
LAUNCH PAD FOR EDUTAINMENT SOFTWARE
SUITE

BY

A.I.SUWANDARATHNE
(03/AS/011)

This thesis is submitted in partial fulfillment o f the requirements for the
degree o f Bachelor o f Science in Physical Sciences.

Department o f Physical Sciences,
Faculty o f Applied Sciences,

Sabaragamuwa University o f Sri Lanka.
Belihuloya.

April 2009

DECLARATION

The content descríbed in this thesis was practically implemented by me al the Virtusa

Corporation and the Facuhy o f Applied Sciences under the supervisión of Mr. Gayan

Subasinghe and Dr. R.G.N. Meegama and the report descríbed on this thesis has not been

submitted by any one for another degree.

OMr- *W>o°i

Date Asela I. Suwandarathne

(03/AS/011)

CERTIFICATE OF APPROVAL

We hereby declare that this thesis is from the student’s own work and effort, and all other

Sources of information used have been acknowledged. This thesis has been submitted

With our approval.

Dr. R.G.N Meegama,

Sénior Lecturer,

Department o f Statistics and Computer Science,

University o f Sri Jayewardenepura,

Gangodawila,

Nugegoda (Date)

Mr. Gayan Subasinghe,

ATC Project Manager,

Virtusa (Pvt.) Ltd,

117 Sir Chittampalam A.Gardiner Mw,

Colombo 2.

(Signature/Extemal Supervisor)

(Date)

Df. G.P.Udawatta

Head/Department o f Physical Sciences,

Faculty of Applied Sciences,

Sabaragamuwa University of Sri Lanka,

Belihuloya.

Signature

(Date)

n

Affectlonately Dedicated To My Parents and Sister

111

ACKNOWLEDGEMENT

Canying out an industrial training in a virtual context is challenging and requires significant

effort and support fiom all concerned. In this respect, I have been blessed with many people

who extended their support and encouragement throughout the training period.

My heartfelt gratitude goes to my supervisor, Dr. Gayan Meegama Department of Statistics

and Computer Science, University of Sri Jayewardenepura, who constantly guided me during

the training period. Undoubtedly, his supervisión helped me looking into new dimensions of

motivation.

Secondly, I would like to express my sincere gratitude to all my team mates in the training

and development team, fellow Virtusans and Virtusa Corporation for providing me the

opportunity to carry out my industrial training at Virtusa Corporation., especially I wish to

express my deepest gratitude to my extemal supervisor Mr.Gayan Subasinghe, ATC Project

Manager, Virtusa Corporation, for his advice, encouragement and guidance through the study

and for sparíng his valuable time in bringing this study to a successful completion and also to

my technical leader Mr. Ramesh Maddegoda, Virtusa Corporation for his encouragement and

guidance through this project.

I wish to express my sincere gratitude to Prof Mahinda Rupasinghe, the Vice Chancelor,

Sabaragamuwa University of Sri Lanka, Prof. K.B. Palipane, The Dean, Faculty of Applied

Sciences, Sabaragamuwa University of Sri Lanka, Dr Chandana Udawatta, Head, Department

of Physical Sciences, Faculty of Applied Sciences, and Sénior lecturer Dr. Nirmali

Wickramarathne Sabaragamuwa University of Sri Lanka, for guiding me toward a successful

completion.

I express my heart-felt gratitude towards the lectores for their cooperation through out my

study and my colleagues for their individual help and guidance at all times.

Last biit not least, my heartiest thanks go to my paients, the main pillars of my life, who

constantly encouraged and supported me within their capacity throughout the course of this

industrial training.

IV

ABSTRACT

One of the key problems identified in using computers for primary school children is to make

the students get use to the machines. It has been identified that students will use the

computers more ofien if an attractive interactive environment, such as adventure games, was

provided.
The main objective of this project is to launch an Edutainment software suit, which can help

players to select each and eveiy game according to the player’s preference in the given launch

pad.
The software development process used for this project .was Agüe. The requirements were

based on the main objectives as stated by the Ministry o f Education (MoE). Major

requirements of this project were fulfilled by interviewing the game experts, teachers,

reviewing similar applications and also reading sample documents. Unified Modeling

Language (UML) was used to convert the requirements into an analysis model. Inputs from

the potential users such as students and teachers and their corresponding tasks were

considered when the Use Case diagram was drawn in UML diagram. The analysis model was

then translated into a design model. To verify this system, class diagrams, sequence diagrams,

logical system architecture diagram and Enthy - Relational diagram were created.

Implementadons part was done using the Java language while Virclipse 2.0 was used as the

IDE to implement in Java, which is a sepárate editing platform developed by Virtusa

Corporation. For the designing, open source software, such as Blend, GNU Image

Manipulation Program (GIMP) and Flash CS3 were utilized. An iterative approach was

applied to each phase mentioned above to give an opportunity to MoE to get interactively

involved in the development.. Evaluative feedbacks were acquired in each meeting with team

members. Refinements and modifications were carried out after each team meeting to fulfill

the client’ s expectations.

Unit testing was performed to ensure that the fimctionality o f individual components are

accurate. Finally, the individual components were integrated together and system testing was

done to ensure that the necessaiy fimctionalities expected by the customers were delivered.

Thorough testing was done on performance, security features, stress testing and user

acceptance testing in order to fulfill some of the non functional requirements. The main

objective of Ihe project was successfully met and the Ministiy of Education was fully satisfied

with the successful completion of the system’s functional and non functional requirements.

v

CONTENT

DECLARATION__ I

ACKNOWLEDGEMENT_____

ABSTRACT__V

ACRONYMS AND ABURE VIATIONS___

LIST OF FIGURES_____________________________ _________________________ V EI

LIST OF TABLES______ W M I I l M I l H M M W M M t H W O M W W W M M W W W W W W M W W W M W W W W W W H I i M M W EX

CONTENT_____________ ___ X

CHAPTER1,

INTRODUCTION

1.1 Introduction o f Virtusa Corporation... 1

1.2 About Virtusa Game Dev SIG with MoE. 1

1.3 Project OverView..2

1.4 Majar Challenges...2

1.5 Objectives.. 3

1.5.1 Majar Objective.. 3
1.5.2 Overall Objectives..3

CHAPTER 2___ 5

REVIEW OF LTTERATURE_______________ 5

2.1 Games History.. 5

2.2 Java Programming Language..6

2.2.1 The History of Java Technology... 6
2.2.2 Java as Modera Language...7
2.2.3 Comparability between Java and other languages...8

x

LIST OF TABLES

Table2.1: Comparison between Computer languages... 9

Table2.2 : Elementa o f a sequence diagram ...18

Table2.3 : Game Engine OverView...22

Table4.1: Game adding to the Launch pad.. 37

Table4.2 : Game removing from the Launch pad.. 38

Table4.3: Game filter fiom die Launch pad ...38

Table4.4: View Reports...39

Table4.5: Game Launch... 40

Table4.6: Add game to the launch pad descríptíon...43

Table4.7 : Remove Game From the launch pad description.. 44

Table4.8 : Filter games fiom the launch pad description.. 45

Table4.9: Student/Teacher can view scores description... 46

Table4.10 : Teacher and Student can launch games....................... ...48

T ableS .l: Game Concept for the Ascending Train gam e... 50

Table5.2 : Game Concept for the ODD/EVEN number separator game..................................51

Tabie5.3 : Game Concept for the Distance and Directions game... 52

Tabíe5.4 : Game Concept for the Virtual shop gam e.. 1.........53

Tableó. 1 : Development Environment..54

Table7.1 : Sample Test Cases.. 59

Table7.2: Sampls Test Case 11... 61

Tabie7.3: Software Requirement o f the Depíoyment Environment.. 62

ix

LIST OF FIGURES

Figure2.1: Properties & Methods in a class.. 13

Fígur62.2: Inheritance...13

Figure2.3 : Encapsulation..14

Figure2.4: Class Symbol...17

Figure2.S : GIMP to o l.. 20

Figure3.1: Agile Development Process.............................. 29

Figure3.2 : Game Development Life Cycle... 30

Figure3.3 : A Demo Game created with Scirra Construct..32

Figure3.4: A Demo game created with Java Monkey Engine...33

Figure3.5 : Demo game created with Reality Factor.. 35

Figure4.1 : Use Case Diagram for our system...36

Figure4.2: Class Diagram for the system ... 41

Figure4.3 : Add game to the Launch Pad.. 42

Figure4.4: Remove game fiom the launch pad...43

Figure4.5 : Filter games fiom the launch pad..44

Figure4.6 : Student Can View Reports...1.........45

Figure4.7: Teacher can view reports... 46

Figure4.8: Teacher can launch gam es... 47

Figure4.9: Student can launch games.. 47

Figure5.1: OverView o f the Ascending Train Game... 50

FigureS .2 : OverView o f the ODD/EVEN number separator Game... 51

Figure5.3 : OverView o f the Distance and directions Game..52

Figure5.4: OverView o f the Virtual Shop Game..53
-

F igureó .l: Class Hierarchy.. 55

Figure6.2: iReport...56

Figure7.1: Before implement add game test case...58

Figure7.2 : After implement add game test case...59

Figure7.3 : Before implement login test case.............. 60

Figure7.4: After implement login test case... 60

• ■ •V1U

MB Mega Byte

MoE Ministry of Education

OLPC One Laptop Per Child

OOP Object Oriented Programming

OpenAL Open Audio Library

OpenGL Open Graphics Libraiy

OSGI Open Services Gateway initiative

PC Personal Computers

QA Quality Assurance

RAM Random Access Memory

RGB Red Green Blue

SDK Software Development Kit

SE Software Engineer

SIT System Integration Testing

SRS System Requirement Specification

UAT User Acceptance Testing

UI User Interface

UML Unifíed Modeling Language

VGA Video Graphic Array

WWW World Wide Web

Vil

ACRONYMS AND ABBREVIATIONS

ANSI American National Standards Institute

API Application Programming Interface

AVI Audio Video Interleave

CARB Code Architecture Review Board

CSR Corporate Social Responsibilities

ECMA Ecma International

E-R Diagram

FPS

Entity Relational Diagram

First Person Shooters

FRS Functional Requirement Specifícation

Game Dev SIG Game Development Special Interesting Group

GIF Graphics Interchange Format

GIMP GNU Image Manipulation Program

GIP Global Innovation Process

GPL General Public License

IDE Integrated Development Environment

IEEE Institute of Electrical and Electronics Engineers

IP Intellectual Property

ISO International Organization for Standardization

IT Information Technology

J2EE Java 2, Enterprise Edition

J2ME Java 2 Micro Edition

J2SE Java 2, Standard Edition

JDBC Java Database Connectivity

JOGL Java Open Graphic Library

JRE Java Runtime Environment

LWJGL Lightweight Java Game Library

VI

57
TESTING & DEPLOYMENT.

7 \ Testing Strategy.................
57....................... **

7.2 Unit Testing............................... 57

72.1 Test Cases.. ““ ...58
7.2.2 Test D ata..

57............ '

7 3 System Testing
61

. ***
..................... .

7.4 Deploy Environment.[uepioy gj

7.4.1 Hardware ...— ... 62
« ̂ ^ ...7.4.2 Software Requirements

CHAPTER 08 •H»M,mM,,M*****,**I**,*M*
• k m h * * * * * * 1

63

CONCLUSION-------------

8.1 Future Consideration

..63

61

r e f e r e n c e s

INDEX

•••«
64

___65

xiu

3.3.2 JMonkey Engine
3.3.3 Reality Factor....

32
33

CHAPTER 04__ _— 36

DESIGNING DEVELOPMENT_______________________________________ _— 36

4.1 Use Diagram...36

4.1.1 Use Case Descriptions.. 37

4.2 Class Diagram... 41

4.3 Sequence Diagrams.. 42

4.3.1 Add Game to the Launch Pad..42
4.3.2 Remove Game from tiie Launch Pad... 43
413.3 Filter games from the Game Launcher...44
4.3.4 Studenl and Teacher can view Reports..45
4.3.5 Launch Game...47

CHAPTER 05

GAME CONCEPTS & ANALYSIS.__ 49

5.1 Ascending Train (ar Descending Train).. 50

5.2 Odd/Even number Separator...51

5.3 Distance and Directions (Treasure H unt)..52

5.4 Virtual Shop... 53

CHAPTER 06 54

DEVELOPMENT ENVIRONMENT_________________ 54

6.1 Development Environment... 54

6.1.1 Hardware Environment... 54
6.1.2 Software Environment.. 54

6.2 Application Programming Interface (API) used for implementation.............. 54

6.3 Integrating Environment.. 55

6.4 Reporting.. 56

CHAPTER 07____ 57

Xll

2.3 Object Oriented Programming principies... 11

2.3.1 Class...12
2.3.2 Objects...12
2.3.3 Propertíes and Metbods... 12
2.3.4 Inheritance.. 13
2.3.5 Encapsulatian... 14
2.3.6 Pofymorphism.. 14

2.4 Unified Modeling Language (UM L)... 14

2.5 Use Case Diagrams..15

2.5.1 Elements of Use Case Diagram...15

2.6 Class Diagrams.. 16

2.7. Sequence Diagrams...:.. 17

2.7.1 Entity Classes...18
2.7.2 Boundaiy Classes...19
2.7.3 Control Classes...19

2.8 Virclipse IDE...20

2.9 G im ptool... 20

2.10 GameEngines... 21

2.10.1 Freeware Engines...22

2.11 Testing... 23

2.11.1 Testing Levels..24

2.12 MySQL.. 25

2.13 JasperReports...26

2.14 IReport... 27

CHAPTER03__ 28

TECHNOLOGICAL DEVELOPMENT_______________________________________28

3.1 Introduction to Software Development Methodology..28

3.1.1 Software Development Process.. 28
3.1.2 Agile Development..28

3.2 (jame Development Life Cycle... 30

3.3 Game Engines..31

3.3.1 Sciira Construct (Rapld Game Authormg System)..31

xi

CHAPTER 1

INTRODUCCION

1.1 Introduction of Virtusa Corporation

Virtusa Corporation is a leading global technology innovation Services provider that cieates

competitive advantage for its clients. Virtusa was founded in 1996 by the prominent

technology entrepreneur, Kris Canekeratne, who has assembled a strong leadership team from

well-known companies like Infosys, IBM, Aether, 3Com and John Keels.

Previously known as eRUNWAY, Inc., Virtusa has been grown beyond being an efficient

provider of product and application development Services to being tile partner of choice in

creating competitive advantage for its clients using technology Solutions.

Headquarters in Westborough, MA, Virtusa employs the fínest global technology talent,

spread across its Advanced Technology Centers in tile US, India and Sri Lanka. It also has

sales and marketing offices in several locations around the world.

1.2 About Virtusa Game Dev SIG with MoE

Virtusa Game Development Special Interest Group (Game Dev SIG) is a knowledge shnring

group. This special interest group is open for anyone who is interested in game development

within Virtusa. The Game Dev SIG understands Game Development as a serious industry

which requirés veiy high technical expertise on múltiple technologies. The Game Dev SIG

believes that Game Development has a high business valué in global level.

As a part of the corporate social responsibility (CSR) initiatives of Virtusa, Game Dev SIG

involves in a voluntary project to develop edutainment software for primary schools of Sri
Lanka.

1.3 Project OverView

Purpose of this proposed system is to develop simple games in an interactive and attractive

manner for primary grade students attending schools in Sri Lanka..

At the moment, the system posses several educational games in different formats. That are

not integrated into a unique system. That helps primary students without concentrating on

leaming tools.

By this edutainment game software for the primary schools covered most of the mathematics

and the language subjects for the grade 3 and grade 4 students. For the mathematics scheme

we used basic arithmetic, sorting numbers and puzzles as major concepts.

Following leaming techniques were used to get the optimum usage for this age group on

account of the interactive leaming is preferred.

■ Group Work

■ Observation

■ Activities

■ Guided Play (Guidance provided by the teachers)

■ Desk work

Duration of edutainment session was requested to limit to 30 minutes of máximum by the

particular schools according to the requirements collected by interviewing, subject matter

experts. Virtusans have designed the initial game concepts and graphics and those will be

reviewed by the subject matter experts and content experts.

1.4 Major Challenges

Following major challenges were identified during the project period. They can be Usted as

foüows,

■ To implement the whole edutainment system, using open source software.

■ To gather requirements - by interviewing, organizing formal discussions and
reviewing sample documents.

■ To develop a concrete understanding of the game concepts.

■ To acquire technical skills this related to graphics programming.

■ For the development data stored in inbuiit notepad files, that is because to get the high
efñciency.

■ To acquire technical skills which are to be applied to the Virtusa standards as well as
touch their main functionaüties.

■ All the equipments and images not copied from any place any person and everything

should be under the intellectual property (IP) rights.

■ All the architecture built according to the design documents. /such as Use Case,

Sequence Diagrams and the class diagrams

■ Project releases may upload once per week.

1.5 Objectives

It is intended as a teaching as well as the self leaming tool. Basically, the students will have

to work by themselves while the initial guidance/assistance will be given by the teacher. The

major objectives and goals behind the project work are presented below. These are evaluated

at the end of the project to ascertain whether they have been met successfully.

1.5.1 Major Objective

■ Implement consolé Software for the Edutainment software suite.

Our major objective is to develop the game portal which is the first interface user can see.

The games can be selected by teacher for their students and students can play gantes through

it. It is also possible students to see the results as well as see the progress of their game skills

1.5.2 Overall Objectives

■ Deploy the mathematics skills of students

Most of the primary schools are keeping their eye on increasing student skills since the small

age. As an experiment, MoE decide to increase mathematical level of the students because

mathematics is essential for the day to day life activities.

■ Report Demonstration

Report demonstration is planned to be act in two ways. Considering students account, their

skills can be developed through this. Displaying the results score on screen, the students can

be motivated to achieve high scores. On teacher* s point, it is visible the student* s progress

levels to teachers and they can advice to students easily. That’s how the project implemented

with the report demonstration.

■ Increase market opportunities

This implies the way of interacting with the real time conditions. That helps to increase

market opportunities with knowledgeable students with ability of using different algorithms.

■ Take the latest technology to students
Most of the students lack of knowledge on latest technology. MoE is planning to familiaríze

the latest technology to student’s mind through this. It is phy that even teachers of most of

rural villages have no idea on handling computers. But development of this system, make

available the latest technology to the students as well as teachers who are away from the

capital cities.

■ Measure the progress of the students

By providing some time to play these kinds of edutainment games, it is possible to improve

student’s language and mathematical skills. Also teachers can measure the progress of using

new way of technology through evaluating their performance during grade 3 and grade 4.

Chapter 2
RevÉew Of Literatiüre

CHAPTER 2

REVIEW OF LITERATURE

2.1 Games History

Computer games were introduced as a commercial entertainment médium in 1971, becoming the
basis for an important entertainment industry in the late 1970s/early 1980s in the United States,
Japan, and Europe. The first generation of PC games was often text adventures or interactive
fiction, in which the player communicated with the computa* by entering commands through a
keyboard. The first text-adventure, Adventure, was developed for the PDP-11 by Will Crowther

in 1976, and expanded by Don Woods in 1977. By the 1980s, personal computers had become
powerful enough to run games like Adventure, but by this time, graphics were beginning to

become an important factor in games.
Prior to game engines, games were typically written as singular entities. Thus most game designs
through the 1980s were designed through a hard-coded rule set with a small amount of level and
graphics data. The temí "game engine" aróse in the mid-1990s, especially in connection with 3D
games such as first-person shooters (FPS). Modem game engines are some of the most complex
applications written, fiequently featuring dozens of finely tuned systems interacting to ensure a

finely controlled user experience. The continued refinement of game engines has created a strong
separation between rendering, scriptíng, artwork, and level design. First-person shooter games
remain the predominant users of third-party game engines, but they are now also being used in
other genres. As game engine technology matures and becomes more user-fiiendly, the
applications of game engines has broadened in scope, and are now being used for serious games:
visualization, training, medical, and military simulation applications.

Chapter 2
Review Of Liíerature

2.2 Java Programming Language

2.2.1 The History of Java Technology

In the early 90s, extending the power of netwoik computing to the activities of everyday life was
a radical visión. In 1991, a small group of Sun engineers called the "Green Team" believed that
the next wave in computing was the unión of digital consumer devices and computers. Led by
James Gosling, the team worked around the dock and created the programming language that
would revolutionize our world—Java. Java was started as a project called "Oak". [www2]

The Green Team demonstrated their new language with an interactive, handheld home-
entertainment controller that was originally targeted at the digital cable televisión industry.
Unfortunately, the concept was much too advanced for them at the time. But it was just right for

the Internet, which was just starting to take off. In 1995, the team announced that the Netscape
Navigator Internet browser would incorpórate Java technology. [wwwl]

Unlike conventional languages which are generally designed either to be compiled to native

(machine) code, or to be interpreted from source code at runtime, Java is intended to be compiled
to a bytecode, which is then run (generally using J1T compilation) by a Java Virtual Machine.
[www2]
In 1997, Sun approached the ISO/IEC JTC1 standards body and later the Ecma International to
formalize Java, but it soon withdrew from the process. Java remains a proprietary de facto
standard that is controlled through fríe Java Community Process. Sun makes most of its Java
implementations available without charge, with revenue being generated by specialized producís

such as the Java Enterprise System. Sun distinguishes between its Software Development Kit
(SDK) and Java Runtime Environment (JRE) which is a subset of the SDK, the primary
distinction being that in the JRE the compiler is not present [www2]

Chacíer 2L

Review O f Literatura

There were five primary goals in the creation of the Java language:
1. It should use the object-oriented programming methodology.
2. It should allow the same program to be executed on múltiple operating systems.
3. It should contain built-in support for using Computer networks.

4. It should be designed to execute code from remóte sources securely.
5. It should be easy to use by selecting what was considered the good parts of other object

oriented languages.

To achieve the goals of networking support and remóte code execution, Java programmers
sometimes find it necessaiy to use extensions such as CORBA, Internet Communications Engine,

or OSGI. [www2]

2.22 Java as Modera Language

Today, Java not only permeates the Internet, but also is the invisible forcé behind many of the
applications and devises that power our day-to-day lives. From mobile phones to handheld
devises, games and navigation systems to e-business Solutions, Java is everywhere.
The design requirements of the Java™ programming language are driven by the nature of the
computing environments in which software must be deployed. The massive growth of the
Internet and the World-Wide Web leads us to a completely new way of looking at development
and distribution of software. To live in the world of electronic commerce and distribution, Java

technology must enable the development of secure, high performance, and highly robust
applications on múltiple platforms in heterogeneous, distríbuted networks.
Operating on múltiple platforms in heterogeneous networks invalídales the traditional schemes of
binaiy distribution, release, upgrade, patch, and so on. To survive in this jungle, the Java
programming language must be architecture neutral, portable, and dynamically adaptable. The

system that emerged to meet these needs is simple, so it can be easily programmed by most
developers; familiar, so that current developers can easily leam the Java programming language;
object oriented, to take advantage of modem software development methodologies and to fít into
distríbuted client-server applications; multithreaded, for high performance in applications that
need to perform múltiple concurrent activities, such as multimedia; and interpreted, for máximum

portability and dynamic capabilities.

Even in our project we have used the latest versión of java 5.0 as the programming Language.
Basically we have used java 2D graphics package for our graphical requirements. Also java has
more advantages over the other programming languages like:

■ Java is easy to leam.
■ Java was designed to be easy to use and is therefore easy to write, compile, debug, and

leam than other programming languages.
■ Java is object-oriented. This allows you to create modular programs and reusable code.
■ Java is platform-independent.

With the advent of Java 2 (released initially as J2SE 1.2 in December 1998), new versions had
múltiple conflgurations built for dififerent types of platforms. For example, J2EE targeted
enterprise applications and the greatly stripped-down versión J2ME for mobile applications. J2SE
designated the Standard Edition. In 2006, for marketing purposes, Sun renamed new J2 versions

as Java EE, Java ME, and Java SE, respectively. [www3]

Chapíer 2
Review Of Literaíure

2.23 Comparability between Java and other languages

Programming languages are used for controlling the behavior of a machine (oñen a Computer).
Like natural languages, programming languages conform to rules for syntax and semantics.
There are thousands of programming languages and new ones are created every year. Few
languages ever become sufBciently popular that they are used by more than a few people. General
Comparison of programming languages with Java indicates in following table. Table 2.1 shown a
comparison of different programming languages.

Chapter 2
Review Of Literatura

Language Intended use Paradigm(s) Standardized?

Assembly Language General — No
C System imperative Yes, ANSI C89, ISO

C90/C99
C++ Application, System Imperative,

Object-Oriented,
generic

Yes, ISO

C# Application imperative,
Object-Oriented,

Functional, Generic,
Reflective

Yes, ECMA, ISO

Java Application, Web imperative,
Object-Oriented,

Functional, Generic,
Reflective

No

Python Application,
Scripting, Web

imperative, aspect-
oriented,

Functional, Generic,
Reflective

No

Visual Basic .NET Application,
Education

Object-Oriented,
Event Driven No

Table2.1: Comparison between Computer languages

Major Paradigm of using java language

■ Platform Independent

Java was designed to not only be cross-platform in source form like C, but also it is compiled in
binary form. Since this is impossible across processor architectures, Java is compiled to an
intermedíate form called byte-code. A Java program never really executes natively on the host
machine. Rather a special native program called the Java interpreter reads the byte code and
executes the corresponding native machine instructions. Thus, to port Java programs to a new

platform all that is needed is to port the interpreter and some of the libraiy routines. Even the

I £ \ l ■TV'

compiler is written in Java. The byte codes are precisely defined, and remain the same on all
platforms. The second important part of making Java cross-platform is the elimination of
undefined or architecture dependent constructs. Integers are always four bytes long, and floating
point variables follow the IEEE 754 standard for Computer arithmetic exactly. You dont have to
worry that the meaning of an integer is going to change if you move from a Pentium to a
PowerPC. In Java eveiything is guaranteed.
However the virtual machine itself and some parts of the class library must be written in native
code. These are not always as easy or as quick to port as puré Java programs. [www4]

■ Object Oriented and Familiar
Primaiy characteristics of the Java programming language inelude a simple language that can be
programmed without extensive programmer training while being attuned to current software
practices. The fundamental concepts of Java technology are grasped quickly; programmers can be
productive from the very beginning.
The Java programming language is designed to be object oriented from the ground up. Object
technology has fínally found its way into the programming mainstream after a gestation period of
thirty years. The needs of distributed, client-server based systems coincide with the encapsulated,
message-passing paradigms of object-based software. To function within increasingly complex,
network-based environments, programming systems must adopt object-oriented concepts. Java
technology provides a clean and efficient object-based development platform. [B3]

■ High Security Performances

Java technology is designed to opérate in distributed environments, which means that security is
of paramount importance. With security features designed into the language and run-timé system,
Java technology lets you construct applications that can't be invaded from outside. In the network
environment, applications written in the Java programming language are secure from intrusión by
unauthorized code attempting to get behind the scenes and create viruses or invade file systems.

■ Interpreted, Threaded, and Dynamic
The Java interpreter can execute Java byte codes directly on any machine to which the interpreter
and run-time system have been ported. In an interpreted platform such as Java technology-based
system, the link phase of a program is simple, incremental, and lightweight. You benefit from
much faster development cycles—prototyping, experimentation, and rapid development are the
normal case, versus the traditional heavyweight compile, link, and test eyeles.

While the Java Compiler is strict in its compile-time static checking, the language and run-time
system are dynamic in their linking stages. Classes are linked only as needed. New code modules
can be linked in on demand fiom a variety of sources, even from sources across a network. In the
case of the Hot Java Browser and similar applications, interactive executable code can be loaded
from anywhere, which enables transparent updating of applications. The result is on-line Services
that constantly evolve; they can remain innovative and fresh, draw more customers, and spur the
growth of electronic commerce on the Internet. [www3]

2.3 Object Oríented Programming principies

Object-Oriented Programming (OOP) represents an attempt to make programs more closely
model the way people think about and deal with the world. In the older styles of programming, a
programmer who is faced with some problem must identify a computing task that needs to be
performed in order to solve the problem. Programming then consists of finding a sequence of
instructions that will accomplish that task. But at the heart of object-oriented programming,
instead of tasks we fínd objects- entities that have behaviors, that hold information, and that can
internet with one another. Programming consists of designing a set of objects that model the
problem at hand. Software objects in the program can represent real or abstract entities in the
problem domain. This is supposed to make the design of the program more natural and henee
easier to get right and easier to understand.
Object-Orientation is a set of tools and methods that enable software engineers to build reliable,
user friendly, maintainable, well documented, reusable software systems that fulfílls the
requirements of its users. It is claimed that object-orientation provides software developers with
new mind tools to use in solving a wide variety of problems. Object-orientation provides a new
view of computation. A software system is seen as a community of objects that cooperate with
each other by passing messages in solving a problem.
Object-oriented programming is one of several programming paradigms. Other programming
paradigms inelude the imperative programming paradigm (as exempliñed by languages such as
Pascal or C), the logic programming paradigm (Prolog), and the functional programming
paradigm (exempliñed by languages such as ML, Haskell or Lisp). Logic and functional
languages are said to be declarative languages.
An object-oriented programming language provides support for the following Concepts and those
described as follows. [B3]

Chapíer 2
Review Of Literature

2.3.1 Class

A class is a blueprint or prototype from which objects are created. This section defines a class that
models the state and behavior of a real-world object. It intentionally focuses on the basics,
showing how even a simple class can cleanly model State and behavior.
Once a class of ítems is defined, a specifíc instance of the class can be defined. An instance is
also called “object”.

2.3.2 Objects

Objects are the physical and conceptual things we find in the universe around us. Hardware,
software, documents, human beings, and even concepts are all examples of objects.
Objects are thought of as having State. The State of an object is the condition of the object, or a set
of circumstances describing the object It is not uncommon to hear people talk about the "state
information" associated with a particular object. For example, the state of a bank account object
would inelude the current balance, the state of a dock object would be the current time, the state
of an electiic light bulb would be "on" or "off." For complex objects like a human being or an
automobile, a complete description of the state might be very complex. Fortunately, when we use
objects to model real world or imagined situations, we typically restrict the possible States of the
objects to only those that are relevant to our models. [www3]

2.3.3 Properties and Methods

Properties in a class are used to present the structure of the objects: their components and the
information or data contained therein shown in figure 2.1. An instance of a class has the
properties dgfined in its class and all of the classes from which its class inherits. Methods in a
class describe the behavior of the objects. It represents a function that an instance of the class can
be asked to perform. Methods in a class describe the behavior of the objects. It represents a
function that an instance of the class can be asked to perform. [wwwó]

Chapler 2
i

Re\ iew Of Litcrature

’ WilMí aCls»

3 Properties

‘jfp AppHl.iKm

~3* W13* HemSUlé
Ñame
V<ntwjp

[9 MHHoth -
V GélPrOduCér
v WineV_____________ /

Figure 2.1 : Properties & Methods in a class

2.3.4 Inheritance

Different kinds o f objects often ha ve a certain amount in common with each other. Mountain

bikes, road bikes, and tándem bikes, for example, all share the characteristics o f bicycles (current

speed, current pedal cadenee, current gear). Yet each also defines additional features that make

them different: tándem bicycles have two seats and two sets o f handlebars; road bikes have drop

handlebars; some mountain bikes have an additional chain ring, giving them a lower gear ratio.

Object-Oriented programming allows classes to inherit commonly used State and behavior from

other classes. In this example, Bicycle now becomes the superclass o f MountainBike, RoadBike,

and TandemBike. In the Java programming language, each class is allowed to have one direct

superclass, and each superclass has the potential for an unlimited number o f subclasses: [www3].

Figure 2.2 give a sample inheritance case.

Mountain&Ke RoadBike TandemBike

Figure 2.2 : Inheritance

2.3.5 Encapsulation

C hapter 2
Re\ icw O í Lilcrature

Encapsulation means as much as shielding. Each object-oriented object has a shield around it.

Objects can’t ’see' each other. They can exchange things though, as if they are interconnected

through a hatch. Figure 2-4 shows the concept o f the encapsulation. It separates the extemal

aspects o f an object from the intemal implementation details o f the object, which are hidden ffom

other objects. The object encapsulates both data and the logical procedures required to manipúlate

the data.

rp m

Figure 2.3 : Encapsulation

2.3.6 Polymorphism

Polymorphism indicates the meaning o f “many form.” In object-oriented design, polymorphism

present a method can has many definitions (forms). Polymorphism is related to Overloading and

Overriding. Overloading indicates a method can have different defmitions by defining different

type o f parameter. Overriding indicates that subclass and parent class have the same methods,

parameters and retum types (namely to redefme the methods in parent class). [www 3]

2.4 U nified M odeling L anguage (U M L)

The Unified Modeling Language (UML) is a general purpose visual modeling language that is

used to specify , visualize , construct and document the artifacts o f a software System. It captures

decisions and understanding about system that must be constructed. It is used to understand,

design , browse, configure, maintain and control information about such Systems. It is intended

for use with all development methods, life cycle stages, application domain and media. The
modeling language is intended to unify past experience about modeling techniques and to
incorpórate current software best practices into a standard approach. UML ineludes semantic
concepts, notations and guidelines. It has static, dynamic environmental and organizational parts.

It is intended to be supported by interactive visual modeling tools that have code generators and
report writers. The UML specification does not define a standard process but it is intended to be
useful with an iterative development process. [Bl]

Chapíer 2
Reviexv Of Literature

2.5 Use Case Diagrams

The use case view models the functionality of the system as perceived by outside users called

4Actor’ s. A use case is a coherent unit of functionality expressed as a transaction among actors
and the system. The purpose of the use case view is to list the actors and use cases and show
which actors particípate in each use case. [Bl]

2.5.1 Elements of Use Case Diagram

The use case view captures the behavior of the system, subsystem or class as it appears to an

outside user .It partitions the system functionality into transactions meaningftil to actor’s
idealized users of a system. The pieces of interactive functionality are called use cases. Á use case
described an interaction with actors as a sequence of messages between the system and one more

actors.

■ Actor
An actor is an idealization of an extemal person, process or thing interacting with a system,
subsystem or class. An actor characterizes the interactions that outside users may have with the
system. At run time, one physical user may be bound to múltiple actors within the system.

Different users may be bound to the same actor and therefore represent múltiple instances of the

same actor defmition.
Each actor particípate in one or more use cases. It interaets with the use case by exchanging
messages. The infernal implementation of an actor is not relevant in the use case. An actor may
be characterized sufficiently by a set of attributes that define its State.
Actors may be defined in generalization hierarchies, in which is an abstract actor description is
shared and augmented by one or more specific actor descriptions. An actor may be a human,

i

another Computer system or some executable process. An actor is drawn as a small stick person
with the ñame below it. [Bl]

Chapter 2
Review Of Liíerature

■ Use Case
A use case is a coherent unit of extemally visible fimctionality provided by system unit and
expressed by sequence of messages exchanged by the system unit and one or more actors of
the system unit The purpose of a use case is to define a piece of coherent behavior without
revealing the intemal structure of the system.

The definition of use case ineludes all the behavior it entails the main sequences, different
variations on normal behavior» and all the exceptional conditions that can occur with such
behavior, together with the desired response. From the user’s point of view, these may be
abnormal situations. From the system’s point of view, they are additional variations that must
be described and handled.

In the model execution of each use case is independent from the others, although an
implementation of the use case may create implicit dependencies among them due to shared

objeets. Each use case represents an orthogonal piece of fimctionality whose execution can be

mixed with the execution of other use cases. A use case is drawn as an ellipse with its ñame
inside or below it. It is connected by solid fines to actors that communicate with i t [Bl]

2.6 Class Diagrams

Class diagrams are widely used to describe the types of objeets in a system and their
relationships. Class diagrams model class structure and contents using design elements such as
classes, packages and objeets. Class diagrams describe three different perspectives when
designing á system, conceptual, specification, and implementation. These perspectives become
evident as the diagram is created and help solidify the design. This example is only meant as an
introduction to the UML and class diagrams. If you would like to leam more see the Resources
page for more detailed resources on UML.
Classes are composed of three things: a ñame, attributes, and operations. Below is an example of
a class. Figure 2.4 given an example of class Symbol.

Chapter 2
Rc\ iew O f Literature

Class Ñame

Attríbutes

Operations

-► Custorner
^narne : String
^address : String

^ ’creditRatingQ

Figure 2.4 : Class Symbol

Class diagrams also display relationships such as containment, inheritance, associations and

others. Class diagrams are some o f the most difficult UML diagrams to draw. To draw detailed

and useful diagrams a person would have to study UML and Object Oriented principies for a long

time. Therefore, this page will give a very high level overview o f the process.

Before drawing a class diagram consider the three different perspectives o f the system the

diagram will present; conceptual, specification, and implementation. Try not to focus on one

perspective and try seeing how they all work together.

When designing classes consider what attríbutes and operations it will have. Then try to

determine how instances o f the classes will interact with each other. These are the very first steps

of many in developing a class diagram. However, using just these basic techniques one can

develop a complete view o f the software system. [www7]

2.7 S eq u en ce D iag ram s

A sequence diagram is made up o f objects and messages. Objects are represented exactly how

they have been represented in all UML diagrams— as rectangles with the underlined class ñame

within the rectangle. A Sequence diagram depicts the sequence o f actions that occur in a system.

The invocation o f methods in each object, and the order in which the invocation occurs is

captured in a Sequence diagram. This makes the Sequence diagram a very useful tool to easily

represent the dynamic behavior o f a system.

A Sequence diagram is two-dimensional in nature. On the horizontal axis, it shows the life o f the

object that it represents, while on the vertical axis, it shows the sequence o f the creation or

invocation o f these objects. Because it uses class ñame and object ñame references, the Sequence

diagram is very useful in elaborating and detailing the dynamic design and the sequence and

origin of invocatíon of objects. Henee, the Sequence diagram is one of the most widely used
dynamic diagrams in UML. Table 2.2 given the elements of a sequence diagram.

Chapter 2
Review Of Literature

Element and its description Symbol

Object: The primary element involved in a sequence diagram is an
Object—an instance of a class. A Sequence diagram consists of
sequences of interaction among diñerent objects over a period of
time. An object is represented by a named rectangle. The ñame to the
left of th e":" is the object ñame and to its right is the class ñame.

objectName

Message: The interaction between different objects in a sequence
diagram is represented as messages. A message is denoted by a
directed arrow. Depending on the type of message, the notation
diífers. In a Sequence diagram, you can represent simple messages,
special messages to create or destroy objects, and message

responses.

-------- ■--------- ►
wdiPiWacr vw/l Pl

Table2.2 : Elements o f a sequence diagram

2.7.1 Entity Classes

An entity class models information and associated behavior that is generally long lived. This type
of class may reflect a real-world entity or it may be needed to perform tasks intemal to the
system. They are typically independent of their surroundings; that is, they are not sensitive to how
the surroundings communicate with the system. Many times, they are application independent,
meaning that they may be used in more than one application.
The fírst step is to examine the responsibilities documented in the flow of events for the identified

use cases (i.e., what the system must do). Entity classes typically are classes that are needed by
the system to accomplish some responsibility. The nouns and noun phrases used to describe the
responsibility may be a good starting point. The initial list of nouns must be filtered because it
could contain nouns that are outside the problem domain, nouns that are just language

expressions, nouns that are redundant, and nouns that are descriptions of class structures.
Entity classes typically are found early in the Elaboradoñ Phase. They are often called "domain"
classes since they usually deal with abstractions of real-world entities.

Revievv
Chapter 2

O í Literaíure

2.7.2 Boundary Classes

Boundary classes handle the communication between the system surroundings and the inside of
the system. They can provide the interface to a user or another system (i.e., the interface to an
actor). They constitute the surroundings-dependent part of the system. Boundary classes are used

to model the system interfaces.
Each physical actor/scenario pair is examined to discover boundary classes. The boundary classes
chosen in the Elaboration Phase of development are typically at a high level. For example, you
may model a window but not model each of its dialogue boxes and buttons. At this point, you are
documenting the user interface requirements, not implementing the interface.
User interface requirements tend to be veiy vague—the terms user-friendly and flexible seem to

be used a lot. But user-friendly means different things to different people. This is where
prototyping and storyboarding techniques can be very usefiil. The customer can get the "look and

feel" of the system and truly capture what user-friendly means. The what is then captured as the
structure and behavior of the boundary class. During design these classes are refined to take into
consideration the chosen user interface mechanisms—how they are to be implemented.
Boundary classes are also added to facilítate communication with other systems. During design,

these classes are refined to take into consideration the chosen communication protocols.

2.73 Control Classes

Control classes model sequencing behavior specific to one or more use cases. Control classes
coordínate the events needed to realize the behavior specified in the use case. You can think of a
control class as "running" or "executing" the use case—they represent the dynamics of the use
case. Control classes typically are application-dependent classes.
In the early stages of the Elaboration Phase, a control class is added for each actor/use case pair.

The control Class is responsible for the flow of events in the use case. The use of control classes is
very subjective. [B2]

Chaplcr 2
Re\ ¡cu Of Literature

2.8 V irclipse ID E

In this project I have used Eclipse Integrated Development Environment as the coding tool. We

have used Eclipse to code java classes, compile them and run those classes. Virclipse IDE is o f

the updated and a modified versión o f a Eclipse IDE. Therefore for this project a customized

versión o f eclipse called Virclipse is used. Virclipse is a customized in Virtusa as a productivity

improvement tool for software development with some additional Eclipse plug-ins.

2.9 G im p tool

The GIMP (GNU Image M anipularon Program), is a ráster graphics editor used to process

digital graphics and photographs. GIMP is a freely distributed piece o f software for such tasks as

photo retouching, image composition and image authoring. It works on many operating systems,

in many languages. In this project Gimp is used to design the user interfaces, graphics etc. Figure

2.5 given a sample scene o f GIMP.

Figure 2.5 : GIMP tool

Chapter 2
Review Of Literatura

2.10 Game Engines

The game engine is generally the libraiy of core functíons used in the game, usually related to
graphics, input, networking and other systems. Another way to understand what a game engine is
would be considering them as the non game-specific part of the game, so we can have several
games ranging from RPGs to FPSs using the same engine. There are many game engines that are
designed to work on game consoles and desktop operating systems such as Linux, Mac OS X, and

Microsoft Windows. The core fimctionality typically provided by a game engine ineludes a
rendering engine (“renderer”) for 2D or 3D graphics, a physics engine or collision detection (and
collision response), sound, scripting, animation, artificial intelligence, networking, streaming,

memory management, threading, and a scene graph.
Game engines provide a suite of visual development tools in addition to reusable software

components. These tools are generally provided in an integrated development environment to
enable simplified, rapid development of games in a data-driven manner. These games engines are
sometimes called "game middleware" because, as with the business sense of the term, they

provide a flexible and reusable software platform which provides all the core fimctionality
needed, right out of the box, to develop a game application while reducing costs, complexities,
and time-to-market—all critical factors in the highly competitive game industry.
Some game engines only provide real-time 3D rendering capabilities instead of the wide range of
fimctionality required by games. These engines rely upon the game developer to implement the
rest of this fimctionality or assemble it from other game middleware components. These types of
engines are generally referred to as a "graphics engine," "rendering engine," or "3D engine"
instead of the more encompassing term "game engine." However, this terminology is
inconsistently used as many full-featured 3D game engines are referred to simply as "3D
engines." A few examples of graphics engines are: RealmForge, Truevision3D, OGRE, Crystal

Space and Genesis3D. Table 2.3 given the overview of game engines.

Chapíer 2
Review Of Liíerature

Ñame Language Platform License Graphics Sonnd Scripting

AgateLib .NET Windows /
Mono Free 2D via Direct3D or

OpenGL Yes No

AGL
Engine C++ Windows Commercial

2D via DirectDraw,
Direct3Dor
OpenGL

Yes No

C4
Engine

C++ Windows,
Mac, PS3 Commercial 3D Yes Visual Scripting

DXGame
Engine VB6 Windows Free 2D+ via DirectíD Yes No

Game
M aker Delphi Windows Free and

Commercial 2D/3D Yes Its own scripting
language(GML)

Ghost
Engine

C++ Windows
Engine code is
Zlib/libPNG-
licensed

3D via
OpenGL/DirectX, No -

JGame Java
Windows,
Unix,
MacOSX

Free (BSD) 2D Yes No

jMonkey
Engine Java

Windows,
Linux,
MacOSX

Free (BSD) 3D viaLWJGL
Yes -
OpenAL
Sound

Yes - jMonkey
Scripting
Framework

The
RealFeel
Engine

VB6 Windows
XP/Vista

Free (Closed
Source) 2D Yes No

Reality
Factory

None
needed Windows Génesis 3D 3D via Genesis3D

(DirectX) Yes Yes

Table2.3 : Game Engine OverView

2.10.1 Freeware Engines

These engines are available for free use, but without the source code being availabie under an
opoi source license. Many of these engines are commercial products which have a free edition
available for them.

■ Adventure Game Studio - Mainly used to develop third-person pre-rendered adventure
games, this engine is one of the most popular for developing amateur adventure games.

■ Build engine - A first-person shooter engine used to power Duke Nukem 3D
■ dim3 - Freeware 3D JavaScript engine for the Mac (although finished games are cross

platform).
■ DX Studio - Real-time professional 3D engine and editing suite produced by World

weaver Ltd

■ Game Maker Lite - Object-Oriented game development software with a scripting
language as well as a drag-and-drop interface

■ JMonkeyEngine - An open-source, BSD licensed Java scene graph engine.

Out of all freeware engines for our development we were used JMonkeyEngine, Scirra Construct
and reality factor.

Chapter 2
Revlevv Of Literatura

2.11 Testing

Software Testing is an empirical investigation conducted to provide stakeholders with
information about the quality of the product or Service under test, with respect to the context in
which it is intended to opérate. This ineludes, but is not limited to, the process of executing a
program or application with the intent of finding software bugs.
A primary purpose for testing is to detect software failures so that defeets may be uncovered and

corrected. This is a non-trivial pursuit Testing cannot establish that a product fimetions properly

under all conditions but can only establish that it does not function properly under specific
conditions. The scope of software testing often ineludes examination of code as well as execution
of that code in various environments and conditions as well as examining the aspeets of code:

does it do what it is supposed to do and do what it needs to do. In the current culture of software
development, a testing organizaron may be sepárate from the development team. There are
various roles for testing team members. Information derived from software testing may be used to

correct the process by which software is developed.

A common source of requirements gaps is non-fimetional requirements such as testability,
scalability, maintainability, usability, performance, and security. Software faults occur through
the following process. A programmer makes an error (mistake), which results in a defect (fault,
bug) in the software source code. If this defect is executed, in certain situations the system will
produce wrong results, causing a failure. Not all defeets will necessarily result in failures.

2.11.1 Testing Levels

■ Unit Testing

The primaiy goal of unit testing is to take the smallest piece of testable software in the
application, isolate it from the remainder of the code, and determine whether it behaves exactly as
you expect. Each unit is tested separately before integrating them into modules to test the
interfaces between modules. Unit testing has proven its valué in that a large percentage of defects

are identified during its use.
The most common approach to unit testing requires drivers and stubs to be wiitten. The driver

simulates a calling unit and the stub simulates a called unit. The investment of developer time in
this activity sometimes results in demoting unit testing to a lower level of priority and that is
almost always a mistake. Even though the drivers and stubs cost time and money, unit testing
provides some undeniable advantages. It allows for automation of the testing process, reduces
difficulties of discovering errors contained in more complex pieces of the application, and test
coverage is often enhanced because attention is given to each unit.

■ Integrad on Testing

'Integration testing' called abbreviated I&T is the phase of software testing in which individual
software modules are combined and tested as a group. It follows unit testing and precedes system

testing.
Integration testing takes as its input modules that have been unit tested, groups them in larger

aggregates, applies tests defined in an integration test plan to those aggregates, and delivers as its
output the integrated system ready for system testing.
The purpose of integration testing is to verify ñmctional, performance and reliability
requirements placed on major design ítems. These design ítems are exercised through their
interfaces using Black box testing, success and error cases being simulated via appropriate
parameter and data inputs. Simulated usage of shared data arcas and inter-process communication
is tested and individual subsystems are exercised through their input interface. Test cases are
constructed tó test that all components within assemblages internet correctly, for example across
procedure calis or process activations, and this is done after testing individual modules, i.e. unit

testing.
The overall idea is a "building block" approach, in which verifíed assemblages are added to a
verified base which is then used to support the integration testing of further assemblages.
Some different types of integration testing are big bang, top-down, and bottom-up.

Chapter 2
Revievv Of Liíeraíure

Chapter 2
Review Of Literature

■ System Testing
System testing of software is testing conducted on a complete, integrated system to evalúate the
system's compliance witfa its specifíed requirements. System testing falls within the scope of
black box testing, and as such, should require no knowledge of the inner design of the code or

logic. System testing is performed on the entire system in the context of a Functional
Requirement Specification(s) (FRS) and/or a System Requirement Specification (SRS). System
testing is an investigatory testing phase, where the focus is to have almost a destructive attitude
and tests not only the design, but also the behavior and even the believed expectations of the
customer. It is also intended to test up to and beyond the bounds defined in the software/hardware
requirements specification(s). System testing ineludes the Load testing and Stress testing. Once
the Load testing and Stress testing is completed successfully, the next level of Alpha Testing or
Beta Testing will go ahead.

■ System Integration Testing
System Integration Testing (SIT), in the context of software systems and software engineering, is
a testing process that exercises a software system's coexistence with others. System integration

testing takes múltiple integrated systems that have passed system testing as input and tests their
required interactions. Following this process, the deliverable systems are passed on to acceptance

testing.
Systems integration testing (SIT) is a testing phase that may occur after unit testing and prior to
user acceptance testing (UAT). Many organizations do not have a SIT phase and the first test of

UAT may inelude the first integrated test of all software components.[WWWi3]

2.12 MySQL

MySQL is the world's most popular open source database software, with over 100 million copies
of its software downloaded or distributed throughout its history. With its superior speed,
reliability, and ease of use, MySQL has become the preferred choice for Web, Web 2.0, SaaS,
ISV, Telecom companies and forward-thinking corporate IT Managers because it eliminates the
major problems associated with downtime, maintenance and administration for módem, online
applications.

Chapter 2
Review O f Literatura

Many of the world's largest and fastest-growing organizations use MySQL to save time and
money powering their high-volume Web sites, crítical business systems, and packaged software
including industry leaders such as Yahoo!, Alcatel-Lucent, Google, Nokia, YouTube, Wikipedia,
and Booking.com.The flagship MySQL offering is MySQL Enterprise, a comprehensive set of
production-tested software, proactive monitoring toois, and premium support Services available in
an affordable annual subscription.
MySQL is a key part of LAMP (Linux, Apache, MySQL, PHP / Perl / Python), the fast-growing
open source enterprise software stack. More and more companies are using LAMP as an
altemative to expensive proprietary software stacks because of its lower cost and freedom from
platform lock-in. The MySQL database is owned, developed and supported by Sun
Microsystems, one of the world's largest contributors to open source software. MySQL was

originally founded and developed in Sweden by two Swedes and a Finn: David Axmark, Alian
Larsson and Michael "Monty" Widenius, who had worked together since the 1980's.

Advantages than other database:
■ The best and the most-used database in the world for Online applications

■ Available and affordable for all
■ Easy to use
■ Continuously improved while remaining fast, secure and reliable

■ Fun to use and improve
■ Free from bugs

2.13 JasperReports

JasperReports is an open source Java reporting tool that can write to screen, to a printer or into
PDF, HTML, Microsoft Excel, RTF, ODT, Comma-separated valúes and XML files.

It can be used in Java-enabled applications, including Java EE or Web applications, to generate
dynamic contení. It reads its instructions from an XML or .jasper file.
JasperReports is an open source reporting library that can be embedded into any Java application.
[www5]

Chapter 2
Review GfLiterature

Features inelude:
■ The engine allows report defínitions to include charts, with the rendering provided by the

JFreeChart library which supports many chart layouts, such as Pie, Bar, Stacked Bar,

Line, Area, Scatter Plot, Bubble, and Time series.
■ Scriptlets may accompany the report defínition, which the report defínition can invoke at

any point to perform additional processing. The scriptlet is built using Java.
■ can be invoked before or after stages of the report generation, such as Report, Page,

Column or Group.
■ Sub-reports

There are many tools providing JasperReport capabilities IReport is one of them.

2.14 IReport
IReport is a program that helps users and developers that use the JasperReports library to visually
design reports. Through a rich and very simple to use GUI, iReport provides all the most
important fiinctions to create nice reports in little time. [www5]

Features of iReport:
■ 98% of JasperReports tags support
■ Visual designer with tools for draw rectangles, lines, ellipses, text fíelds, charts, sub

reports.
■ Built-in editor with syntax highlighting for write expression

■ Support of all JDBC compliant databases
■ Support for sub reports

■ Facilities for fonts

CHAPTER 03

TECHNOLOGICAL DEVELOPMENT

3.1 Introductíon to Software Development Methodology

3.1.1 Software Development Process

A software development process is a structure imposed on the development of a software product.
Synonyms inelude software lifecycle and software process. There are several models for such

processes and each describes approaches to a variety of tasks or activities that take place during

the process.
A decades-long goal has been to fínd repeatable, predictable processes or methodologies that
improve productivity and quality. Some expertise try to systematize or formalize the seemingly

unruly task of writing software. Others are focusing on applying project management techniques
to writing software. Problems arising during software projeets such as delivering lately and over
budget can easily be eliminated through application of project management techniques. Project
managem ent has been a challenge and it urge for effective management since it has been
problematic to meet the expectations of software projeets in terms of fimetionality, cost, or

delivery schedule.. There are several models available for development of effective project
management. Those processes can be identifíed as Waterfall process, Iterative process,

Prototyping, Agile development, Spiral etc. [Bl]

3.1.2 Agile Development

Agile software development is a group of software development methodologies that are based on
similar principies. Agile methodologies generally promote a project management process that
encourages frequent inspection and adaptation, a leadership philosophy that encourages

teamwork, self-organization and accountability, a set of engineering best practices that allow for
rapid delivery of high-quality software, and a business approach that aligns development with
customer needs and company goals.

There are many specific agüe development methods. Most promote development iterations,

teamwork, collaboration, and process adaptability throughout the life-cycle o f the project. Agile

chooses to do things in small increments with minimal planning, rather than long-term planning.

Iterations are short time frames (known as ’timeboxes') which typically last from one to four

weeks. Each iteration is worked by a team through a full software development cycle, including

planning, requirements analysis, design, coding, unit testing, and acceptance testing when a

working product is demonstrated to stakeholders. This helps to minimize the overall risk, and

allows the project to adapt to changes quickly. Documentation is produced as required by

stakeholders. Iteration may not add enough functionality to warrant releasing the product to

market, but the goal is to have an available release (with minimal bugs) at the end of each

iteration. Múltiple iterations may be required to release a product or new features.

The following are other features that describe software development projects that use agile

methodologies: Figure 3.1 shown the development process o f agile development.

■ The fast tumaround time and the regular delivery o f working software should ensure

customer satisfaction

■ Late changes can be handled easily, or even welcomed

■ Progress is measured by the deliveiy o f working software

■ Clients and developers communicate regularly face-to-face

■ All meetings within the development team are held face-to-face

■ All developers are highly competent and trustworthy

[www 15]

Figure 3.1: Agile Development Process

3.2 G am e D evelopm ent L ife C ycle

Basically, there are five major phases in our game development life cycle. Out o f all five phases,

the Game Concept is considered as the most important phase. Therefore, when figuring out the

most suitable Game concept for our project, initially focusing on requirements and ideas

regarding Game Concepts found that they believe all Game Concepts should be based on

mathematics as well as on language. After several team discussions, suitable Game Concept for

our project was developed.

In Pre-production phase, we carried out all the preliminary design work which ineludes designing

use case diagrams, class diagrams and sequence diagrams and selecting the required software.

During next phase, which was the production phase, all the design concepts were implemented by

carrying out all code level functionalities.

In testing and release phase we performed all kinds o f testing such as unit testing as well as

system testing to ensure the accuracy product’s functionality. Figure 3.2 shown the game

development life cycle.

p — ^

Game Concept
1 - o ¿

r : •••• -y ■ - ■ 1
Pre- Production

Testing & Release
i_______________ i

r--------------- ; n• • ■ * . í - 1

Production

Figure 3.2: Game Development Life Cycle

3.3 Game Engines

33.1 Scirra Construct (Rapid Game Authoring System)

Construct is firee powerful and easy to use development software for both DirectX 9-based games
and applications. It ineludes an event based system for defíning how the game or application will
behave, in a visual, human-readable way - easy enough for complete beginners to get results
quickly. Optionally, advanced users can also use Python scripting to code our creations. Construct
is not a commercial software project, and is developed by volunteers. It is 100% ftee to download
the full versión - no nag screens, adverts or restricted features at all.

Features of Scirra Construct
■ Super fast hardware-accelerated DirectX 9 graphics engine
■ Add múltiple pixel shades for special effeets, including lighting, HDR, distortion, lenses

and more
■ Advanced rendeiing effeets like motion blur, skew and bump mapping (3D lighting)
■ Innovative Behaviors system for defíning how objeets work in a flexible way
■ Physics engine for realistic object behavior
■ Place object on different layers for organizing display, paralleling, or whole-layer effeets

- also freely zoom individual layers in and out with high detail
■ Python scripting for advanced users - however, Construct's Events system is still

powerful enough to complete entire games without any scripting.
■ Smaller, faster specialized runtime for applications

Construct is developed open source under the General Public License (GPL). This means we can
download and use Construct for ftee, but it also means that the underlying source code - the code
that defines how the program works - is also freely available. This means other programmers are
free to fix arrors in the code and make their own contributions to Construct. Figure 3.3 show a
demo game made up with Scirra construct.

Figure 3.3: A Demo Game created with Scirra Construct

3.3.2 JM onkey Engine

jME (JMonkey Engine) is a high performance scene graph based graphics API. jME was built to

fulfill the lack o f full-featured graphics engines written in Java. Using an abstraction layer, it

allows any rendering system to be plugged in. Currently, both LWJGL and JOGL OpenGL

bindings are supported. jME is completely open source under the BSD license.

jME was created by Mark Powell in 2003 while he was investigating OpenGL rendering. After

discovering LWJGL he decided that Java (his language o f choice) would be perfect for his own

graphics tools. These tools soon grew into a primitive engine. After reading David Ebery’s 3D

Game Engine Design, scene graph architecture was implemented. It was then that jME became

part o f Sun’s Java.net software repository.

LWJGL

The Lightweight Java Game Library (LWJGL) is a solution aimed directly at professional and

amateur Java programmers alike to enable commercial quality games to be written in Java.

LWJGL provides developers access to high performance cross platform libraries such as OpenGL

(Open Graphics Library) and Open AL (Open Audio Library) allowing for State o f the art 3D

games and 3D sound. Additionally LWJGL provides access to controllers such as Gamepads,

Steering wheel and Joysticks. All in a simple and straight forward API.

JOGL

JOGL (Java OpenGL) are a set o f bindings to OpenGL that are officially supported by Sun.

Features of JMonkey Engine

■ jME is a scenegraph based architecture. The scenegraph allows for organization o f the

game data in a tree structure, where a parent node can contain any number o f children

nodes, but a child node contains a single parent. Typically, these nodes are organized

spatially to allow the quick discarding o f whole branches for processing.

■ jME’s camera system uses frustum culling to through out scene branches that are not

visible. This allows for complex scenes to be rendered quickly, as typically, most o f the

scene is not visible at any one time.

■ jME also supports many high level effects, such as: Imposters (Render to Texture),

Environmental Mapping, Lens Fiare, Tinting, Particle Systems, etc.

■ jME supplies the user with easy to use, but powerful application classes for building the

application. Jumping into jME should be a quick and painless process. With a small

leaming curve. [www9]

Figure 3.4 illustrates a demo game using JMonkey engine.

Figure 3.4 : A Demo game created with Java Monkey Engine

3.3.3 Reality Factor

Reality Factory is a program that - in conjunction with other tools - allows us to create l st and 3rd

person perspective games without programming! Reality Factory is built on top o f the powerful

Genesis3D Open Source engine and supports all major 3D graphics cards. Reality Factory

provides most of the tools we need to make a game.

We will still need a program to create actors (characters and props in our game) and software to
make textures with, but what we wont need is a C/C++ compiler and a couple of coders to build
our engine for us. By using objects called "entities" which you place in our world, we can set up a
game - with audio effects, múltiple soundtracks, and special effects.
Reality Factory is inténded to be a "rapid game prototyping tool" - it is able to make playable,
interesting games across a wide range of genres but it's not optimized for any ONE kind of game.

Fea tures of Reality Factory

■ Complete game & machine creation system without requiring any programming
knowledge.

■ Predefined character and camera Controls provide 1* and 3ri person viewpoints,

changeable on-the-fly in-game as desired

■ Complete interactive conversation engine, complete with a GUI conversation tree

builder for writing your conversation Scripts
■ Customizable script editor for creating Scripts
■ Basic physics, collision detection
■ Per vertex, light mapping, radiosity

■ Dynamic colored (RGB) lighting

■ Projected Shadows
■ Basic multi-texturing, bump-, sphere-, mip-mapping, procedural textures
■ Video AVI & animated GIF support for cut scenes and animated level textures
■ Dynamic texturing effects such as procedurals, animations and morphing
■ Key trame animation, skeletal animation, animation blending

■ Customizable effects & explosions system
■ 3D audio engine with mp3, wav and support

Figure 3.5 shown demo game created with reality factor.

Figure 3.5 : Demo game created with Reality Factor

CHAPTER 04

DESIGNING DEVELOPMENT

Use D iagram

Figure 4.1: Use Case Diagram for our system

Teacher - Teacher represents the main actor o f the system. Teacher can add games to the

portal remove games from the system, filter games; he/she can view the student progress.

Also teacher acts like the administrator o f the entire system.

Student - Student represents the second main role o f the system. Student is the final end

use o f the system. Student can play the games which only teacher permits him to play.

Also he can select the level o f the game he wants to play from fmished levels. Student

can see the progress o f their subject knowledge.

Logging - Logging use case is entirely based on the security o f the system. To advance

the system first o f all actors have to log on to the System.

■ Add Game - This use case is responsible with adding a game to the system. Only the
Teacher can add games to the portal.

■ Remove Game — This use case deais with removing existíng games of the system. Only

Teacher can remove the games from the system.

■ Filter Game — This use case is responsible about the fíltering of the games. According to

the students subjective knowledge Teacher can filter games.

■ View Student Reporta - Teacher can see the progress of the students by examine the

progress reports of the students

Above Figure 4.1 shown a use case diagram for teacher and student actors.

4.1.1 Use Case Descríptíons

Table 4 .1 - 4.5 shows the use case description for design use case diagram

Use Case Number 1

Use Case Ñame Add game to the Game Launcher

Use Case

Description

To the game launcher pad actor named Teacher can add games according to

the student* s level.

Primaiy Actor Teacher

Precondition Teacher should log into the system before adding games.

Trigger Rressing the add button.

Basic Flow

1.) There are several games displayed

2.) Teacher should select games to be display in the launch pad

3.) Then teacher should press the add button to add the games
4.) Selected games added to the system.

Altérnate Flows Should select less than or equal 5 games to add to the launcher pad

Post Condition Games add to the launcher pad

Table4.1: Game adding to the Launch pad

Use Case Nurnber 2

Use Case Ñame Remove game from the Game Launcher

Use Case
Description

To the game launcher pad actor named Teacher can remove games according

to the student’s level.

Primaiy Actor Teacher

Precondition Teacher should log into the system before adding games.

Trigger Pressing the Remove button..

Basic Flow

1.) There are several games displayed
2.) Teacher can remove the selected games
3.) Then teacher should press the remove button to remove the games

4.) Selected games removed from the system.

Altérnate Flows Should have games in between 1 and 5

Post Condition Games remove from the launcher pad
Table4.2 : Game removing from the Launch pad

Use Case Nurnber 3

Use Case Ñame Filter games from the Game Launcher

Use Case
Description

To the game launcher pad actor named Teacher can filter what kind of games
should be in the game launcher.

Primaiy Actor Teacher

Precondition Teacher should log into the system before adding games.

Trigger Pressing the Filter button.

Basic Flow 1.) There are several games displayed

2.) All the games are with different game types.
3.) Teacher can select either game type is language or mathematics.

4.) After selecting the game type teacher should press on filter button.

Altérnate Flows Should select either type from the game.

Post Condition Display selected types of game sin the launcher pad.
Table2.3: Game filter from tbe Launch pad

Use Case Number 4

Use Case Ñame View Reports

Use Case
Student actor as well as the teacher actor can check the reports. From
student’s part they can see their previous marks as well as teachers can see

Descnption
student’s level in each type of games.

Primary Actor Both Teacher and Student

Precondition
Teacher as well as the student should log into the system before adding

games.

Trigger Pressing the View Report button.

Basic Flow

Student:
1.) In each logging student can see view report button.

2.) After pressing the View report student can see their histoiy Report.
Teacher:

3.) In each logging teach can see view report button.
4.) Teacher can view the student’s report.

Altérnate Flows

Student:
They can see only their marks

Teacher:
They can see marks on each and every student.

Post Condition Display previous records and marks.
Table4.4: View Reports

Use Case Number 5

Use Case Ñame Launch Game

Use Case
Description

Student actor as well as the teacher actor can play the games.

Primary Actor Both Teacher and Student

Precondition
Teacher as well as the student should log into the system before playing the

games.

Trigger After reach to the game point in game launcher.

Basic Flow

Student:
Teacher:
1.) In game launcher it has several games.
2.) By selecting the game either student or teacher can play the game.

Altérnate Flows
Student:
Teacher:

Can play only one game at a once.

Post Condition Teacher or Student can play the game.
Table4.5: Game Launch

4.2 Class Díagram

Game GameStore
gameld
gameName
gameCatagory
gameType
gameLocation

deleteGame 0
addGame 01 *

loadGame 0
launchGame 0

Player
userName
age
ñame
password

í
Teacher Student

1 1

StudentScore
leacherld
subiect

studentld
ageCatogory

studentld
type
catogory
getScore 0

1 ' ____ I
1 1

I
Login

loginld
loginName
loginPassword
login 0
IsLogged Q

GamePortal
playGame 0
addGame 0
removeGame 0
filterGame 0
IsGameStored Q
IsValídGame 0

Figure 4.2: Class Diagram for the System

Figure 4.2 indicates the class diagram for the edutainment launch pad and its ñmctionalities.
Player class specialized into the teacher and student. which the main entity classes on our system
of display corresponding methods and attributes for each and every class.

Out of the given class structure, StudentScore and the GameStore are the boundary classes and

GamePortal , Login Game are the control classes. According to above structure, most of the
ñmctionalities depend upon Game and GamePortal classes.

4.3 Sequence Diagrams

According to the use case diagram,
Figure 4.3 - 4.9 and tables of 4.6 - 4.10 show the sequence diagram of the use cases.

43.1 Add Game to the Launch Pad

« requirements » ^
Teacher add games.
Teacher- Entity Class
Login - Control Class
GamePortal - Baoundary Class

lo^n (userMame. passWdrd)

i
I
lisLogged
I

userName)

addOame (gameljl. ageGroup .path)

jpGameSto
i
^ ---------------------

ed (gameld)

Figure 4.3 : Add game to the Launch Pad

Involved Classes
■ Teacher
■ Login

■ GamePortal

Pre Condition To add a game Teacher must first log into the
system using usemame and password.

Descríptíon

This scenario explains about the class
behaviors when Teacher adds a game to the
Launcher. addGame and isGameStored
methods are used to implement main
fimctionalities.

Table4.6 : Add game to the launch pad descríptíon

43.2 Remove Game from the Launch Pad

« requirements »
Teacher can remove games.
Teacher- Entity Class
Login - Control Clase
GamePortal - Baoundaiy Class
GameStore- Entíty Class

Figure 4.4: Remove game from the launch pad

Involved Classes

■ Teacher

■ Login

■ GamePortal

■ GameStore

Pre Conditíon To remove a game Teacher must first log into
the system using usemame and password.

Descríptíon

This scenario explains about the class
behaviors when Teacher remove unwanted
games from the Launcher. The added games
were store in the GameStore class. In that case
removeGames and deletedGame methods take
all the main functionalities.

Table4.7: Remove Game From tfae launch pad descríptíon

As above diagram same scenario acts on logging to the system.

Then cali the removeGame method with the corresponding parameters to remove game. Like

wise adding in GamePortal class valídate the game before removing. Then delete the game from

GameStore class.

4.3.3 Filter games from the Game Lanncher

< requiremente >
Teactier can Filter gamas.
Teacher- EnfllyCiass
Login - Control Class
GamePortal- Baoundaiy Class
GameStore - Enfily Class

looin (userName. passWjfrd]

iI------
lisLoggedi userName)

i
ffiarojime fusertd. qamete.aj^Name.cofidftlofUa^3iMi)

.Teacher
----------- i--------

:Laten
-----------1---------

:QamePortai
----------- i--------

GameStore
i

jsVabdGan e (gam elij)

teteteGame (gameta)l \
| addGame(gameldjj

1: Filter games fix>m the launch pad

Involved Classes

■ Teacher
■ Login
■ GamePortal

■ GameStore

Pre Condition To filter a game Teacher must first log into the
system using usemame and password.

Descríption

This scenario explains about the class
behaviors when Teacher filter the games
according to the types of student categories. To
make that fimctionality strong filterGame
deletedGame and addGame methods are
important

Table4.8 : Filter games from the launch pad descríption

43.4 Student and Teacher can view Reporta

2 : Student Can View Reports

c requírements » te
Teacher can view student reporta.
Teacher- Entity Class
Login - Control Class
GamePortal - Baoundaiy Class
Score- Entity Class

Teacher :Loain :OamePortal .Score

login (userNam e. passVVprd)

isLogged i userName)

get8tuden|Records fleacherlD, sjudentld)

& ore (studentScoreDj)

Figure 4.7: Teacher can view reporte

Involved Classes

■ Student/T eacher

■ Login

■ GamePortal

■ Score

Pre Condition
To view reporte both Student and Teacher must
first log into tibe system using usemame and
password.

Description

This scenario explains about the class
behaviors when Student/Teacher view the
reporte. getStudentRecords and score are the
respective methods important in that scenario.

Table4.9: Student/Teacher can view scores description

43.5 Launch Game

■ Teacher can launch a game

« requirements » h
Teacher canplaygames.
Teacher - EnHy Clase
Login - Control Class
GamePovtal - Baoundary Class
GameStore - Ertfity Class
Game - Errttty Class___________

Teacher
-----------1--------

ljooln :OamePortal :OameStore Asme

logín (userName t passWj^rd)

i
jistogged

L,
userName)

\ playGame (gamefd.ga^eName.location.typBjj

loa^Oame (gameldjoc^on)
l
l̂ ĝetOarnelrtoJ ¿ _

launchOame ()

Figure 4.8 : Teacher can launch games

■ Student can launch game

«requirements» k
Student can play games.
student- Enllty Class
Login - Control Class
GamePortal - Baoundary Class
Oamé8tore - Entity Class
0ame-EntHyCla8s____________

:8tudent :Loain iGamePortal GameStore :Oame

logtn (userName. passwgfrd)

jisLogged userName)

plavOame (aameld.gaheName.location.typajj

loárosm e (gameld.lora|ion)

,_ge© am elntb(¿ _

launchOame O

Figure 4.9: Student can launch games

Involved Classes

■ Teacher/ Student
■ Login
■ GamePortal

■ GameStore

■ Game

Pre Condition
To launch a game both Teacher and Student
must flrst log into the system using usemame
and password.

Descríption

This scenario explains about the class
behaviors when Teacher /Student launch
games. playGame method takes all the
important functionality during the game
launching. Rest of the methods like loadGame
and launchGame are supportive methods on to
this method.

Table4.10: Teacher and Student can launch games

CHAPTER05

GAME CONCEPTS & ANALYSIS

A game-concept document expresses the core idea of the game. It is a one- to two-page document
that is necessarily brief and simple in order to encourage a flow of ideas. The target audience for
the game concept is all those to whom we want to describe our game.
A game concept should inelude the following features:

■ Introduction
Introduction implies the objective of the selected game. Out of concepts what are the
sub areas going to touch from this game. As an example under the mathematics
concept we can tiy out the identifi catión of sorting ,arithmetic operations. . . . etc.

■ Background (optional)

Background implies how the game background looks like and how those figures and
pictures are arranged.

■ Description
Description gives the clear idea about the game instructions.

■ Platform(s)
Platform means game design platform. It can be either Windows platform or Linux

platform.

■ Concept art (optional)

This chapter discusses some of the game concepts that we have used in this project Table 5.1

figure shows game concept for ascending train game.

5.1 A scending T ra in (o r D escending T ra in)

Table 5.1 figure shows game concept for odd even number separator game.

Introduction

This game was designed to improve the mathematical skills o f the

students. The main objective o f this game is to teach students about

the ascending and descending order of the numerical numbers.

Background
There are few coaches in ground with a number on it. Also there is a

train engine.

Description

You have to collect the coaches using train engine in ascending order

to make a train. If you collect a coach with a wrong number the game

will be reset and you have to start from beginning.

Platform Windows / Linux

Table5.1: Game Concept for the Ascending Train game

Figure5-1 : OverView o f the Ascending Train Game

5.2 O dd/E ven n u m b er S ep a ra to r

Table 5.2 shows the game concept and the Figure 5.2 corresponds the overview of the Odd/Even
separator game.

Introduction

This game was designed to improve the mathematical skills o f the

students. The main objective o f this game is to teach students odd and

even numbers.

Background
There are few bouncing balls inside a box with two parts separating

with a moving gate.

Description
You have to sepárate some bouncing balls using a moving gate. You

have to put odd numbers in right side and even numbers in left side.

Platform Windows / Linux

Table5-2 : Game Concept for the ODD/EVEN number separator game

Figure5-2 : Overview o f the ODD/EVEN number separator Game

5.3 D istance and D irections (T reasu re H unt)

Table 5.3 lists the game concept o f the distance and direction game and the figure 5.3 shows the
overview o f that game.

Introduction

This game was designed to improve the mathematical skills and to

teach about the main directions NORTH, EAST, SOUTH, and

WEST. Also this game tries to teach how to count.

Background There is a map with a pírate and a treasure.

Description

You have to move the pirate step wise to the treasure by avoiding

obstacles. You can have a treasure hunt based on knowledge of

directions and distance.

Platform Windows / Linux

Table5.33 : Game Concept for the Distance and Directions game

f f # ;Ü I¿v N

%
,

/

.

J l
h*» Hli#

Figure5.3 : Overview o f the Distance and directions Game

Table 5.4 shows the game concept and the figure 5.4 corresponds the overview of the game.

5.4 V irtu a l Shop

Introduction

This game was designed to improve the skills o f using money and to

improve the billing & balance, selecting necessary items for the

money they have, measure the weight o f items, & separation.

Background

There is a Kids shop and student given the money and the item list to

buy. Student has to click and order the items and fínally have to pay

the bilí.

Description

1) Students have to buy a list o f items from their school Shop.

2) Mother has g iven------- Rupees for that.

(Example 2 - 5 0 Rupees Notes, 1- 20 Rupees Note & 3- 5 Rupees

Coins 1- 1 Rupees Coin)

3) Student visits virtual shop

4) Order items as per the money they have.

5) Pay amount o f money using virtual coins and notes which have

being given by Mother).

6) Collect the balance

7) If they want to buy any more (for the balance) go back to 4

8) Go to home

9) Measure the weight o f items and sepárate them based on

that.

Platform Windows / Linux

Table5.4 : Game Concept for the Virtual shop game

Figure 5.4 : OverView o f the Virtual Shop Game

CHAPTER 06

DEVELOPMENT ENVIRONMENT

6.1 Development Environment

A brief introduction of the development environment is given below.

6.1.1 Hardware Environment

■ A personal Computer with processor 3.0 GHz Intel Pentium 4, RAM 512MB

6.1.2 Software Environment

Table 6.1 given the system environment of the system

| IDE Virclipse (Customized of eclippsed)
Languages ■ Java

■ Java 2D Graphic Package
¡ Operating system Windows XP/ Windows Vista / Linux
| Third Party Components and Tools

!

■ Scirra Construct
■ Java Monkey Engine
■ Napkinlaf fieely available jar file

I Enhancing Tools
|
i

■ Blender
■ Gimp

Database TextPads
Tableé. 1 : Development Environment

6.2 Application Programming Interface (API) used for implementation

■ Java 1.5 API
■ Java 2D API
■ Scirra Construct T utorial
■ JMonkey Engine API
■ JMonkey Engine User Guide

6.3 In teg ra tin g E nvironm ent

* Java - Game Launchei/sic/cam /Teach
File Edfr Source Refactor Navigate Search

r j ̂ i¿
Package F ^ ln ^ g g ¡ | Tf H ie^cl»

E
L-¡ [Jj Game.java

0 0 Game
□ gameCatogory
a gameid
□ gameLocation
□ gameName
□ gameType
© getG ameCatogoryG
O getGameldQ
& getG ameLocationf)

• getGameNamef)
O getGameTypeO
O launchGameO
o loadGameO
o setG ameCatogory(S tring)
© setGamddfnt)
© $etGameLocation(int)
O setG ameN ame(S tring)
Q setGameTypefnt)

(S }Jj GamePortaijava
® a Player.iava
0 a Teacher java

0 © Teacher
o subject
o teacherld
© getSubfectfl
© getTeacherlcfl}
© setSub(ect{String)
9 setTeacherid(Sbing)

ffi a JRE System Libraiy reí 5 0 07]
13 a Referenced Libraries

0 •« napkinlaf ¡ar
> tb netsourceforge. napkinlaí

Figureó. 1 : Class Hierarchy

Figure 6.1 illustrates the class hierarchy o f the eclipse development environment. Coding

standards, all the algorithms and naming Conventions were according to the Virtusa policies.

We can identify the used classes according to the class diagrams and sequence diagrams. For the

reference library, we have used napkinlaf jar file as the selected jar file is open source.

There are different team members for different functionalities. Therefore regarding reporting

there is a sepárate team. They all conducted this by using o f Jasper Reports. The selected

JasperReports are designed by the iReport. Once again according to the Virtusa policies we

cannot figure out any o f the reports. All reports are up to the Virtusa standards. Figure 6.2

indicates the iReport environment.

6.4 Reporting

■■
r i tD i f f gdiuon f p rm .it Q atm its C ons tiu jfe O ptions Plugins F enc lrt Arde

100%

. jí iReport Options

o* tí E¡
ñP.

E
10 * 11 »

i 4 A ¿í t* A T i l& ¿Irrr
Edíleur « te m e

FkW e n «■
Fu-D*

O M H nu m « lu a i f l»

_] Document
background

<f tule
[J staücText-1 [256,2
pageHeader
columnHeader
detall
colurrmFooter
pageFooler
lastPaoeFooter
summarv

11 IJ □na

, ^1 b I I C^wérai CampHer Barkup Programmes « u n te s

S í Mr_T'T‘""3l"T
Affícheurs
A ff id iru r PDF

Explorer

*«■ ■,ír * " A -__i - j j - i . : _____'__________________1 Explorer

A ffid te u r HTML

; * - m • - — ________ i Explorer

Affictieur XES

!_____________________ _______________________________________ 1 Explorer

A ffid ie u r CSV

1 1 Explorer

A ffic tieu r TXT
Explorer

—
A ffid ie u r RTF

¡I - _ 1 Explorer

Sauvet Appliquei Annuier- - - - - ‘

Figure6.2 : iReport

CHAPTER07

TESTING & DBPLOYMENT

1 Testing Strategy ,« w° *
^ ^ development t*00833 u « « « * » » * a®1 * Dse

conducted.

M> « » » *

- > — •'” ” “ * " i . „ * * » » - * ■ ^ * t r L » • » - * ! > “ >'■"*■■

sourcecode are working ^co rred . . . and * e “ 6

coverage of m°te «
process.

feature. Wbereas the
UTeStC85tS dure fuUV tests a feat^e °r » ^ Developers
^ 03, rs a aeUúW ^ t o períd» a P » .

+ * . ~ * ~ ~ * Z ; Z ~ * * * + ~ * -^ ro d e v lo p a te d c a se fc re a c

A test case ineludes:

■ The purpose o f the test.

■ Special hardware requirements, such as a modem.

■ Special software requirements, such as a tool.

■ Specifíc setup or configuration requirements.

■ A description o f how to perform the test.

■ The expected results or success criteria for the test.

Test cases were written by a team member who understands the function or technology being

tested, and each test case was submitted for peer review.

7.2.2 Test Data

According to the test cases we have to fíll all the procedures in following manner.

Test data used to check whether the system is running on corrective manner. With the following

real time screen shots implement how the system is working on and for each o f the time how can

we write the test cases.

Implementation of Test Case ID of ‘ S P F jP l’: Teacher trying to add a game to the launch pad

■ Figure 7.1 shows a screen before adding the game into the launch pad

I Game Launcher
Fll€ view Help

Recave

Figure7.1 : Before implement add game test case

Figure 7.2 shows the screen after adding the game into the launch pad

File EAif view Help

Message

v i *) AAAeA îA<r<ressí̂ lly

»

o k

Figure7.2 : After implement add game test case

Table 7.1 illustrates corresponding Test Case for the add a game to the launch pad

Test
Case

ID

Test Case
Description

P rerequisite Test
Procedure

Input
Data

Expected
R esult

A ctual
R esult

T est
R esult

SPF P1 Teacher
trying to add
a game to the
launch pad

User login to
the system
with
appropriate
login
credentials.

After the
logging.

Select add
game from
the menú
bar.

Games
select and
click on
add
selected
games
button.

Selected
game(s)
should
added to
the
system

Selected
game(s)
added to
the
launch
pad

Test Case
succeeded

Table7.1 : Sample Test Cases

Implementation of Test Case ID of ‘SPL_P1’: Student logging to the system

■ Figure 7.3 shows screen before login to the system

Figure7.3 : Before implement login test case

■ Figure 7.4 shows test case after logged to the system

Table 7.2 illustrates corresponding Test Case for the student logging to the system

SPL_P1 Student Launch pad After the Student Logged Logged Selected
logging to should open. loading of details to the tothe test case is
the system launch with launch launch success.

pad. correspond pad pad Not
. usemames viewer student’s completely

Student & with details executed.
should passwords student’s may not
enterthe may need previous appear
user ñame toaddto game
and the details
password. database.

Then click
on logging

Table7.2: Sample Test Case II

7.3 System Testing

System testing is testing conducted on a complete, integrated system to evalúate the system's
compliance with its specified requirements. System testing falls within the scope of black box

testing, and as such, should require no knowledge of the inner design of the code or logic.
Thorough testing was done on following categoríes.

■ Performance
■ Security features

■ Stress testing
■ User acceptance

That is because we need to verify as well as the functional requirements of all the non functional

requirements are satisfíed in order to fulfill all the project requirements.

7.4 Deploy Environment

After integrating the system it is fínally zipped into a jar file. Installing the system in client’s
machine involves copying and pasting the jar into a specific location.
To run the system only users have to double click the jar.

7.4.1 Hardware Requirements

A personal Computer with processor 3.0 GHz Intel Pentium 4, RAM 512MB

7.4.2 Software Requirements

Table 7.3 given the software requirement of the system

O perating System Windows XP

Packaging Tool Jar

T hird P arty Com ponents and Tools Notused

Setup M achine
Machine should install MySQL before use the
game launcher.

Table7.3: Software Requirement of the Deployment Environment

CHAPTER 08

CONCLUSION

The aim of this project was to implement a launch pad for edutainment software suit for

primary schools students of Sri Lankan schools using fiee and open source software.

Reusability and extensibility issues could be achieved to evolve the system.

The clients’ comments on the prototype evaluation must be first fulfilled. The usability is the

main issue on how comfortable potential users are of using this system. All ñmctions they

requested for main stage are woiking properly and user friendly. The original objectives and

goals set forth in developing the system are achieved successfully.

User interfaces could adapt to the changes by modifying the program code. Although time

spent on designing and implementing components was longer than traditional design and

implementation, the time spent on future changes would be saved.

8.1 Future Consideration

Future consideration for this project is to enhance some of the present features and add new

features for the system. Because of using open source software we can implement this

edutainment launch pad for Linux machines as well. In near future, subject to the availability

can implement the same system in OLPC as well.

Existing system is a menú driven system that could be enhanced to provide more user

friendliness by adding some colorful themes to user interfaces.

Reporting system can be enhanced in a graphical manner instead of typical indication of

score.

Extra features should be added to the system so that it can meet the Client’s

requirements, such as using this game consolé for disable students.

REFERENCES

[Bl] - Rumbaugh, J. (2004) The Unified Modeling Language Reference manual, Addíson

Wesley Longman, Inc., 3-66

[B2] - Quatrani, T. (2000) Visual Modeling with Rational Rose 2000 and UML, Publisher

Pearson Education India, 77-85

[B3] - Eliens, A. (2000) Principie of Object-Oriented Software Development, 2nd Edition,

Pearson Education Limited 2000.18-35

[B4] - Summerville. (1995). The fifth edition o f Software Engineering. Addison

W esley Publishers in autumn, pp.210-400

[B5] - Lieberman, H., Liu, H., Singh, P., Barry, B.: Beating common sense into

interactive applications. Gante Magazine 25(4) (2004) 63-76

[B6] - Rollings, A. & Morris, D. (2004). Game Architecture and Design. New Riders

Publish pp 120-133

[WWW1] -The Histoiy of Java Technology or Home Page, URL:http://www.java.com/en

21stFebruaiy2009
[WWW2] -Java Histoiy with Tutorial or Home Page, URL: http ://www. freej avaguide.com

,21" Februaiy 2009
[WWW3]-Developer Resources for Java Technology or Home Page, URL:

http://java.sun.com ,21* Februaiy 2009

[WWW4] -Java News and Resources or Home Page, URL: http://www.cafeaulait.org,

22“* Februaiy 2009
[WWW5] -JasperReports and iReports or Home Page, URL: http://jasperforge.org/, 1*

March 1 2009
[WWW6] -Java Developer’s Journal or Home Page, URL: http://java.sys-con.com, 22“*

February 2009

[WWW7] -Unified Modeling Language Tutorial and Home Page, URL:
http://atlas.lmnnesaw.edu, 22“* February 2009

[WWW8] -Java Software Developer or Home Page, URL: http://www.developer.com/,

22“* February 2009
[WWW9] -Java Monkey Engine or Home Page, URL: http://www.jmonkeyengine.com,

2"d February 2009
[WWW10] -Open Source Software or Home Page, URL: http://sourceforge.net, 18th

November 2008

INDEX

3

3D • 11,29,30,31,41,42,43,44,45
3D games • 11

A
Actor ■ 22
adaptation ■ 37
Agile software development - 37
aún * 75
API • 3,42,43,68
Application Programming Interface ■ 3,68

B
Boundary Classes * 2,27

c
C# • 15
CARB-40
class • 19
Class • 18,23,24
client-server ■ 13,16
code architecture review board * 40
composition - 29
Computer -11
Construct • 31,41,42
Control Classes - 2,27

D

database - 34,72
defect * 32
Deploy Eñvironment * 3,73
Designing • 46
Development * 7,10,12,28,37,39,40,46,68
DirectX -30,41

E
Edutainment * 9
Encapsulation ■ 20,21
engine * 29,41
Entity Classes * 2,26
Event Driven * 15

F

functions * 29
Future • 75

G
Game-40
Game Concept • 40
Game Dev SIG * 7
game-concept • 62
Generic -15
Gimp - 2,29,68
G1MP • 29,68
GIP • 5,6, 7
GNU Image Manipulation Program • 29

H
Hardware Requirements * 3,73

I

IDE • 28,68
IEEE • 16
Inheritance -19
mspection - 37
instance * 18,19,26
úitegrating - 3,69
Integration Testíng - 32,33
IReport * 2,35,36
iteration • 38
Iterative process • 37

/

J2EE • 14
J2ME - 14
J2SE • 14
JasperReport * 35
JasperReports * 2,35,36,70,78
Java - 12,13,14,15,16,17
java 2D • 14
Java Monkey Engine - 44,68
Java Virtual Machine * 12
JDBC-36
JMonkeyEngme - 31
JOGL • 42,43

L
Languages-68
life cycle * 7,21,40
LWJGL • 30,42,43

luent * 37

M
message * 16,26
messages - 18, 22, 23, 25,26
methodologies • 38
Methods * 19
models * 18, 19, 22, 26,37
MoE • 7, 8, 10,40
MySQL • 2,34

System Requirement Specifi catión ■ 33
System Testing * 33,73
Systems integration testing - 34

T

Testing Levels * 2,32
Testing Strategy • 3,71
Third Party Components - 68
Tools* 68

N

non functional requiiements * 73

O

Oak* 12
Object • 15,16,17,18,20,24,26
Object Orient Programming • 17
Object-oríented * 15,18,20
object-oriented programming -13,17,18
objects * 41
OLPC • 7,75
OOP’ 17
open source ■ 42
OpenGL * 30,42,43
Operating system • 68
Overloading • 21
O v e r r id in g ■ 21

UML • 21, 24,25
Unifíed Modeling Language * 21
Unit Testing • 3, 32,71
use case - 22,23
Use Case - 9, 22,23
user acceptance testing * 34

V

Virclipse * 28,68
Virtusa ■ 5, 7,8

w
Waterfall process * 37
Windows ■ 29,30

P

Pascal* 18 X
PC- 11
Performance • 73 XML • 35
Platform Independent ■ 15
Polymorphism * 21
Properties • 19
í>rototyping • 37

R
radiosity * 44
Reality Factory ■ 31,44
Reporting ■ 3, 69,75
Requirement Specification - 33
requiremerits * 7,. 8, 13, 14, 18, 38, 40,73

s
ScirraConstruct ■ 31, 41, 42,68
security * 16,47
Security • 16,73
sequence diagram - 25,26
Sequence diagram * 25,26
Sequence Diagrams - 9
software * 9, 29,38
Software Development Kit ■ 12
Software Requirements * 3,74

National Digitization Project

National Science Foundation

Institute : Sabaragam uwa U niversity o f Sri Lanka

1. Place of Scanning : Sabaragam uwa U niversity o f Sri Lanka, B elihuloya

2. Date Scanned : . . j20 \3 :r:.0£ \.T ..X .rX.

3. Ñame of Digitizing Company : Sanje (Prívate) Ltd, No 435/16, Kottawa Rd,

Hokandara North, Arangala, Hokandara

4. Scanning O ffícer

Ñame

Signature

S .: B .-.c-r.

Certifícation o f Scanning

I hereby certify th a t the scann ing o f th is docum ent w as ca rried o u t under m y supervisión , a cco rd irfg to

the norm s a n d standards o f d ig ita l scann ing accurately, a lsq keep ing w ith the ó rig in a lity o f the orig iñSk
¡L # J l

docum ent to be a ccep ted in a court o f law.

CertifVing O ffícer

Designation : LIBRARIAN

Ñame

Signature

: T.N. NEIGHSOOREI,

Date :% .0 \ rV.'. O . C L . .X .'X ,
M ri.i.N.Ntív-n i yuKkl

(MSScPGD.ASLA£A)
Librarían

ibaragam uw a University o f Sri ta n to
P.O.Bo* 0 2 ,3 eí¡hutoya,Sr¡ Lanka

Tí.íe«P9 4 J 5 2 2 3 0 0 4 5

4* 7^0045
“This document/publication was digitized under National Digitization Project of the
National Science Foundation, Sri Lanka

