » K
Teacher can view student reports.
Teacher - EntityClass
Login - Control Class
GamePortal- Baoundary Class
Score - Entity Class

Figure 4.7 Teacher view reports

Table 4.10 Teacher view student reports

Classes

—

• Teacher

• Login

• GamePortal

• Score

To remove a game Teacher must fírst log into
Pre Conditlon the system using usemame and password.

This sequence diagram explains the system

. behavior when Teacher view student Reports.
Description Here Teacher can view the progress of the

students.

41

UML DESIGNING

4.3 .6 S tn d e n t can p la y gam es

« requirements » l \
Student can play games.
student- EntityClass
Login - Control Class
GamePortal - Baoundaiy Class
QameStore - Entity Class
Game- Entity Class

:Student
"1

:Loain :GamePortal :GameStore :Game

login (userName, pasSVmrd)

jisLogged userName)

playGame (gameld,gaheName,location,1ypej

loayGame (gameld.locgt}on)

^ getGam^InfoJ)_ _

launchGame () ^

Figure 4.8 Student play games

Table 4.11 Student play games

• Teacher

• Login

Classes • GamePortal

• GameScore

• Game

To remove a game Teacher must first log into
Pre Condition the system using usemame and password.

This senarion shows the method invocation
Description when Student play games.

42

UML DESIGNING

4.3 .7 S tu d e n t c an v iew re p o r ts

« requirements »
Student can view student reports.
Student - Entity Ciass
Login - Control Class
GamePortal - Baoundary Class
Score - Entity Class

Figure 4.9 Student view reports

Table 4.12 Student view reports

Classes

• Student

• Login

• GamePortal

• Score

Pre Conditíon
To remove a game Student must first log into

the system using usemame and password.

Description
This senarion is responsible for the method

invocation when student view his/her report.

43

GAME CONCEPTS & ANALYSIS

CHAPTER 5 GAME CONCEPTS & ANALYSIS

A game-concept document expresses the core idea of the game. It is a one- to two-page docuraent

that is necessanly brief and simple in order to encourage a flow o f ideas. The target audience for

the game concept is all those to whom we want to describe our game.

A game concept should inelude the following features:

• Introduction

• Background (optional)

• Description

• Key features

• Genre

• Platform(s)

• Concept art (optional)

This chapter discusses some of the game concepts that were used in this project.

5.1 A SC EN D IN G T R A IN (O R D ESC EN D IN G TR A IN)

Table 5.1 gives the summary of the Ascending train game.

Table 5.1 Ascending Train

Introduction

This game was designed to improve the mathematical skills of the

students. The main objective of this game is to teach students about

the ascending and descending order of the numerical numbers.

Background
There are few coaches in ground with a number on it. Also diere is a

train engine.

. Description

You have to collect the coaches using train engine in ascending order

to make a train. If you collect a coach with a wrong number the game

will be reset and you have to start from beginning scene in figure 5.1.

Platform Windows / Linux

44

GAME CONCEPTS & ANALYSIS

Figure 5 .1 Ascending Train

5.2 ODD/EVEN NUMBER SEPARATOR

Table 5.2 gives the scene of odd/even separator game.

Table 5.2 Odd/Even Number Separator

Introduction

This game was designed to improve the mathematical skills of the

students. The main objective of this game is to teach students odd and

even numbers.

Background
There are few bouncing balls inside a box with two parts separating

with a moving gate.

Description

You have to sepárate some bouncing balls using a moving gate. You

have to put odd numbers in right side and even numbers in left side as

in figure 5.2.

Platform Windows / Linux

Figure 5.2 Odd/Even Number Separator

45

GAME CONCEPTS & ANALYSIS

5.3 DISTANCE AND D IRECTIO NS (TREASURE HUNT)

Table 5.3 gives the scene of distance and directions game.

Table 5.3 Treasure Hunt

Introduction
This game was designed to improve the mathematical skills and to

teach about the main directions NORTH, EAST, SOUTH, and WEST.

Also this game tries to teach how to count.

Background There is a map with a pírate and a treasure.

Description

You have to move the pírate step wise to the treasure by avoiding

obstacles. You can have a treasure hunt based on knowledge of

directions and distance as figure 5.3.

Platform Windows / Linux

Figure 5.3 Treasure Hunt

46

GAME CONCEPTS & ANALYSIS

5.4 VIRTUAL SHOP

Table 5.4 gives the scene of virtual shop game.

Table 5.4 Virtual Shop

Introduction

This game was designed to improve the skills of using money and to

improve the billing & balance, selecting necessaiy ítems for the money

they have, measure the weight of ítems, & separation.

Background

There ís a Kids shop and student given the money and the ítem list to

buy. Student has to click and order the ítems and fínally have to pay

the bilí.

Description

1) Students have to buy a list of ítems from their school Shop (figure

5.4).

2) Mother has given-------Rupees for that.

(Example 2 — 50 Rupees Notes, 1- 20 Rupees Note & 3- 5 Rupees

Coins 1-1 Rupees Coin)

3) Student visits virtual shop

4) Order ítems as per the money they have.

5) Pay amount of money using virtual coins and notes which have

being given by Mother).

6) Collect the balance

7) If they want to buy any more (for the balance) go back to 4)

8) Go to home

9) Measure the weight o f ítems and sepárate them based on that.

Platform Windows / Linux

47

GAME CONCEPTS & ANALYSIS

Figure 5.4 Virtual Shop

48

SYSTEM DEVELOPMENT

CHAPTER 6 SYSTEM DEVELOPMENT

6.1 D EV ELO PM EN T EN V IR O N M EN T

A personal computers with processor 3.0 GHz Intel Pentium 4, RAM 2GB and Windows XP as

operating system was used to implement the system.

6.1.2 Software Environment
Open source free license softwares were used through out this project.

Table 6.1 Software Development Environment

IDE Eclipse Europe

Languages Java 1.5

Java 2D graphics package

Jasper Reports

Operating system Windows XP

Third Party Components and Tools ■ Scirra Construct
■ Java Monkey Engine
■ Reality Factoiy
■ Text pad
■ iReport

Enhancement tools ■ Blender
■ Gimp

Database MySql

Table 6.1 depicts the various types of softwares used in the system.

6.2 A P I USED F O R IM PL E M E N T A T IO N

• Java 1.5 API

• Java 2D graphics API

• Jasper Reports 3.1.4 API

• iReport user guide

• Scirra construct API

• jMonkey Engine API

49

SYSTEM DEVELOPMENT

6.3 IN TEG RA TIN G D EV ELO PM EN T EN VI RON ME NT

Figure 6.1 illustrates the class hierarchy of the eclipse development environment. Coding

standards, all the algorithms and naming Conventions were according to the Virtusa policies. We

have used some open source freely available jars as required for the purpose.

File Edit Source Refactor Navigate Search

L j ^

d Package Explorer

^ - O t

K'-lC--J Hierarchy

i*—".
El [i j G ame. java

0 Game
a gameCatogory
□ gameld
n gameLocation
□ gameName
□ gameType
O getG ameCatogory()
e getG aniel d()
o getGameLocation()

getGameName()
o getGameTypef)
o launchGame()

badGame()
setG ameCatogory (S tring)
o setGameld(int)
o setG ameLocation(int)
o setG ameN ame(S tring)
o setGameType(int)

i+j :Ü GamePortal.java
+ [Xj Player.java

«---- V.
1- [Jj Teacher.java

5 0 Teacher
a subject
a teacherld
Q getSubject()
Q getTeacherld()
O setSubject(S tring)
O setTeacherld(S tring)

® S-u JRE System Library íjre1.5.0_07¡
- B-ü Referenced Libraries

Q jora’ napkinlaf.jar
+ 0 net.sourceforge.napkinlaf

Figure 6.1 Development Environment

50

SYSTEM DEVELOPMENT

6.4 R E PO R T GENERATION

C>E>&

>QV % fkSH i ‘4 0 0 »

, IV k ,# . * r . k t , u t . _ j - l o - l

a|w:' - &***?".

k / DDO^ / j* IB DESD9 nu‘
_ a x
rftt Ei|

’ i: ’ri uJ ¿13 J“j Z :« -
* 5» b i | > S S 9 1 3 -»•*<

•**■ •*- -—> I I I iSRSSCiSoá-'íí

R M i r t W l '

'itéSñ'̂ aCTññiSle tfíirifi'fv i ‘ ' ' : 1
ui«< r¡ufit> n tviif-, .'jf'ív-ir cofflfiési « « i n ¡ü í i m m ;e«¡fnjí w jim «m / h«6T ¿«u c u o m canftte ro

i * » T * T n P f c ,r t i C 'n e f V * í f * / ' ,w ü > i T l í { t e ,í » f l « * v * u t n « i i ? < c f

>rt»>í(T coíí'ViíUijMVfcí (tú H ú ita n u i *#paft.io»rf»í <m íLtcdistiái» b» í ;m s i
A i f « . r f> w » é ú i

Figure 6.2 iReport Development Environment

Report generation was conducted by a sepárate team within the project team. They were conducted

this by using Jasper Reports and reports were designed using iReport tool. Which creates *.jrxml

file. By using Jasper API data is subsequently sent to the .jrxml file.Figure 6.2 illustrates an

iReport development environment.

51

SYSTEM TESTING & DEPLOYMENT

C H A P TE R 7 SYSTEM TEST IN G & D E P LO Y M E N T

7.1 TEST STRATEGY

Considering the nature of the system, testing was found to be a challenging task. Testing is

conducted in several steps. in development time system is conducted unit testing for already

identified test cases and after integrating the entire system the system testing was conducted by the

QA team.Figure 7.1 shows the QA testing procedure.

7.2 UNIT TESTIN G

Figure 7.1 QA Testing

Unit testing was conducted by the QA team. Each unit is tested separately before integrating them

into modules to test the interfaces between modules. Unit testing has proven its valué in that a

large percentage of defects are identified during its use. All the public methods were tested by

negative and positive manner and finally the code coverage of more than 80% was covered by the

unit testing.

SYSTEM TESTING & DEPLOYMENT

7.2.1 T est C ases

Test cases were written by a team member who understands the function or technology

being tested, and each test case was submitted for peer review. Figure 7.2 and I able 7.1

shows the scene of a testcases.

• T est C ase 1 :

Prerequisite

Figure 7.2 Pre Requisite

Table 7.1 Test Case 1

T est

case ID

T est

C ase

D escript

ion

P rerequ isite
T est

P rocedure
Knput Data

E xpected

R esult

A ctual

R esult

T est

R esult

Teacher
trying to
add a
game to
the
launch
pad

User login to
the system
with
appropriate
login
credentials.

After the
logging.
Select add
game from
the menú
bar.
Games
select and
click on
add
selected
games
button.

Selected
game(s)
should
added to
the
system

Selected
game(s)
added to
the
launch
pad

Test Case
succeeded

53

SYSTEM TESTING & DEPEOYMENT

Expected Result

Figure 7.3 and Table 7.2, 7.4 shows the expected result and pre- requisites.

¿¿vng ‘Succesŝ ully

ok

Figure 7.3 Expected Result

• Test Case 2 :

Prerequisite

€ Game Launcher -éjM.
R)e View Helf

V _| A

P̂vSStMO'̂ ;
logo». | C«V'Cgl |

Figure 7.4 Logging Screen

54

SYSTEM TESTING & DEPLOYMENT

I'able 7.2 Test Case 2

T est

case ID

T est

C ase

D escript

ion

P rerequ isite
Test

P rocedure
Input Data

Expected

R esult

A ctual

R esult

Test

R esult

Student
logging
to the
system

Launch pad
should open.

After the
loading of
launch pad.

Student
should
enter the
user ñame
and
password.

Then click
on logging

Student
details with
correspond
usemames
&
passwords
may need
to add to
the
database.

Logged to
the launch
pad
viewer
with
student’s
details

Logged
to the
launch
pad
student’s
details
may not
appear

Selected
test case is
success.
Not
completely
executed.

Expected Result

Figure 7.5 shows the expected result.

File view Help

dD®8

v _ j x

PnEe L̂ sEGov̂ e Saxe
H ¡Q \n O G ñ A<rseu<tTY*u>« 100

Figure 7.5 Student Last Played Game

SYSTEM TESTING & DEPLOYMENT

7.3 SYSTEM TESTING

In this project system testing was conducted by the QA team. The entire system is tested as per

the requirements.

7.4 DEPLOYMENT ENYIORNMENT

The main Deployment environment is based on hardware environment & software environment.

Hardware environment describes about the physical requirements of the system to set up the

software. On the other hand, software environment describes about the software environment of

the user’s machine and required software to run the game portal. After integrating the system ,it is

zipped into a ja r file. Installing the system in user’s machine involves copying and pasting the jar

into a specific location.

7.4.1 Hardware Requirements
A personal Computer with processor 3.0 GHz Intel Pentium 4, RAM 512MB

7.4.2 Software Requirements
Pre requisites: Table 7.3 shows the required pre requisites of the system.

Table 7.3 Deployment of the software

Operating System Windows XP / Windows Vista / Linux

Packaging Tool Jar file

Third Party Components and Tools Not used

Setup Machine MySql

56

CONCLUSION

CHAPTER 8 CONCLUSION

8.1 CONCLUSION

The main objective of this project was to implement a launch pad for edutainment software suit for

primary school children by using open source tools and freely available softwares. Reusability and

extensibility issues could be achieved to evolve the systera.

Finally, the main objective of the project was achieved successfully and the software was veiy

effective. However continúes monitoring must be done in order to check whether the system meets

its goal in the long run.

8.2 FUTURE CONSIDERATION

For further consideration of this project it is better to add new features like voice identification for

software to be used by the blind or disable children. Also this project can be implementing for

Linux platform to be use in OLPC laptops.

As this is a menú driven application, it can be modified to be a more user fiiendly application. In

reporting it only displays the reports by using the scores that a student eams in games. This can be

modiñed to show in a graphical representation

57

REFERNCES

[wwwl] Agüe Software Development or Home page, URL: Http://en.wikipedia.org, 26th January

2009

[www2] Manifestó for Agile Development or Home page, URL: http://agilemanifesto.org/, 26*

January 2009

[www3] What is Agüe Development or Homepage, URL: http://www.javalobby.org, 27* January

2009

[www4] The History of java technology or Homepage, URL: http://java.com, 27* January 2009—

[www5] Java History with Tutorial or Home Page, URL: http://www.freejavaguide.com, 28*

January 2009

[wwwó] Developer Resources for Java Technology or Home Page, URL: http://java.sim.com/, 28

January 2009

[www7] Java News and Resources or Home Page, URL: Http://www.cafeauíait.org, 29th January

2009

[www8] General Image Manipulation Program or Homepage, URL: http://en.wikipedia.org, 29*

January 2009

[www9] Unified Modeling Language or Homepage, URL: http://en.wikipedia.org, 29* January

2009

[www 10] UML or Homepage, URL: http://www.sparxsystems.com, 29* January 2009

[wwwl 1] What is MySql or Homepage, URL: http://dev.mysql.com/doc, 30* January 2009

[www 12] Introduction to Blender or Homepage, URL: www.blender.oig, 2nd February 2009

[wwwl3] Blender or Homepage, URL: http://en.wUcipedia.org, 2nd February 2009

[wwwl4] iReport Graphical Designer or Homepage, URL: http://www.jasperforge.org, 3rf

February 2009

til[wwwl 5] Jasper Reports and iReports or Home Page, URL: http:// www.ireport.com/, 11

February 2009

[wwwl 6] Eclipse or Homepage, URL: http:// www.eclipse.org, 11 February 2009

58

[www 17] Introduction to Eclipse or Homepage, URL: http://en.wikipedia.org, 12th February 2009

[wwwl8] Introduction to Game or Homepage, URL: http://en.wikipedia.org, 12* February 2009

[www 19] Introduction to Game or Homepage, URL: http://gpwiki.org, 13* February 2009

[www20] Reality Factory or Homepage, URL: http:// www.realityfectory.info, 14* February 2009

[www21]Reality Factory or Homepage, URL: http://gpwiki.org, 14* February 2009

[www22] jMonkey Engine 3D game engine or Homepage, URL: http://www.jmonkeyengine.com/,

14* February 2009

[www23] Introduction to jMonkeyEngine or Homepage, URL: http://gpwiki.org, 14* February

2009

[www24] Scirra Construct or Homepage, URL: http://www.sciira.com/, 17* February 2009

[www25] Ulustrate Informative Use Cases or Homepage, URL: http://www.altova.com/, 17*

February 2009

[www26] Object Oriented Programming or Homepage, URL: http://en.wikipedia.org, 18*

February 2009

[www27] Software Testing or Homepage, URL: http://www.ece.cmu.edu, 19* February 2009

[www28] Software Testing Information or Homepage, URL: http://www.onestoptesting.com/, 22nd

February 2009

[B29] Rumbaugh, J. (2004) The Unified Modeling Language Reference manual, Addison Wesley

Longman, Inc., 3-66

[B30] Quatrani, T. Visual Modeling with Rational Rose 2000 and UML, Publisher Pearson

Education India, 77-85

[B31] Eliens, A. (2000) Principie o f Object-Oriented Software Development, 2nd Edition, Pearson

Education Limited 2000.18-35

[B32] Summerville. (1995). The fifth edition of Software Engineering. Addison Wesley Publishers

in autumn, pp.210-400

[B33] Lieberman, H., Liu, H., Singh, P., Bany, and B.: Beating common sense into interactive

applications. Game Magazine 25(4) (2004) 63-76

59

INDEX

A

Actor 13

Aggregation 16

Agüe 21

association 14,16

B

Blend 4

C

class 13,14,15,17

Class diagrams 14

composition 6,16

Computer 3 ,9

Construct 4,24

D

DirectX 12,24

E

Edutainment 2

engine 10,24

F

functions 10,13

G

Game 1,2,23

Gimp 4 ,6

I

Inheritance 17

iteration 21

J

Java 4 ,5

L

lifecycle 21

M

Mathematical 3

methodologies 21,22

Methods 15

O

Object 4 ,14,15

objects 14,24

Objects 15

OOP 14

open source 24

P
•

Properties 15

Prototyping 21

R

radiosity 28

requirements 2 ,4 ,21 ,23

S

Sequence diagram 14

software 21,22

Software Engineering 21

U

UML 4,13

60

Use case 13

Use Case 13

V

Virclipse 4 ,6

Virtusa 1

W

waterfall 21

Windows 10,12

61

National Digitization Project

National Science Foundation

Institute : Sabaragamuwa University of Sri Lanka

1. Place of Scanning : Sabaragamuwa University of Sri Lanka, Belihuloya

2. Date Scanned

3. Ñame of Digitizing Company : Sanje (Prívate) Ltd, No 435/16, Kottawa Rd,

Hokandara North, Arangala, Hokandara

4; Scanning Officer

Ñame S. ¡ B .\G •t .

Signature

Certification of Scanning

/ hereby certify that the scanning o f this document was carried out under my supervisión, accordirigte\

the norms and standards o f digital scanning accurately, alsg keeping with thedriginalityof the origim
K y

document to be accepted in a court oflaw.

Certifving Officer

Designation : LIBRARIAN

Ñame : T.N. NEIGHSOOREI

4* '^•'0r:45
“This document/publication was digitized under National Digitization Project o f the
National Science Foundation, Sri Lanka ”

