LAUNCH PAD FOR EDUTAINMENT SOFTWARE SUITE

By
K.A.S.N.Sumathipala

(03/AS/010)

This thesis is submitted in partial fulfillment of the requirement for the degree of Bachelor of Science
in Physical Sciences of the Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka

Department of Physical Sciences & Technology
Faculty of Applied Sciences
Sabaragamuwa University of Sri Lanka
Belihuloya

MARCH 2009

DECLARATION BY CANDIDATE

I hereby declare that this thesis is my own work and effort and that it has not been submitted
anywhere for any award. Where other sources of information have been used, they have been
acknowledged.

Date , K.A.S.N.Sumathipala

ii

Dr. R.G.N. Meegama

Senior Lecturer

Department of Statistics & Computer Science

Faculty of Applied Sciences
University of Sri Jayewardenepura

Nugegoda.

Mr. R. Maddegoda

Consultant- Technology

Virtusa Corporation

“ Sir Chittampalam A. Gardiner Mw

Colombo 2.

Dr. C.P.Udawatte

Head of the Department
Depa@ent of Physical Sciences
Faculty of Applied Sciences
Sabaﬁgamuwa University

Belihuloya.

....................................

....................

..................................

ii

Affectionately Dedicated To My Loving Family

Members and Teachers

iv

ACKNOWLEDGEMENT

“This project would have not been successful without the support of many individuals”.

First and foremost I wish to thank my internal supervisor Dr.R.G.N.Meegama, whose wisdom,
expertise, constant guidance and encouragement have enabled me accomplish success from this
seemingly impossible task. My deepest gratitude is extended to my external supervisor Mr. R.
Maddegoda whose wisdom has helped the project immensely.

I express my sincere gratitude to all my team mates in the training and development team, fellow
Virtusans and Virtusa Corporation for providing me the opportunity to carry out my industrial
training at Virtusa Corporation.

And I express my sincere gratitude to Dr .C.P.Udawatte, Head of the Department, Department of
Physical Sciences, Faculty of Applied Sciences, Sabaragamuwa University of Sri Lanka, for

guiding me toward a successful completion.

My deepest gratitude goes to my mother, my father for empowering me with sufficient discipline

and experience for which have helped me in make successes such as this a possibility.

I would also like to express my heart-felt gratitude towards the lectures of Sabaragamuwa
Universify and all my friends and peers for supporting me throughout this project in so many

different ways.

ABSTRACT

In order to increase the usage of computers among primary grade students, an interactive
environment in which users can easily maneuver within the screen, is proposed. This project

involves creating a game environment for such students.

Agile software development methodology which refers to a group of software development
methodologies that are based on similar principles is used for this project. According to the main
requirements, the proposed system is developed using simple yet attractive games for primary
grade students of schools in Sri Lanka. An initial requirements analysis was conducted in order to
identify user and system requirements. The requirement of this project was achieved by
interviewing the subject matter experts, reviewing similar applications and reading sample
documents. Unified Modeling Language (UML) was used to convert the requirements into an
analysis model. For potential users, such as students, and teachers and their corresponding tasks,
the terms of UML diagram were identified. The analysis model was then translated into a design
model. To verify this system, class diagrams, sequence diagrams, logical system architecture
diagram and entity relational diagrams were designed. The system was implemented using the Java
language where Eclipse Europa is used as the Integrated Development Environment (IDE) to
implement Java, which is a separate java editing tool. The user interfaces and images were
implemented by using Blend and GNU Image Manipulation Program (GIMP) and Flash
CS3 .Evﬂuaﬁve feedbacks were requested in each project meeting with team members. The
components were tested individually and finally the integrated system was tested. At the end of the
development process, the main objective of the project was achieved and the Ministry -Of
Educatien was satisfied With the functionalities, usability, security and reliability of the system.

vi

CONTENTS

ACKNOWLEDGEMENT ...ttt ettt ettt b et nb e e nesbeenesbe e v
A B ST RA CT -tttk E bR R bR et bt r e ne vi
CONTEN T S ittt h b et b e st b bttt b e bt et e bt e bt e et nb e e e e neneeeae e e Vvii
LIST OF ABBREVIATIONS ...ttt Xi
LIST OF FIGURES ... oottt etttk b e n et e nenre s xii
LIST OF TABLES. ...ttt bbbt bbbt bbbt st e et e b s b e e bennean xiii
CHAPTER LINTRODUCTION ..ottt ettt s sbesesessnesesenes 1
11 INTRODUCTION OF VIRTUSA ...ttt 1
1.2 VIRTUSA GAME DEVELOPMENT SPECIALINTEREST GROUP.....ccccvviviiiiirinn. 1
13 PROJECT OVERVIEW ..ottt 2
14 MAJIOR CHALLENGES. ...ttt bttt 2
15 OBUIECTTVES ...ttt bbbt b e bt st b ettt et be et nbeenne 2
151 O NV =1 | @ o] [=To] €Y= PR 3
CHAPTER 2 REVIEW OF LITERATURE......ccociiiiiniiiei e 4
21 JAVAPROGRAMMING LANGUAGE......cccootiiiitiieieie e 4
2.2 ECLIPSE EUROPA IDE ...ttt 6
2.3 GIMP (GNU IMAGE MANIPULATION PROGRAM)...octiiiiiiiieie et 6
24 BLENDERottt 7
25 ST O 1 ST SUP VRSP PP 7
2.6 JASPERREPORTS ..ottt ettt 8
2.7 TREP O R T -ttt bbbt e ekt b e e et bt e r b nre s 8
271 FeatureS OT TR EPOIT ..o ittt 8
2.8 BRIEF HISTORY OF GAMES. .. .ottt 9
2.9 GAME ENGDMES........ooiiiiiiit ettt et ss ettt e bt e b bt e nre e 10
2.10 FREE AND OPEN SOURCE GAME ENGINES........ccooiiiiiiieeee e 1
211 UNIFIED MODELING LANGUAGE. ...ttt 13
2.12 USE CASE DIAGRAMSt 13

Vil

2121 Elemente 0TUSE Case DIAQIamMuciiiiiiiiiiiiiiiie ittt e e 13

2.13 CLASS DIAGRAM S ... 14
214 SEQUENCE DIAGRAMS ... 14
2.15 OBJECT ORIENTED DESIGNING ...ttt 14
216 OBJECT ORIENTED TERMS AND CONGCEPTS. . .iitiitiiiiiiiiiriiimiiiiermrerrmriimrrmmmme. 15
2.16.1 L 1 1 PR PP TP 15
FZ T © U o] 1= o3 £SO 15
2.16.3 Property & MethOUS......cuuvi it e et e e e e e eneaes 15
2.16.4 ASSOCIALION.....tiiiiiiiiiie ittt ettt ettt nnnee K e 16
2.16.5 AQOIEgatiON..ceiiiie ittt e e b e nrees 16
2.16.6 INNEIIANMCE ...ttt ettt ettt shb e be e nebe e 17

pZ A = g T T L]] F= £ o o SR 17
2.16.8 POIYMOIPRISM ..ot 18
207 QA TESTTING . .ot 18
2.07.1 TeSHING LVEIS...c ittt s e e e et e e e s nt e e e s nnb e e e s nnrae e e annrrees 19
A A I T G- LT PO PP 20
7.17.3 T ST D ALA . ..eueeeeiieeei ittt e e 21
CHAPTER 3 TECHNOLOGICAL DEVELOPMENT ...ciiiiiiiiie e 22
31 INTRODUCITON TO SOFTWARE DEVELOPMENT METHODOLOGY. 22
3.1.1 Software Development PrOCESS. ...t 22
3.1.2 . AQile DEVEIOPMENT. ..o 22
3.2 GAME DEVELOPMENT LIFE CY CLE .. 24
3.3 SORRA CONSTRUCT RAPID GAME AUTHORING SYSTEM...ccccccccoviviiiiiiieeeeie 25
3.3.1 FeatureS 0F SCITa CONSTIUCT......coiiiiiii ettt sttt e e 25
34 JMONKEY ENGINE ..ottt e e e s e s e e e e e e e s snnbeeeas 26
3.4.1 I [TP USRRRRPP 27
342 JOGL ittt 27
3.4.3 Features 0T JIMONKEY ENQGINE.....coiiiiiiiiiiiiee ittt e e e 21
35 REALITY FACTORY ittt ettt ettt e e e e s s st e e e e e s s nnsbaneeeeae e s 28

VUi

35.1 Featuresof Reality FACOIY ... 28
CHAPTER 4 UML DESIGNING .. .ottt ettt e e e e e st e e e e e e e s s s snsbbraeeeaaaeesnans 30
41 USE CASE DIAGRAM .o JO
41.1 USE CaSE D ESCIIPLIONS. ..ieiiie ettt e ettt e e e e et e e e snt e e e snnreeeeennsreeees 31

4.2 CLASS DIAGRAM ..ottt ettt ettt e sttt e st e e et e sbeeenbeenes 36
4.3 SEQUENCE DIAGRAIMSttt e e e e e e st e e e e e e e s s anee 37
43.1 Teacher can add games to the Launch Pad.........ccccvevviiiii e 37
4.3.2 Teacher can Remove Games from the LaunchPad............ccoceiiiiiiniiinc e, 38
4.3.3 Teacher can filter the games........ocvvi i K e 39
434 Teacher Can Play QAMES......ooi ittt e e e e e st e e e e st e e e e enneeees 40
435 Teacher can View StUAENT rEP OIS ..iiii i iciie e e e e e e e e e s rnnae e e e enees 41
4.3.6 StUAENt CaN PIAY GaM 5. . uiiiiiii ittt st 42
4.3.7 STUAENT CAN VIBW TP OTTS. ..eiiiiiiiii ettt ettt ettt sttt e e e st b e e e e s bbae e e e snbbeaaeans 43.
CHAPTER 5 GAME CONCEPTS & ANALY SIS e 44
51 ASCENDING TRAIN (OR DESCENDING TRAIN) ..ot 44
5.2 ODD/EVEN NUMBER SEPARATOR ...ttt ettt sttt e e 45
5.3 DISTANCE AND DIRECTTONS (TREASURE HUNT)....ccooviiiiieerieiee peeerreenree e 46
54 VIRTUAL SH O P ettt e e bbb bbb bbb bbb bbbaaraees A7
CHAPTER 6 SYSTEM DEVELOPMENT ..ottt aeeebeesaeenenenennnes 49
6.1 DEVELOPMENT ENVIRONMENT ...ttt e e e e e s nnnnes 49
6.1.2 . SOFtWAre ENVIFONMIENT.oiiiiiiiiie ittt st e s e b sneeas 49

6.2 APIUSED FORIMPLEMENTATION ...ciiiii ettt e e eee e e e 49
6.3 INTEGRATING DEVELOPMENT ENVIRONMENT ..ot 50
6.4 REPORT GENERATION ..ottt s 51
CHAPTER 7 SYSTEM TESTING & DEPLOYMENT ..o 52
7.1 TEST STRATEGY Lttt ettt e e e e s st e e e e e e e s s sttt e et e aeaeessansbbbreeeaaaeeesnasnes 52
7.2 UNIT TESTING ... 52
7.2.1 B IR A OF: KT S TP PUPPRPRPOPPRO 53

7.3 SYSTEM TESTING ...ttt ettt ettt e et sae e enae e b e nneas 56

7.4 DEPLOYMENT ENVIORNMENT ...coiiiiiii e 56

74.1 Hardware ReQUITEMIENTS.ooiiiiiiiie ettt 56
7.4.2 SOTtWAre REQUITEMENTS. .. .uiiii it e et e e e e e e eneeeee s 56
CHAPTER 8 CONCLUSION ...ttt 57
8.1 CONCLUSION . .ttt e e s st e e e sbb et e e s sabe e e e s sbee e e e e asbneaesannaeeaeanns 57
8.2 FUTURE CONSIDERATION ...ttt 57
REFERN CESttt ettt e e e e s s e b bbb e e et e e e e s s e bbb e b e et e e e e e s s annbbbeeeeeeeeeesannes 58
I D E X ettt oo e e e e e e e e e e et e e e e e e e e e e e 60

LIST OF ABBREVIATIONS

GDSIG Game Development Special Interest Group
CSR Corporate Social Responsibility
UML Unified Modeling Language
JVM Java Virtual Machine
IDE Integrated Development Environment
SQL Structured Query Language |
JDBC Java Database Connectivity
GUI Graphical User Interface
FPS First Person Shooters
RPG Role-Playing Game
OOP Object Oriented programming
FRS Functional Requirement Specification
SRS System Requirement Specification
QA @ﬁw Assurance
SIT System Integration Testing

| GPL General Public License
LWIGL Light Weight Java Game Library
JOGL Java OpenGL
OpenGL Open Graphics Library
OpenAL Open Audio Library
JME - jMonkey Engine

APl Application Programming Interface

LIST OF FIGURES

(o[=R I N s [o 1 (= To - U1 [o O TR RUURTUPROPRR 16
Figure 2.7 An example 0Ta D Og ClaSS. ..ottt et e e et e e e ssb e e e e nnnreees 16
T UL S ANt Yo Tox T U o 1 PSSR PUPRR 16
T UL =2 O I oY 0 T=T 1 U oSSR 17
Figure 2.11 Example 0 fENcapsulation CONCEPTL.....cciiuiiiei i 18
Figure 3.1 Agile Development M Odel.... ... e 23
Figure 3.2 Game Development Life CYCIe.......ooi it 24
Figure 3.4 A Demo Game Created With SCIrra CONSTIUCT.cceiiiiiiiiiiiiii e 26
Figure 3.6 A Game Created withjMonkey Engine.............. Sttt e i ere e e eee e i ——ee e e ——rae e e e e e araraeaas 27
Figure 3.8 A Game Created with Reality FaCIOIYc..oo i .29
Figure 4.1 Gives the use case diagram fOrthe game. ... 30
T TU L= O Fo T I T Vo | U o SR 36
Figure 4.3 TeaCher Add GAMES......cuii ittt bee sttt e st e st e s sbe e e st e e ssbee s snteesnees 37
Figure 4.4 TeaCher rEIMOVE QAMIES. . .cciiiuieeeiiitieeeeistrreessrtteee e s staeeessnsteeaesstreeessnsaeeaesastaeeesansseeeesanseneeanns 38
Figure 4.5 TeaCher FIler Gamies. ...t e et e e e e st e e e e st e e e e nnreneen 39
Figure 4.6 Teacher Can PIaY Gam ES......uo i ittt 40
e (o UL A =T Tod LT VA [V = 0T] - PRSPPI 41
Figure 4.8 STUAENT PIAY GaIM BS..uiiii ittt e e st e e s et e e e sn e e e s anereeeesnneeeeesanneeeas 42
FIgure 4.9 STUAENT VIEW TP OIS ..iiiiiiiiiieeciieee e ettt e e sttt e e e st e e e s st e e e sns e e e s anste e e e ssnsaeeesansbeneessnneeeesannnenas 43
Figure 5.2 Odd/EVen NUMDBEr SEPATAtOr.uuii e iciiie et s e e e s e e e s e e e nneae e e e anaeeeeennees 45
(Lo TU T eI ST0 A AN Yot =T o To T T R I - U o SR 45
FIQUIE 5.3 TrEaSUIE HUNT. ..ottt ettt e sab et e e st be e e e s snbbe e e e sbbeeee s 46
FIQUIE 5.4 VITTUAL SNOP .uiiii ittt e e e e e et e e e e st e e e e nstae e e e sntaeeeeenraeeeaas 48
Figure 6.1 Development ENVIFONMENT.......oii it e siaen e e s snbae e e e s nneenaeen 50
Figure 6.2 iReport Development ENVIFONMENT........ooiiiiiiiiiiiiceciiee et 51
Lo TU I R @ Y N = 1 o PSRRI 52
Lo O T R = =T LU) -SSR 53
Figure 7.3 EXPECIEA R ESUIL......eeiiie ettt e et e e e et e e e s s e e e s ensbeeeeennnnees 54
L T [0 = N o To o | g RS Y o €T T [OTRP 54
Figure 7.5 Student Last Played Game.......cccocueeiiiiiiiiiiiieesee e 55

X

LIST OF TABLES

Table 2.1 Game ENQGING OVEIVIBWcciiuiiiiiiii ittt et et e st e st e ssbe e s sreeesnbeeesnbeessrneas 12
Table 4.1 Add Game Use Case D eSCIIPLION.......ciiiiiii it e st sree e see e e s see e e e s snren e e s eeaeeeeane 31
Table 4.2 Remove Game Use Case DeSCIIPLiON.......cocuiiiiiie ittt eee e 32
Table 4.3 Filter Game Use Case D eSCIPLIONcii e iiie e srtee s e e se e see et e e e snaaee e 33
Table 4.4 View Reports Use Case D eSCHIPLION.......iciiiiiii e e e e 34
Table 4.5 Launch Game Use Case DeSCIIPLION.......cuviiiiiri e e enre e e 35
Table 4.6 TeaCher Add GamMES.......ui ittt ettt sttt e e sbe e e st e e st b e e e sbeeesabeaessbee e 37
Table 4.7 TEAChEr FEMOVE QAIMES....iciiiiiiee ittt e e ittt e e e sste e e e s st e e s stae e e s arsae e e e s snreeeesataeeesansseeeeasnreeeesannees 38
Table 4.8 Teacher Filter Games.......ccooeeiiiiiiiiiiiee e 39
Table 4.9 Teacher Can PlaY QAMES......coicuiii it s e s e e s st e e s s e e e s snra e e e s snteeaesanees 40
Table 4.10 Teacher VIeW StUAENT FEPOITS......iiiiiiiiee e ctieee s e s e e st e e e snae e e e s ssae e e e snntaeeeesnnreeeen s 41
Table 4.11 StUAENT PIAY GAMIES....uii it e e e et e e e e st e e e e etbaeeeennraeeeas 42
Table 4.12 STtUAENT VIEW FEP OIS .. i et e ettt ctee e sttt e e e e e e e e s e e e e st e e e s st e e e e s sabaeaessbaeeesanrreeaeanes 43
Table 5.1 ASCENUING T FaIN ...ciiiiiiieiiiie e e e et e e e st e e e st beeeesanteeeeesntaeeeesnsseeeeannreneean 44
Table 5.2 Odd/EVen NUMDEIr SEPATALONccciiiiiieiiiiee et e e e e e sner e e s anae e e s anees 45
Table 5.3 TreaSUIe HUNT.....oii ettt ettt s e e sare e nee e 46
LI Lo LT AV A T (BT L o o RS 47
Table 6.1 Software Development ENVIFONMENT.......cooiiiiiie s e e enen e nnee e 49
TaDIE 7.1 TESECASE L ...ttt ettt et e st e e e sab e e bb e b e e e e 53
I Lo] A T O - TSRS 55
Table 7.3 Deployment 0fthe SOFtWare.......cociiiii i 56

xXm

INTRODUCTION

CHAPTER 1 INTRODUCTION

1.1 INTRODUCTION OF VIRTUSA

Virtusa Corporation is a leading global technology innovation services provider that creates
competitive advantage for its clients. Virtusa was founded in 1996 by the prominent technology
entrepreneur, Kris Canekeratne, who has assembled a strong leadership team from well-known
companies like Infosys, IBM, Aether, 3Com and John Keels. Previously known as eRUNWAY,
Inc., Virtusa has grown beyond being an efficient provider of product and application development
services to being the partner of choice in creating competitive advantage for its clients using

technology solutions.

. Headquarters in Westborough, MA, Virtusa employs the finest global technology talent, spread
across its Advanced Technology Centers in the US, India and Sri Lanka. It also has sales and

marketing offices in several locations around the world.

1.2 VIRTUSA GAME DEVELOPMENT SPECIAL INTEREST GROUP

Virtusa Game Development Special Interest Group (Game Dev SIG) is a knowledge sharing group

that is open for anyone who is interested in game development within Virtusa.

Virtusa Game Development Special Interest Group (GDSIG) is currently working on an internal
project to develop few simple computer games for kids. This project is focusing on implementing
simple computer games in any technology, creating attractive 2D or 3D arts for kids, integrating

sound effects. This is a voluntary project and anyone can work for this project in their spare time.

INTRODUCTION

1.3 PROJECT OVERVIEW

As a part of the Corporate Social Responsibility (CSR) initiatives of Virtusa, GDSIG involves in a
véluntary project to provide edutainment software for primary school children in Sri Lanka. The
purpose of this proposed system is to develop simple games in an interactive and an attractive
manner aiming primary grade students attending schools of Sri Lanka.

At the moment, the system consists of several educational games in different format without any
integration into a unique system. Moreover, the existing system is developed solely for
entertainment without concentrating on learning tools. It contains action and racing games that
may improve only hand coordination movement of students. In order to further. develop the
scenario, we propose to change the core of the system with the manipulation of the whole

environment.

1.4 MAJOR CHALLENGES

The major challenges of this project are:

e To gather requirements - by interviewing, organizing formal discussions and reviewing
sample documents.
e To develop a concrete understanding of the game concepts.

e To acquire technical skills this related to graphics programming.

1.5 OBJECTIVES

Implement console Software for the Edutainment software suite. Our major objective is to
develop the game portal which is the first interface user can see. Teachers can select the
games for their students and students can play games through it. Also students can see the

results and can their game skills.

INTRODUCTION

1.5.1 Opverall Objective

e Developing Educational Computer Games for Children of Sri Lankan Schools
e Develop the Mathematical skills of students

e Provide instructions in both Sinhala and Tamil languages

e Report Demonstration

e Increase market opportunities

e Take Latest technology for students

e Measure the progtess of students

REVIEW OF LITERATURE

CHAPTER 2 REVIEW OF LITERATURE

To achieve the objectives of this project, in-depth knowledge of the following topics were used.

e UML Diagrams

e Object Oriented' Programming principles
e Java5.0

e Eclipse Eurapa IDE 2.0

e Scirra Construct

e JMonkey Engine

e. Reality Factory

e Bilender
e Gimp

e MySql
e iReport

e Jasper Reports
2.1 JAVA PROGRAMMING LANGUAGE

In 1991, a small group of Sun engineers called the "Green Team" believed that the next wave in
computing was the union of digital consumer devices and computers. The Green Team
demonstrated their new language with an interactive, handheld home-entertainment controller that
was originally targeted at the digital cable television industry. Unfortunately, the concept was
much too advanced for them at the time. But it was just right for the Internet, which was just
starting to take off. In 1995, the team announced that the Netscape Navigator Internet browser
would incorporate Java technology [www4].

-

The language derives much of its syntax from C and C++ but has a simpler object model and fewer
low-level facilities. Java applications are typically compiled to byte code that can run on any Java

virtual machine (JVM) regardless of computer architecture.

Today, Java not only permeates the Internet, but also is the invisible force behind many of the
applications and devises that power our day-to-day lives [wwwS5]. From mobile phones to

handheld devices, games and navigation systems to e-business solutions, Java is everywhere!

REVIEW OF LITERATURE

In our project we have used the latest version of Java 5.0 as the programming Language. Basically
we have used java 2D graphics package for our graphical requirements. Also Java has more
advantages over the other programming languages like,

e Java is easy to learn.

e Java was designed to be easy to use and is therefore easy to write, compile, debug, and
learn than other'programming languages.

e Java is object-oriented. This allows you to create modular programs and reusable code.

e Java is platform-independent.

One of the most significant advantages of Java is its ability to move easily from one computer
system to another. The ability to run the same program on many different systems is crucial to
World Wide Web software, and Java succeeds at this by Being platform-independent at both the

source and binary levels.
In other word java has several disadvantages which we have to concern like,

e Performance: Java can be perceived as significantly slower and more memory-consuming
than natively compiled languages such as C or C++ [www6].

e Look and feel: The default look and feel of GUI applications written in Java using the
Swing toolkit is very different from native applications. It is possible to specify a different
look and feel through the pluggable look and feel system of Swing.

e Single-paradigm language: Java is predominantly a single-paradigm language. However,
with the addition of static imports in Java 5.0 the procedural paradigm is better

accommodated than in earlier versions of Java.

REVIEW OF LITERATURE

2.2 ECLIPSE EUROPA IDE

In this project we have used Eclipse Europa as the Integrated Development Environment
[www15]. Eclipse is a multi-language software development platform comprising an IDE and a
plug-in system to extend it. It is written primarily in Java and is used to develop applications in this
language and, by means of the various plug-ins, in other languages as well— C/C++, Perl, PHP
and more. We have used Eclipse to code java classes, compile them and run those classes. Eclipse

Europa IDE is one of the updated and a modified version of Eclipse IDE.

23 GIMP (GNU IMAGE MANIPULATION PROGRAM)

The GIMP (GNU Image Manipulation Program) , is a raster graphics editor used to process digital
graphics and photographs [www8]. GIMP is a freely distributed piece of software for such tasks as
photo retouching, image composition and image authoring. It works on many operating systems, in

many languages. In this project Gimp is used to design the user interfaces, graphics etc.

REVIEW OF LITERATURE

2.4 BLENDER

Blender is a free 3D graphics application. It can be used for modeling, UV unwrapping, texturing,
rigging, water simulations, skinning, animating, rendering, particle and other simulations, non-
linear editing, compositing, and creating interactive 3D applications [www12]. Blender is available
for several operating systems, including Microsoft Windows, Mac OS X, Linux, IRIX, Solaris,
NetBSD, FreeBSD, and OpenBSD with unofficial ports for BeOS, SkyOS, AmigaOS, MorphOS
and Pocket PC. Blender has a robust feature set similar in scope and depth to other high-end 3D
software such as Softimage, Cinema 4D, 3ds Max, Lightwave and Maya. These features include
advanced simulation tools such as rigid body, fluid, cloth and soft body dynamics, modifier based
modeling tools, powerful character animation tools, a node based material and compdsiting system
and Mon for embedded scripting.

2.5 MYSQL

MySql, the most popular Open Source SQL database management system, is developed,
distributed, and supported by MySql AB. MySql AB is a commercial company, founded by the
MySql developers [wwwl11].

e MySql is a database management system.

A database is a structured collection of data. It may be anything from a simple shopping
list to a picture gallery or the vast amounts of information in a corporate network. To add,
access, and process data stored in a computer database, you need a database management

system such as MySql Server.

e MySql is a relational database management system.

A relational database stores data in separate tables rather than putting all the data in one
big storeroom. This adds speed and flexibility. The SQL part of “MySql” stands for
“Structured Query Language.” SQL is the most common standardized language used to
access databases and is defined by the ANSI/ISO SQL Standard.

e MySql software is Open Source.

REVIEW OF LITERATURE

Open Source means that it is possible for anyone to use and modify the software. Anybody
can download the MySql software from the Internet and use it without paying anything.

e The MySql Database Server is very fast, reliable, and easy to use.

2.6 JASPER REPORTS

Jasper Reports is the best open source reporting engine available for Java community [www16]. It
is developed by a small big genius called Teodor Danciu. Jasper Reports has always had one lack:
it doesn't provide an adapted tool to visually design reports. Jasper Reports provides the necessary
features to generate dynamic reports, including data retrieval using JDBC (Java Database
Connectivity), as well as support for parameters, expressions, variables, and groups. Jasper Reports

also includes advanced features, such as custom data sources, scriptlets, and sub reports.

2.7 IREPORT

IReport is a program that helps users and developers that use the Jasper Reports library to visually
design reports [www14]. Through a rich and very simple to use GUI, iReport provides all the most
important functions to create nice reports in little time.

2.7.1 Features of iReport
e 98% of Jasper Reports tags support
e Visual designer with tools for draw rectangles, lines, ellipses, text fields, charts, sub
reports...
. Built-in editor with syntax highlighting for write expression
e . Support of all JDBC compliant databases
e Support for sub reports

e Facilities for fonts

REVIEW OF LITERATURE

2.8 BRIEF HISTORY OF GAMES

Computer games were introduced as a commercial entertainment medium in 1971, becoming the
basis for an important entertainment industry in the late 1970s/early 1980s in the United States,
Japan, and Europe [www18]. The first generation of PC games was often text adventures or
interactive fiction, in which the player communicated with the computer by entering commands
through a keyboard. The first text-adventure, Adventure, was developed for the PDP-11 by Will
Crowther in 1976, and expanded by Don Woods in 1977. By the 1980s, personal computers had
become powerful enough to run games like Adventure, but by this time, graphics were beginning

to become an important factor in games.

Prior to game engines, games were typically written as singular entities. Thus, most game designs
through the 1980s were designed through a hard-coded rule set with a small amount of level and
graphics data. The term "game engine" arose in the mid-1990s, especially in connection with 3D
games such as first-person shooters (FPS). Modern game engines are some of the most complex
applications written, frequently featuring dozens of finely tuned systems interacting to ensure a
finely controlled user experience. The continued refinement of game engines has created a strong
separation between rendering, scripting, artwork, and level design. First-person shooter games
remain the predominant users of third-party game engines, but they are now also being used in
other genres. As game engine technology matures and becomes more user-friendly, the
applications of game engines has broadened in scope, and are now being used for serious games:

visualization, training, medical, and military simulation applications.

REVIEW OF LITERATURE

2.9 GAME ENGINES

The game engine is generally the library of core functions used in the game, usually related to
Qaphics, input, networking and other systems. Another way to understand what a game engine is
would be considering them as the non game-specific part of the game, so we can have several
games ranging from RPGs to FPSs using the same engine. There are many game engines that are
designed to work on game consoles and desktop operating systems such as Linux, Mac OS X, and
Microsoft Windows. The core functionality typically provided by a game engine includes a
rendering engine (“renderer™) for 2D or 3D graphics, a physics engine or collision detection (and
collision response), sound, scripting, animation, artificial intelligence, networking, streaming,
memory management, threading, and a scene graph. '

Game engines provide a suite of visual development tools in addition to reusable software
components. These tools are generally provided in an integrated development environment to
enable simplified, rapid development of games in a data-driven manner. These games engines are
sometimes called "game middleware" because, as with the business sense of the term, they provide
a flexible and reusable software platform which provides all the core functionality needed, right
out of the box, to develop a game application while reducing costs, complexities, and time-to-

market—all critical factors in the highly competitive game industry.

Some game engines only provide real-time 3D rendering capabilities instead of the wide range of
" functionality required by games. These engines rely upon the game developer to implement the rest
of this functionality or assemble it from other game middleware components. These types of
engines are generally referred to as a "graphics engine," "rendering engine," or "3D engine" instead
of the more encompassing term "game engine." However, this terminology is inconsistently used
as many full-featured 3D game engines are referred to simply as "3D engines." A few examples of
graphics engines are: Realm Forge, Truevision3D, OGRE, Crystal Space, Genesis3D, Irrlicht and
JMonkey Engine.

10

2.10

REVIEW OF LITERATURE

FREE AND OPEN SOURCE GAME ENGINES

These engines are available for free use, but without the source code being available under an open

source license. Many of these engines are commercial products which have a free edition available

for them.

Adventure Game Studio — Mainly used to develop third-person pre-rendered adventure
games, this engine is one of the most popular for developing amateur adventure games.
Build engine — A first-person shooter engine used to power Duke Nukem 3D

dim3 — Freeware 3D JavaScript engine for the Mac (although finished games are cross
platform).

DX Studio — Real-time professional 3D engine and editing suite producéd by World
weaver Ltd

Game Maker Lite — Object-oriented game development software with a scripting
language as well as a drag-and-drop interface

JMonkeyEngine — An open-source, BSD licensed Java scene graph engine.

A comprehensive list of game engines is shown in Table 2.1

11

Table 2.1 Game Engine Overview

REVIEW OF LITERATURE

Name Language | Platform | License Graphics Sound Scripting
AgateLib | NET Windows | Free 2D via Direct3D or Yes No
- / Mono OpenGL
AGL C++ Windows | Commercial | 2D via DirectDraw, Yes No
Engine Direct3D or OpenGL
C4 C++ Windows | Commercial | 3D Yes Visual
Engine , Mac, Scripting
PS3
DXGame | VB6 Windows | Free 2D+ via Direct3D Yes No
Engine ~
Game Delphi Windows | Free and 2D/3D Yes Tts own
Maker Commercial scripting
language(G
ML)
Ghost C+ Windows | Engine code | 3D via No -
Engine is OpenGL/DirectX,
Z1ib/libPNG
-licensed
Jet3D C/C++ Windows | Free 3D via DirectX
JGame Java Windows | Free (BSD) | 2D Yes No
H Unix,
MacOSX
jMonkey | Java Windows | Free (BSD) | 3D via LWJGL Yes - Yes -
Engine , Linux, OpenAL jMonkey
* MacOS Sound Scripting
X Framework
The VB6 Windows | Free (Closed | 2D Yes No
RealFeel XP/Vista | Source)
Engine
Reality None Windows | Genesis 3D | 3D via Genesis3D Yes Yes
Factory needed license (DirectX)
Visual3D | .NET2.0 Windows | Commercial, | 3D via DirectX or Yes C#,
.NET (CH , Xbox Free Student | XNA VB.NET,
360 Commercial C++.NET,
& Non- J# (Java),
commercial JScript. NET
= (JavaScript),
IronPython,
Visual
Programmin
g/Modeling

12

REVIEW OF LITERATURE

2.11 UNIFIED MODELING LANGUAGE

The Unified Modeling Language (UML) is a graphical language for visualizing, specifying,
cbnstructing, and documenting the artifacts of a software-intensive system [www9]. The UML
offers a standard way to write a system's blueprints, including conceptual things such as business
processes and system ‘functions as well as concrete things such as programming language
statements, database schemas, and reusable software components. UML is a 'language' for
specifying and not a method or procedure. The UML gy is used to define a software system; to
detail the artifacts in the system, to document and construct - it is the language that the blueprint is
written in. The UML may be used in a variety of ways to support a software development
methodology (such as the Rational Unified Process) - but in itself it does not. specify that
methodology or process. UML defines several types of diagrams: class, use case, sequence,
collaboration, activity, diagrams etc.

2.12 USE CASE DIAGRAMS

The Use case diagram is used to identify the primary elements and processes that form the system.
The primary elements are termed as "actors" and the processes are called "use cases." The Use case

- diagram shows which actors interact with each use case.

2.12.1 Elements of Use Case Diagram

e Actor - An actor portrays any entity that performs certain roles in a given system. The
different roles the actor represents are the actual business roles of users in a given system.

. An actor in a use case diagram interacts with a use case. For example, for modeling a
-banking application, a customer entity represents an actor in the application. Similarly, the

person who provides service at the counter is also an actor.

e Use Case - A use case in a use case diagram is a visual representation of distinct business
functionality in a system. The key term here is "distinct business functionality." As the
first step in identifying use cases, you should list the discrete business functions in your
problem statement. Each of these business functions can be classified as a potential use

case.

13

REVIEW OF LITERATURE

2.13 CLASS DIAGRAMS

Class diagrams are widely used to describe the types of objects in a system and their relationships.
Class diagrams model class structure and contents using design elements such as classes, packages
and objects. Classes are composed of three things: a name, attributes, and operations. Class
diagrams also display relationships such as containment, inheritance, associations and others. The
association relationship is the most common relationship in a class diagram. The association
shows the relationship between instances of classes. Another common relationship in class
diagrams is a generalization. A generalization is used when two classes are similar, but have some
differences. Class diagrams are used in nearly all Object Oriented software designs. Use them to

describe the Classes of the system and their relationships to each other.

2.14 SEQUENCE DIAGRAMS

A Sequence diagram depicts the sequence of actions that occur in a system. The invocation of
methods in each object, and the order in which the invocation occurs is captured in a Sequence
diagram. This makes the Sequence diagram a very useful tool to easily represent the dynamic
" behavior of a system. A sequence diagram is made up of objects and messages.

2.15 OBJECT ORIENTED DESIGNING

Object-oﬁe;ntéd programming (OOP) is a programming paradigm that uses "objects" and their
interactions to design applications and computer programs. Object-orientation is so called because
this method sees things that are part of the real world as objects. A phone is an object in the same
way as a bicycle, a human being, or insurance policies are objects. In everyday life, we simplify
objects in our thinking — we work with models. Programming techniques may include features
such as encapsulation, modularity, polymorphism, and inheritance. It was not commonly used in
mainstream software application development until the early 1990s. Many modern programming
languages now support OOP. For the software engineer, object-oriented technology encompasses
object-oriented programming languages, object-oriented development methodologies, management
of object-oriented projects, object-oriented computer hardware, and object-oriented computer aided

software engineering, among others.

14

REVIEW OF LITERATURE

Many of the terms commonly used in object-oriented technology were originally used to describe
object-oriented programming (coding) concepts. Specifically, although the terms were borrowed
from a non-computer-software perspective, they were first used extensively to describe concepts

embodied in object-oriented programming languages, such as Smalltalk, C++, Java, and Eiffel.

2.16 OBJECT ORIENTED TERMS AND CONCEPTS

2.16.1 Class

A class is used to describe something in the world, such as occurrences, things, external entities,
roles, organization units, places or structures. A class describes the structure and behévior of a set
of siﬁilar objects. It is often described as a template, generalized description, pattern or blueprint
for an object, as opposed to the actual object, itself. Once a class of items is defined, a specific
instance of the class can be defined. An instance is also called “object™.

2.16.2 Objects

Objects are the physical and conceptual things we find in the universe around us. Hardware,
software, documents, human beings, and even concepts are all examples of objects. The class of
Dog defines all possible dogs by listing the characteristics and behaviors they can have; the object
Lassie is one particular dog, with particular versions of the characteristics. A Dog has fur; Lassie
* has brown-and-white fur. Objects are thought of as having state. The state of an object is the
condition of the object, or a set of circumstances describing the object. We also think of the state of
an object as something that is internal to an object. For example, if we place a message in a
mailbox, the (internal) state of the mailbox object is changed, whereas the (internal) state of the

message object remains unchanged.

2.16.3 Property & Methods
Properties in a class are used to present the structure of the objects: their components and the

information or data contained therein. An instance of a class has the properties defined in its class
and all of the classes from which its class inherits.

Methods in a class describe the behavior of the objects. It represents a function that an instance of

the class can be asked to perform.

Figure 2.7 depicts an example of a Dog class.

15

REVIEW OF LITERATURE

| Dog :
i{EName : String |
iEWeight : Integer |
;@Bread : String
' 1

|

! . .
P Vsit()
; \;"HJHO

Figure 2.1 An example of a Dog Class

2.16.4 Association

An association is a relationship between different objects of one more classes. A simpie example
of an vassociation is the relationship among an enterprise, departments and employees is shown in
figure 2.8

-7 congists of | ”Em—plbye o

i rrrca | consistsof oo c o
" Enterpise | 0SS OT ["popanment 1.°
R T 1.5 =l 1771

I T

S

Figure 2.2 Associations

2.16.5 Aggregation

Aggregation is a special form of association. Aggregation is the composition of an object out of a
set of parts. A car, for example, is an aggregation of tires, engine, steering wheel, brakes and so on.
Aggregation represents a “has” relationship: a car has an engine. Instead of aggregation, some
people talk about “whole-part” hierarchy. For example, figure 2.9 shows, where an Enterprise
represents a “whole” end and Department represents a “part” end.

(s of i Department:l st of
~ . 7 consists of T ona 1 consistsof | T -
; - oName i ;
-‘f’fﬁeﬁ‘?’,‘? € o T - e T?.-ET Elf.‘f?_-.f
AR 1.7 Semploy() i 150 R
. Vrecruit() {
Figure 2.3 Aggregation

16

REVIEW OF LITERATURE

2.16.6 Inheritance

Inheritance is the property whereby one class extends another class by including additional
methods and/or variables. The original class is called the super class of the extending class, and the
extending class is called the subclass of the class that is extended. Since a subclass contains all of
the data and methods of the super class plus additional resources, it is more specific. Figure 2.10
shows an example, where Circle and Rectangle inherit from GeomFigure and own all attributes

and methods from GeoFigure.
GeomFigure
ox : Integer
oy : Integer -
¥display(
remove()
®setPosition()
I]
Circle Retangle
oradius : double ©a : Integer
&b : Integer
®setRadius() .
SsetA)
®5etB()
Figure 2.4 Inheritance

2.16.7 Encapsulation

Encapsulation means as much as shielding. Each object-oriented object has a shield around it.
Objects can't 'see’ each other. They can exchange things though, as if they are interconnected
through a hatch. Figure 2.11 shows the concept of the encapsulation. It separates the external
aspects of an object from the internal implementation details of the object, which are hidden from
other objects. The object encapsulates both data and the logical procedures required to manipulate
the data.

17

REVIEW OF LITERATURE

Figure 2.5 Example of Encapsulation Concept

2.16.8 Polymorphism

Polymorphism indicates the meaning of “many form.” In object-oriented design, polymorphism
present a method can has many definitions. Polymorphism is related to Overloading and
Overriding. Overloading indicates a method can have different definitions by defining different
_ type of parameter. Overriding indicates that subclass and parent class have the same methods,
parameters and return types.

2.17 QA TESTING

Software Testing is an empirical investigation conducted to provide stakeholders with information
about the quality of the product or service under test, with respect to the context in which it is
intended to operate [www26]. This includes, but is not limited to, the process of executing a
program or application with the intent of finding software bugs.

A primary purpose for testing is to detect software failures so that defects may be uncovered and
corrected. This is a non-trivial pursuit. Testing cannot establish that a product functions properly
under all (;onditions but can only establish that it does not function properly under specific
conditions. The scope of software testing often includes examination of code as well as execution
of that code in various environments and conditions as well as examining the aspects of code: does
it do what it is supposed to do and do what it needs to do. In the current culture of software
development, a testing organization may be separate from the development team. There are various
roles for testing team members. Information derived from software testing may be used to correct

the process by which software is developed.

A common source of requirements gaps is non-functional requirements such as testability,
scalability, maintainability, usability, performance, and security. Software faults occur through the

following process. A programmer makes an error, which resuits in a defect in the software source

18

REVIEW OF LITERATURE

code. If this defect is executed, in certain situations the system will produce wrong results, causing

a failure. Not all defects will necessarily result in failures.

2.17.1 Testing Levels

o Unit Testing
The primary goal of unit testing is to take the smallest piece of testable software in the application,

isolate it from the remainder of the code, and determine whether it behaves exactly as you expect.
Each unit is tested separately before integrating them into modules to test the interfaces between
modules. Unit testing has proven its value in that a large percentage of defects are identified during

its use.

The most common approach to unit testing requires drivers and stubs to be written. The driver
simulates a calling unit and the stub simulates a called unit. The investment of developer time in
this activity sometimes results in demoting unit testing to a lower level of priority and that is
almost always a mistake. Even though the drivers and stubs cost time and money, unit testing
- provides some undeniable advantages. It allows for automation of the testing process, reduces
difficulties of discovering errors contained in more complex pieces of the application, and test

coverage is often enhanced because attention is given to each unit.

o Integration Testing
‘Integration testing' called abbreviated I&T is the phase of software testing in which individual
software modules are combined and tested as a group. It follows unit testing and precedes system
" testing.

Integration testing takes as its input modules that have been unit tested, groups them in larger
aggregates, applies tests defined in an integration test plan to those aggregates, and delivers as its
output the integrated system ready for system testing.

The purpose of integration testing is to verify functional, performance and reliability requirements
placed on major design items. These design items are exercised through their interfaces using
Black box testing, success and error cases being simulated via appropriate parameter and data
inputs. Simulated usage of shared data areas and inter-process communication is tested and
individual subsystems are exercised through their input interface. Test cases are constructed to test
that all components within assemblages interact correctly, for example across procedure calls or

process activations, and this is done after testing individual modules, i.e. unit testing.

The overall idea is a "building block" approach, in which verified assemblages are added to a
verified base which is then used to support the integration testing of further assemblages.

Some different types of integration testing are big bang, top-down, and bottom-up.

19

REVIEW OF LITERATURE

e System Testing

System testing of software is testing conducted on a complete, integrated system to evaluate the
system's compliance with its specified requirements. System testing falls within the scope of black
box testing, and as such, should require no knowledge of the inner design of the code or logic
[www27]. System testing is performed on the entire system in the context of a Functional
Requirement Specification(s) (FRS) and/or a System Requirement Specification (SRS). System
testing is an investigatory testing phase, where the focus is to have almost a destructive attitude and
tests not only the design, but also the behavior and even the believed expectations of the customer.
It is also intended to test up to and beyond the bounds defined in the software/hardware
requirements specification(s). System testing includes the L.oad testing and Stress testing. Once the
Load testing and Stress testing is completed successfully, the next level of Alpha Testing or Beta
Testing will go ahead.)

e System Integration Testing

" System Integration Testing (SIT), in the context of software systems and software engineering, is a
testing process that exercises a software system's coexistence with others. System integration
testing takes multiple integrated systems that have passed system testing as input and tests their
required interactions. Following this process, the deliverable systems are passed on to acceptance
testing.

Systems integration testing (SIT) is a testing phase that may occur after unit testing and prior to

- user acceptance testing (UAT). Many organizations do not have a SIT phase and the first test of
UAT may include the first integrated test of all software components.

2.17.2 Test Cases

In software engineering, the most common definition of a test case is a set of conditions or
variables under which a tester will determine if a requirement or use case upon an application is
parﬁaliy or fully satisfied. It may take many test cases to determine that a requirement is fully
satisfied. In order to fully test that all the requirements of an application are met, there must be at

least one test case for each requirement.

If the application is created without formal requirements, then test cases can be written
based on the accepted normal operation of programs of a similar class. Test cases are not
written at all but the activities and results are reported after the tests have been run. What

characterizes a formal, written test case is that there is a known input and an expected

20

REVIEW OF LITERATURE

output, which is worked out before the test is executed. The known input should test a
precondition and the expected output should test a post condition.

A test case includes:

e The purpose of the test.

e Special hardwaré requirements, such as a modem.
e Special software requirements, such as a tool.

e Specific setup or configuration requirements.

e A description of how to perform the test.

e The expected results or success criteria for the test.

7.17.3 Test Data

A set of data created for testing new or revised applications. Test data should be developed
by the user as well as the programmer and must contain a sample of every category of

valid data as well as many invalid conditions as possible.

21

TECHNOLOGICAL DEVELOPMENT

CHAPTER 3 TECHNOLOGICAL DEVELOPMENT

3.1 INTRODUCTION TO SOFTWARE DEVELOPMENT METHODOLOGY

3.1.1 Software De\;elopment Process

Software Engineering is concerned with concepts, processes and tools that support the timely and
cost effective development of quality software. A software development process is a structure
imposed on the development of a software product. Synonyms include software lifecycle and
software process. There are several models for such processes, like Waterfall process, Iterative

process, Prototyping, Spiral etc.

3.1.2 Agile Development

Agile software development is a group of software development methodologies that are based on
similar principles [wwwl][www2]. In the late 1990°s several methodologies began to get
increasing public attention. Each had a different combination of old ideas, new ideas, and
transmuted old ideas. The peak time of agile software development evolved in the mid 1990s as
part of a reaction against "heavyweight" methods, as a typical example by a heavily regulated,
regimented, micro-managed use of the waterfall model for software development, the processes

that software engineers actually perform effective work.

There are many specific agile development methods. Most promote development iterations,
teamwork, collaboration, and process adaptability throughout the lifecycle of the project [www3].
Agile chooses to do things in small increments with minimal planning, rather than long-term
planning. Iterations are short time frames which typically last from one to four weeks. Each
iteration is worked on by a team through a full software development cycle, including planning,
requirements analysis, design, coding, unit testing, and acceptance testing when a working product
is demonstrated to customers. These are known as iterations with a full project consisting of
several hundred iterations. However, the chief aim is to produces a functional, usable piece of
software in each iteration. So, iteration is actually as a mini-project that includes all the same
planning, design, programming and testing as in a large project. Because of the short nature of
these iterations, agile is seen as a lower risk software development model. If the iteration doesn't
work, it can be modified without causing significant delays or cost overruns. It also cuts out much
of the bureaucracy and restrictions of heavier-weight models. Ideally, at the end of each reiteration
the software should be ready, or at least almost ready, for release. At this point, the team re-

evaluates the entire project and decides on the next step.

22

TECHNOLOG1CAL DEVELOPMENT

Because of its focus on fast tumaround times, the agiie model encourages person-to-person
communication. Very often, software development teams using this model will work together in an

open-plan office with all meetings being held face to face.

The following are other features that describe software development projects that use agule

methodologies:

e The fast tumaround time and the regular delivery of working software should ensure
customer satisfaction

e Late changes can be handled easily, or even welcomed

e Progress is measured by the delivery of working software

e Clients and developers communicate regularly face-to-face

¢ All meetings within the development team are held face-to-face

e All developers are highly competent and trustworthy

Figure 3.1 jllustrates the agile Ufe cycle

Requirements Analysis & Design

Irnptementation
Planning
Deployment

fnitial
Planning

Evaluaron]
Testing

Figure 3.1 Agile Development Model

23

TECHNOLOGICAL DEVELOPMENT

3.2 GAME DEVELOPMENT LIFE CYCLE

The diagram in Figure 3.2 shows the development life cycle of games. According to the cycle, the
first phase defines the Game Concept, where depends upon collected requirements as highlighted
in the original project proposal. Basically, primary schools need mathematical and language
concepts so as to facilitate the leaming environment of students. Under the pre-production,
resources that need to implement the system are collected which includes modeled games as well
as the developing aspects. Because of prototyping method, we can clarify all the artifacts in the

system. The testing and releasing phases are completed next.

Figure 3.2 Game Development Life Cycle

24

TECHNOLOGICAL DEVELOPMENT

3.3 SCIRRA CONSTRUCT RAPID GAME AUTHORING SYSTEM

Construct is free powerful and easy to use development software for both DirectX 9-based games
and applications [www23]. Tt includes an event based system for defining how the game or
application will behave, in a visual, human-readable way - easy enough for complete beginners to
get results quickly. Optionally, advanced users can also use Python scripting to code our creations.
Construct is not a commercial software project, and is developed by volunteers. It is 100% free to

download the full version - no nag screens, adverts or restricted features at all.

3.3.1 Features of Scirra Construct

Create games and applications with:

o Super fast hardware-accelerated DirectX 9 graphics engine

e Add multiple pixel shades for special effects, including lighting, HDR, distortion, lenses
and more

e Advanced rendering effects like motion blur, skew and bump mapping (3D lighting)

e Innovative Behaviors system for defining how objects work in a flexible way

e Physics engine for realistic object behavior

e Place object on different layers for organizing display, paralleling, or whole-layer effects -
also freely zoom individual layers in and out with high detail

e Python scripting for advanced users - however, Construct's Events system is still powerful
enough to complete entire games without any scripting. '

e Smaller, faster specialized runtime for applications

Construct is developed open source under the General Public License (GPL). This means we can
download and use Construct for free, but it also means that the underlying source code - the code
that defines how the program works - is also freely available. This means other programmers are

free to fix errors in the code and make their own contributions to construct.

Figure 3.4 depicts a demonstration of Scirrra construct.

25

TECHNOLOGICAL DEVELOPMENT

Figure 3.3 A Demo Game Created with Scirra Construct

3.4 JMONKEY ENGINE

JME (jMonkey Engine) is a high performance scene graph based graphics APE jME was built to
fulfill the lack of full-featured graphics engines written in Java [www?21], Using an abstraction
layer, it allows any rendering system to be plugged in. Currently, both LWJGL and JOGL
OpenGL bindings are supported. JME is completely open source under the BSD license.

JME was created by Mark Powell in 2003 while he was investigating OpenGL rendering. After
discovering LWJGL he decided that Java (his language of choice) would be perfect for his own
graphics tools. These tools soon grew into a primitive engine. After reading David Ebery's 3D

Game Engine Design, scene graph architecture was implemented. It was then that JME became
part of Sun's Java.net software repository.

26

TECHNOLOGICAL DEVELOPMENT

3.41 LWJGL

The Lightweight Java Game Library (LWJGL) is a solution aimed directly at professional and
amateur Java programmers alike to enable commercial quality games to be written in Java.
LWJIGL provides developers access to high performance cross platform libraries such as OpenGL
(Open Graphics Library) and OpenAL (Open Audio Library) allowing for State of the art 3D
games and 3D sound. Additionally LWJGL provides access to controllers such as Gamepads,

Steering wheel and Joysticks. All in a simple and straight forward API.

3.4.2 JOGL
JOGL (Java OpenGL) are a set of bindings to OpenGL that are officially supported by Sun.

3.4.3 Features of JMonkey Engine

e JME is scene graph based architecture. The scene graph allows for organizaron of the
game data in a tree structure, where a parent node can contain any number of children
nodes, but a child node contains a single parent. Typically, these nodes are organized
spatially to allow the quick discarding of whole branches for processing.

e JME's camera systeni uses frustum culling to through out scene branches that are not
visible. This allows for complex scenes to be rendered quickly, as typically, most of the
scene is not visible at any one time.

e JME also supports many high level effects, such as: Imposters (Render to Texture),
Environmental Mapping, Lens Fiare, Tinting, Particle Systems, etc.

« JME supplies the user with easy to use, but powerful application classes for building the
application. Jumping into jJME should be a quick and painless process. With a small

learning curve.

Figure 3.6 gives a scene developed using JMonkey Engine.

Figure 3.4 A Game Created with jMonkey Engine

27

TECHNOLOGICAL DEVELOPMENT

3.5 REALITY FACTORY

Reality Factory is a program that - in conjunction with other tools - allows us to create 1% and 3™
person perspective games without programming! Reality Factory is built on top of the powerful
Genesis3D Open Source engine and supports all major 3D graphics cards. Reality Factory
provides most of the tools we need to make a game [www19]. We will still need a program to
create actors (characters and props in our game) and software to make textures with, but what we
won't need is a C/C++ compiler and a couple of coders to build our engine for us. By using objects
called "entities" which you place in our world, we can set up a game - with audio effects, multiple
soundtracks, and special effects. Reality Factory is intended to be a "rapid game prototyping tool" -
it is able to make playable, interesting games across a wide range of genres but it's not optimized
for any ONE kind of game. ‘

3.5.1 Features of Reality Factory

e Complete game & machine creation system without requiring any programming
knowledge.

e Predefined character and camera controls provide 1¥ and 3™ person viewpoints,
changeable on-the-fly in-game as desired

e Complete interactive conversation engine, complete with a GUI conversation tree builder
for writing your conversation scripts

e Customizable script editor for creating scripts

e Basic physics, collision detection

e Per vertex, light mapping, radiosity

e Dynamic colored (RGB) lighting

e Projected Shadows

e Basic multi-texturing, bump-, sphere-, mip-mapping, procedural textures

° .Videg AVI & animated GIF support for cut scenes and animated level textures

e Dynamic texturing effects such as procedurals, animations and morphing

e Key frame animation, skeletal animation, animation blending

e Customizable effects & explosions system

e ' 3D audio engine with mp3, wav and support

Figure 3.8 has a scene of a game created using Reality Factory.

28

TECHNOLOGICAL DEVEEOPMENT

Figure 3.5 A Game Created with Reality Factory

29

UML DESIGNING

CHAPTER 4 UML DESIGNING

4.1 USE CASE DIAGRAM

System

% /A /2.. Remove Game \
rescher ix@&k

% 4———9 View Scora /
Student \\\} ' ,

Figure 4.1 Gives the use case diagram for the game.

e Teacher - Teacher represents the main actor of the system. Teacher can add games to the
portal remove games from the system, filter games; he/she can view the student progress.
Also teacher acts like the administrator of the entire system.

e Student — Student represents the second main role of the system. Student is the final end
use of the system. Student can play the games which only teacher permits him to play.

Also he can select the level of the game he wants to play from finished levels. Student can

see the progress of their subject knowledge.

e ' Logging — Logging use case is entirely based on the security of the system. To advance the
system first of all actors have to log on to the System.

30

UML DESIGNING

e Add Game — This use case is responsible with adding a game to the system. Only the

Teacher can add games to the portal.

. ® Remove Game — This use case deals with removing existing games of the system. Only

Teacher can remove the games from the system.

e Filter Game — This use case is responsible about the filtering of the games. According to

the students subjective knowledge Teacher can filter games.

e View Student Reports — Teacher can see the progress of the students by examine the

progress reports of the students.

4.1.1 Use Case Descriptions

Table 4.1 to 4.5 gives the use cases.

Table 4.1 Add Game Use Case Description

Use Case Number |1

Use Case Name Add game to the Game Launcher

- Use Case To the game launcher pad actor named Teacher can add games according to
Description the student’s level.

Primary Actor Teacher

Precondition Teacher should log into the system before adding games.

Trigger Pressing the add button.

1.) There are several games displayed
| Basic Flow) 2.) Teacher should select games to be display in the launch pad

3.) Then teacher should press the add button to add the games
4.)) Selected games added to the system.

Alternate Flows

Should select less than or equal 5 games to add to the launcher pad

[Post Condition

Games add to the launcher pad

31

UML DESIGNING

Table 4.2 Remove Game Use Case Description

Use Case Number

2

Use Case Name

Remove game from the Game Launcher

Use Case To the game launcher pad actor named Teacher can remove games according

Description to the student’s level.

Primary Actor Teacher

Precondition Teacher should log into the system before adding games.

Trigger Pressing the Remove button.
1.) There are several games displayed

. 2.) Teacher can remove the selected games

Basic Flow
3.) Then teacher should press the remove button to remove the games
5.) Selected games removed from the system.

Alternate Flows Should have games in between 1 and 5

. Post Condition

Games remove from the launcher pad

32

UML DESIGNING

Table 4.3 Filter Game Use Case Description

Use Case Number

Use Case Name

Filter games from the Game Launcher

Use Case To the game launcher pad actor named Teacher can filter what kind of games
Description should be in the game launcher.
Primary Actor Teacher
Precondition Teacher should log into the system before adding games.
Trigger Pressing the Filter button.
Basic Flow 1.) There are several games displayéd
2.) All the games are with different game types.
3.) Teacher can select either game type is language or mathematics.
4.) After selecting the game type teacher should press on filter button.
Alternate Flows Should select either type from the game.
Post Condition Display selected types of game sin the launcher pad.

33

UML DESIGNING

Table 4.4 View Reports Use Case Description

Use Case Number

4

Use Case Name

View Reports

Student actor as well as the teacher actor can check the reports. From

Use Case
o student’s part they can see their previous marks as well as teachers can see
Description
student’s level in each type of games.
Primary Actor Both Teacher and Student
. Teacher as well as the student should log into the system before adding
Precondition
games.
Trigger Pressing the View Report button.
Student:
1.) In each logging student can see view report button.
2.) After pressing the View report student can see their history Report.
Basic Flow
Teacher:
3.) In each logging teach can see view report button.
4.) Teacher can view the student’s report.
Student:
They can see only their marks
Alternate Flows
Teacher:
They can see marks on each and every student.
Post Condition Display previous records and marks.

34

UML DESIGNING

Table 4.5 Launch Game Use Case Description

Use Case Number

Use Case Name

Launch Game

Use Case
o Student actor as well as the teacher actor can play the games.
Description
Primary Actor Both Teacher and Student
. Teacher as well as the student should log into the system before playing the
Precondition -
games.
Trigger After reach to the game point in game launcher.
Student:
Basic Flow Teacher:

1.) In game launcher it has several games.

2.) By selecting the game either student or teacher can play the game.

" Alternate Flows

Student:
Teacher:

Can play only one game at a once.

Post Condition

Teacher or Student can play the game.

35

UML DESIGNING

4.2 CLASS DIAGRAM

Game GameStore

gameld deleteGame (
gameName ! * |addGame 0
gameCatagory
gameType
gamel_ocation

loadGame
launchGame ()

t
Player

userName

age

name

password

1

Teacher Student StudentScore
teacherid studentid studentid
subject ageCatogory 1 1 type

T T catogory
1 1 getScore
|
Login
loginid
loginName
loginPassword
login §
isLogged §

GamePortal

playGame ()
addGame
removeGame ()
filterGame
isGameStored {
isValidGame ()

Figure 4.2 Class Diagram

Figure 4.2 indicates the class diagram for the edutainment launch pad and its functionalities where
- the Player class is specialized into the teacher and student, the main entity classes in the system.

Given figure indicates corresponding methods and attributes for each and every class.

36

4.3 SEQUENCE DIAGRAMS

UML DESIGNING

According to the UML design the sequence diagrams is drawn as in the figure 4.3 to 4.9 and tables

4.6 to 4.12.

4.3.1 Teacher can add games to the Launch Pad

« requirements »

Teacher add games.

Teacher - Entity Class

Login - Control Class
GamePaortal - Baoundary Class

Teacher

:Login

o

T

1
n (userName , passvglrd)

1

|

|
—
lisLogged

addGame (gamel{i, ageGroup ,path)

:GamePortal

userName)

b4

—— i —— . —————— Dy — -]

GameStored {(gameld)

_ﬁ—.-—-.——.———-——————————

Figure 4.3 Teacher Add Games

Table 4.6 Teacher Add Games

Involved Classes

e Teacher
e Login
e GamePortal

Pre Condition

To add a game Teacher must first log into the

system using username and password.

Description

This senario explains about the class behaviors

when Teacher adds a game to the Launcher.

37

UML DESIGNING

4.3.2 Teacher can Remove Games from the LaunchPad

< requirements »

Teacher can remove games.
Teacher - Entily Class

Login - Control Class
GamePaortal - Bacundary Class
GameStore - Entity Class

Teacher :Login :GamePaortal :GameStore

login {(userName , passvgil'd)

isLogged {fuserName)

I
removeBGame (Userid , gameld)
|

%sValidGa e (gamelqd)

) |
geleteGame { gameld)
! =

Yo _

—— e —]

Figure 4.4 Teacher remove games

Table 4.7 Teacher remove games

Classes

e Teacher
e Login
e GamePortal

e GameStore

Pre Condition

To remove a game Teacher must first log into

the system using username and password.

Description

This senario explains about the class behaviors
when Teacher remove unwanted games from
the Launcher. The added games were store in

the GameStore class.

38

4.3.3 Teacher can filter the games

Teacher

UML DESIGNING

<« requirements »

Teacher can Filter games.
Teacher - Entity Class

Login - Control Class
GamePortal - Baoundary Class
GameStore - Entity Class

ﬂIterGLm

lo

:Login

.GamePortal .GameStore

R |~

n {userName , passVvigrd)
P |

isLogged fuserName)

e |

e (userid , game|d,g!:meName,cnndiﬁon,lug!aﬁon)
v -t

1

I

_

|sVaIidGarr e gamelcl)

| |

e |

I |

geleteGame { gameld;)
=

|
| addGame (gameld }

I -1

Figure 4.5 Teacher Filter Games

Table 4.8 Teacher Filter Games

Classes

e Teacher

e Login
e GamePortal

e GameStore

Pre Condition

To remove a game Teacher must first log into

the system using username and password.

Description

This sequence diagram explains the class
behavior of the system when Teacher filters the
game in the Game Launcher.Teacher can add or

remove games from the Launcher as needed.

39

4.3.4 Teacher can play games

« requirements »

Teacher can play games.
Teacher - Entity Class

Login - Control Class
GamePortal - Baoundary Class
GameStore - Entity Class
Game - Entity Class

-Teacher

Login

I
1

logl
ogln {userName , passvgird)

playGame { gameild,gal

—

FsLogged

H }

UML DESIGNING

:GamePortal

:GameStore

:Game

userName)

neName location type.)!

Ioaéeame (gameld_locﬁon)
1

|
_getGamelnfo ()
<

i |
1 launchGame () -
-

Figure 4.6 Teacher can play games

Table 4.9 Teacher can play games

e Teacher
e Login
Classes e GamePortal
e GameStore
e Game
To remove a game Teacher must first log into
Pre Condition the system using username and password.
This describes the class behaviors and method
Description calling of the system when Teacher play a

game.

40

UML DESIGNING

4.3.5 Teacher can view student reports

« requirements »

Teacher can view student reports.
Teacher - Entity Class

Login - Control Class
GamePortal - Baoundary Class
Score - Entity Class

Teacher

:Login

:GamePortal :Score

1
logjn {userName , pass'

d)

__NE

:isLogged 1userName)

|
e

|~

getStud@h?ecords (teacheriD , s

iy e - ———— — — —— — o - — — — —

udentid)

dgore (studentScore]))
™~
! |

Figure 4.7 Teacher view reports

Table 4.10 Teacher view student reports

Classes

e Teacher
e Login
e GamePortal

e Score

. Pre Condition

To remove a game Teacher must first log into

the system using username and password.

Description

This sequence diagram explains the system
behavior when Teacher view student Reports.
Here Teacher can view the progress of the

students.

41

UML DESIGNING

4.3.6 Student can play games

« requirements »

Student can play games.
student - Entity Class

Login - Control Class
GamePortal - Baoundary Class
GameStore - Entity Class
Game - Entity Class

Student

E

:GamePoral :GameStore :Game

T
|
|

login {userName , pass

)

Vg

:isLogged userName)

—— - - - — o —————

Iua&Game (gameld,locﬁion)
i I

- — ——— — ———— ——— — - —

|
_getGamelnfo () _
<

i
1 launchGame () -4
-

|

!

I

i

I

I

|

|

! playGame (gameld,gaineName,location type.)}
= o]
I

I

I

|

I

I

|

I

|

Figure 4.8 Student play games

Table 4.11 Student play games

e Teacher
e Login
Classes e GamePortal
e GameScore
e Game
To remove a game Teacher must first log into
Pre Condition the system using username and password.
This senarion shows tﬁe method invocation
| Description when Student play games.

42

4.3.7 Student can view reports

« requirements »
Student can view student reports.
Student - Entity Class
Login - Control Class
GamePoral - Baoundary Class
Score - Entity Class

:Student

UML DESIGNING

‘Login :GamePortal :Score
| 1 | |
i | | |
l ! I !

logjn (userName , passVigrd) 1 I
] “1 I I
I | I I
1 | | I
I I____l I I
: :isLogged userName) : :
| | 1 I
| = | I
i e | I
| I | |
{ gptRecords (studentld), -
| i | “
l | |]
| | | i
1 | deore (studentScoreflh
| | < —
I I | |

Figure 4.9 Student view reports

Table 4.12 Student view reports

e Student
"o Login
Classes e GamePortal
e Score
To remove a game Student must first log into
Pre Condition

the system using username and password.

Description

This senarion is responsible for the method

invocation when student view his/her report.

43

GAME CONCEPTS & ANALYSIS

CHAPTER 5 GAME CONCEPTS & ANALYSIS

A game-concept document expresses the core idea of the game. It is a one- to two-page document
that is necessarily brief and simple in order to encourage a flow of ideas. The target audience for

the game concept is all those to whom we want to describe our game.

A game concept should include the following features:

e Introduction

e Background (optional)
e Description

e Key features

e Genre

e Platform(s)

e Concept art (optional)

This chapter discusses some of the game concepts that were used in this project.

5.1 ASCENDING TRAIN (OR DESCENDING TRAIN)

Table 5.1 gives the summary of the Ascending train game.

Table 5.1 Ascending Train

This game was designed to improve the mathematical skills of the
Introduction students. The main objective of this game is to teach students about

the ascending and descending order of the numerical numbers.

There are few coaches in ground with a number on it. Also there is a

Background . .
train engine.
You have to collect the coaches using train engine in ascending order
.Description to make a train. If you collect a coach with a wrong number the game
will be reset and you have to start from beginning scene in figure 5.1.
Platform _ Windows / Linux

GAME CONCEPTS & ANALYSIS

Figure 5.1 Ascending Train

5.2 ODD/EVEN NUMBER SEPARATOR

Table 5.2 gives the scene of odd/even separator game.
Table 5.2 Odd/Even Number Separator

This game was designed to improve the mathematical skills of the
Introduction students. The main objective of this game is to teach students odd and

even numbers.

There are few bouncing balls inside a box with two parts separating

Background . .
with a moving gate.
You have to separate some bouncing balls using a moving gate. You
Description have to put odd numbers in right side and even numbers in left side as
in figure 5.2.
Platform Windows / Linux

Figure 5.2 Odd/Even Number Separator

45

GAME CONCEPTS & ANALYSIS

5.3 DISTANCE AND DIRECTIONS (TREASURE HUNT)
Table 5.3 gives the scene of distance and directions game.

Table 5.3 Treasure Hunt

This game was designed to improve the mathematical skills and to
Introduction teach about the main directions NORTH, EAST, SOUTH, and WEST.

Also this game tries to teach how to count.
Background There is a map with a pirate and a treasure.

You have to move the pirate step wise to the treasure by avoiding
Description obstacles. You can have a treasure hunt based on knowledge of

directions and distance as figure 5.3.

Platform Windows / Linux

Figure 5.3 Treasure Hunt

46

GAME CONCEPTS & ANALYSIS

5.4 VIRTUAL SHOP

Table 5.4 gives the scene of virtual shop game.

Table 5.4 Virtual Shop

Introduction

This game was designed to improve the skills of using money and to
improve the billing & balance, selecting necessary items for the money

they have, measure the weight of items, & separation.

Background

There is a Kids shop and student given the money and the item list to
buy. Student has to click and order the items and finally have to pay
the bill.

Description

1) Students have to buy a list of items from their school Shop (figure
5.4).

2) Mother has given --—--- Rupees for that.

(Example 2 — 50 Rupees Notes, 1- 20 Rupees Note & 3- 5 Rupees
Coins 1- 1 Rupees Coin)

3) Student visits virtual shop
4) Order items as per the money they have.

5) Pay amount of money using virtual coins and notes which have

being given by Mother).

6) Collect the balance

7) If they want to buy any more (for the balance) go back to 4)
8) Go to home

9) Measure the weight of items and separate them based on that.

Platform

Windows / Linux

47

Figure 5.4 Virtual Shop

GAME CONCEPTS & ANALYSIS

48

SYSTEM DEVELOPMENT

CHAPTER 6 SYSTEM DEVELOPMENT

6.1 DEVELOPMENT ENVIRONMENT

A personal computers with processor 3.0 GHz Intel Pentium 4, RAM 2GB and Windows XP as
operating system was used to implement the system.

6.1.2 Software Environment

Open source free license softwares were used through out this project.

Table 6.1 Software Development Environment

IDE

Eclipse Europe
Languages Java 1.5
Java 2D graphics package
Jasper Reports
Operating system Windows XP
Third Party Components and Tools = Scirra Construct
= Java Monkey Engine
= Reality Factory
= Text pad
= jReport
‘| Enhancement tools = Blender
= Gimp
Database MySql

Table 6.1 depicts the various types of softwares used in the system,

6.2 API USED FOR IMPLEMENTATION

e Javal.5 API

e ' Java 2D graphics API

e Jasper Reports 3.1.4 API
e iReport user guide

e Scirra construct API

e jMonkey Engine API

49

SYSTEM DEVELOPMENT

6.3 INTEGRATING DEVELOPMENT ENVIRON MENT

Figure 6.1 illustrates the class hierarchy of the eclipse development environment. Coding
standards, all the algorithms and naming Conventions were according to the Virtusa policies. We

have used some open source freely available jars as required for the purpose.

File Edit Source Refactor Navigate Search
Lj ~ N -0t

d Package Explorer &9 Hierarchy

El I[7Ij Game. java

0 Game

a gameCatogory

gameld
gameLocation
gameName
gameType
getG ameCatogory()
getGaniel d()
getGameLocation()
getGameName()
getGameTypef)
launchGame()
badGame()
setGameCatogory(String)
setGameld(int)
setGameLocation(int)
setGameN ame(String)
O setGameType(int)

©® Oognosa0o

o

O 0O O #*

ij :U GamePortal.java
+ [X Player.java
1- [TJ} Teacher.java
5 0 Teacher
a subject
a teacherld
getSubject()
getTeacherld()
setSubject(String)
O setTeacherld(String)
® S-u JRE System Library ijre1.5.0_07;
- B-u Referenced Libraries
Q jad napkinlaf.jar
+ 0 net.sourceforge.napkinlaf

(oRyeRye]

Figure 6.1 Development Environment

50

SYSTEM DEVELOPMENT

6.4 REPORT GENERATION

>QV WFKSH i %00 » MI &= _a X

e _ax
ey k/ DDQ /] IBDESD: i
AUBYZ & e SIT1° iSRSSCiSoa-'fi

Figure 6.2 iReport Development Environment

Report generation was conducted by a separate team within the project team. They were conducted
this by using Jasper Reports and reports were designed using iReport tool. Which creates *.jrxml
file. By using Jasper APl data is subsequently sent to the .jrxml file.Figure 6.2 illustrates an

iReport development environment.

51

SYSTEM TESTING & DEPLOYMENT

CHAPTER 7 SYSTEM TESTING & DEPLOYMENT

7.1 TEST STRATEGY

Considering the nature of the system, testing was found to be a challenging task. Testing is
conducted in several steps. in development time system is conducted unit testing for already
identified test cases and after integrating the entire system the system testing was conducted by the
QA team.Figure 7.1 shows the QA testing procedure.

Figure 7.1 QA Testing

7.2 UNIT TESTING

Unit testing was conducted by the QA team. Each unit is tested separately before integrating them
into modules to test the interfaces between modules. Unit testing has proven its valué in that a
large percentage of defects are identified during its use. All the public methods were tested by
negative and positive manner and finally the code coverage of more than 80% was covered by the

unit testing.

SYSTEM TESTING & DEPLOYMENT

7.2.1 Test Cases

Test cases were written by a team member who understands the function or technology
being tested, and each test case was submitted for peer review. Figure 7.2 and lable 7.1
shows the scene of a testcases.

e TestCase 1:

Prerequisite

Figure 7.2 Pre Requisite

Table 7.1 Test Case 1

Test
Case
Test Test Expected Actual Test
Descript Prerequisite Knput Data
case ID Procedure Result Result Result
ion
After the
logging.
Select add
Teacher ame from
User login to J . Selected Selected
trying to the menu
dd the system bar game(s) game(s)
add a .
with G should added to Test Case
ame to ames
g appropriate added to the succeeded
the select and
login . the launch
launch . click on
credentials. system pad
pad add
selected
games
button.

SYSTEM TESTING & DEPEOYMENT

Expected Result

Figure 7.3 and Table 7.2, 7.4 shows the expected result and pre- requisites.

&evng ‘Success™ully

ok

Figure 7.3 Expected Result

e TestCase 2:

Prerequisite

€ Gare Launcher €M

R)e View Helf
V_|A

RS\
| Q|

Figure 7.4 Logging Screen

Test

Case
Test

Descript

case ID
ion

Student

logging
to the
system

Expected Result

Prerequisite

Launch pad

should open.

SYSTEM TESTING & DEPLOYMENT

I'able 7.2 Test Case 2

Test

Procedure

After the
loading of

launch pad.

Student
should
enter the
user fiame
and
password.

Then click
on logging

Figure 7.5 shows the expected result.

File

view Help

HiQ\nOGH

Input Data

Student
details with
correspond
usemames
&
passwords
may need
to add to
the
database.

LS

ARKTY U<

Expected

Result

Logged to
the launch
pad
viewer
with
student’s
details

dD®8

_Jx
Saxe

100

Figure 7.5 Student Last Played Game

Actual

Result

Logged
to the
launch
pad
student’s
details
may not
appear

Test

Result

Selected
test case is
success.
Not
completely
executed.

SYSTEM TESTING & DEPLOYMENT
7.3 SYSTEM TESTING

In this project system testing was conducted by the QA team. The entire system is tested as per

the requirements.

7.4 DEPLOYMENT ENVIORNMENT

The main Deployment environment is based on hardware environment & software environment.
Hardware environment describes about the physical requirements of the system to set up the
software. On the other hand, software environment describes about the software environment of
the user’s machine and required software to run the game portal. After integrating the system ,it is
zipped into a jar file. Installing the system in user’s machine involves copying and pasting the jar

into a specific location.

7.4.1 Hardware Requirements
A personal computer with processor 3.0 GHz Intel Pentium 4, RAM 512MB

7.4.2 Software Requirements
Pre requisites: Table 7.3 shows the required pre requisites of the system.

Table 7.3 Deployment of the software

Operating System Windows XP / Windows Vista / Linux
Packaging Tool Jar file

Third Party Components and Tools Not used

Setup Machine MySql

56

CONCLUSION

CHAPTER 8 CONCLUSION

8.1 CONCLUSION

The main objective of this project was to implement a launch pad for edutainment software suit for
primary school children by using open source tools and freely available softwares. Reusability and

extensibility issues could be achieved to evolve the system.

Finally, the main objective of the project was achieved successfully and the software was very
effective. However continues monitoring must be done in order to check whether the system meets

its goal in the long run.

8.2 FUTURE CONSIDERATION

For further consideration of this project it is better to add new features like voice identification for
software to be used by the blind or disable children. Also this project can be implementing for
Linux platform to be use in OLPC laptops.

As this is a menu driven application, it can be modified to be a more user friendly application. In
reporting it only displays the reports by using the scores that a student earns in games. This can be

modified to show in a graphical representation

57

REFERNCES

[wwwl] Ague Software Development or Home page, URL: Http://en.wikipedia.org, 26th January
2009

[www2] Manifest6 for Agile Development or Home page, URL: http://agilemanifesto.org/, 26*
January 2009

[www3] What is Agle Development or Homepage, URL.: http://www.javalobby.org, 27* January
2009

[www4] The History ofjava technology or Homepage, URL.: http://java.com, 27* January 2009—

[www5] Java History with Tutorial or Home Page, URL: http://www.freejavaguide.com, 28*
January 2009

[wwwd] Developer Resources for Java Technology or Home Page, URL.: http://java.sim.com/, 28
January 2009

[www7] Java News and Resources or Home Page, URL: Http://www.cafeauiait.org, 29th January

2009

[www8] General Image Manipulation Program or Homepage, URL.: http://en.wikipedia.org, 29*

January 2009

[www9] Unified Modeling Language or Homepage, URL.: http://en.wikipedia.org, 29* January
2009

[www 10] UML or Homepage, URL.: http://www.sparxsystems.com, 29* January 2009
[wwwl 1] What is MySql or Homepage, URL.: http://dev.mysgl.com/doc, 30* January 2009
[www 12] Introduction to Blender or Homepage, URL: www.blender.oig, 2rdFebruary 2009
[wwwI3] Blender or Homepage, URL.: http://en.wUcipedia.org, 2rd February 2009

[wwwl4] iReport Graphical Designer or Homepage, URL: http://www.jasperforge.org, 3rf
February 2009

[wwwl5] Jasper Reports and iReports or Home Page, URL: http:// www.ireport.com/, 1"

February 2009
[www]l 6] Eclipse or Homepage, URL: http:// www.eclipse.org, 11 February 2009

58

[www 17] Introduction to Eclipse or Homepage, URL: http://en.wikipedia.org, 12thFebruary 2009
[wwwlI8] Introduction to Game or Homepage, URL.: http://en.wikipedia.org, 12* February 2009
[www 19] Introduction to Game or Homepage, URL.: http://gpwiki.org, 13* February 2009
[www?20] Reality Factory or Homepage, URL: http:// www.realityfectory.info, 14* February 2009
[www21]Reality Factory or Homepage, URL.: http://gpwiki.org, 14* February 2009

[www?22] jMonkey Engine 3D game engine or Homepage, URL: http://www.jmonkeyengine.com/,
14* February 2009

[www23] Introduction to jMonkeyEngine or Homepage, URL: http://gpwiki.org, 14* February
2009

[www24] Scirra Construct or Homepage, URL: http://www.sciira.com/, 17* February 2009

[www25] Ulustrate Informative Use Cases or Homepage, URL: http://www.altova.com/, 17*
February 2009

[www26] Object Oriented Programming or Homepage, URL: http://en.wikipedia.org, 18*
February 2009

[www27] Software Testing or Homepage, URL.: http://www.ece.cmu.edu, 19* February 2009

[www28] Software Testing Information or Homepage, URL.: http://www.onestoptesting.com/, 22rd

February 2009

[B29] Rumbaugh, J. (2004) The Unified Modeling Language Reference manual, Addison Wesley

Longman, Inc., 3-66

[B30] Quatrani, T. Visual Modeling with Rational Rose 2000 and UML, Publisher Pearson
Education India, 77-85

[B31] Eliens, A. (2000) Principie of Object-Oriented Software Development, 2nd Edition, Pearson
Education Limited 2000.18-35

[B32] Summerville. (1995). The fifth edition of Software Engineering. Addison Wesley Publishers
in autumn, pp.210-400

[B33] Lieberman, H., Liu, H., Singh, P., Bany, and B.: Beating common sense into interactive

applications. Game Magazine 25(4) (2004) 63-76

59

A

Actor

Aggregation
Agile

association

B

Blend

C

class

Class diagrams

composition
Computer
Construct

D

DirectX

Edutainment

engine

F

functions

G
Game
Gimp
I

Inheritance

iteration

INDEX

13
16
21
14, 16

13, 14, 15, 17
14

6, 16

3,9

4,24

12,24

10, 24

10, 13

1,2,23
4,6

17
21

Java

L

lifecycle

M

Mathematical
methbdologies
Methods

O

Object
objects
Objects
OOP

open source
P
Properties
Prototyping
R

radiosity
requirements

S

Sequence diagram
software

Software Engineering
U

UML

4,5

21

21,22
15

4, 14, 15
14, 24
15

14

24

15
21

28
2,4,21,23

14

21,22

21

4,13

60

Use case

Use Case

A\

Virclipse

13
13

4,6

Virtusa

W

waterfall

Windows

21
10, 12

61

National Digitization Project

National Science Foundation

Institute : Sabaragamuwa University of Sri Lanka

1. Place of Scanning : Sabaragamuwa University of Sri Lanka, Belihuloya

2 Date Scanned ¢ 2O NE = O 2 et e,

3. Name of Digitizing Company : Sanje (Private) Ltd, No 435/16, Kottawa Rd,
Hokandara North, Arangala, Hokandara

4. Scanning Officer

Name T Qﬂcﬁov'\r\&)-‘vwm&. ~

Signature Ceereeeees "-.-.Ch&—... ..

Certification of Scanning

I hereby certify that the scanning of this document was carried out under my sipervision, accordivig, to
: Tl s s >
the norms and standards of digital scanning accurately, also keeping with the-originality of the originci

document to be accepted in a court of law.

Certifying Officer

Designation : LIBRARIAN...... .ottt
Name tTN.NEIGHSOOREL.....cutiiiiiiiiiiiiiiiii i ress et as
erare . ()
1gnature P ST o 300 R R
Ml&. t.NNECris uKED
Date:... 20N 0 = X2l (MSSCFGD.ASLABA)
baragamuwa University of Sri Lanka
P.O.Box 02 8elihuloya,Sri Lanka
T ie00%4 35 2280045

FaxcOras 45 7730N45
“This document/publication was digitized under National Digitization Project of the

National Science Foundation, Sri Lanka’

