LAUNCH PAD FOR EDUTAINMENT SOFTWARE
SUITE

BY

A.1.SUWANDARATHNE
(03/AS/011)

This thesis is submitted in partial fulfillment of the requirements for the
degree of Bachelor of Science in Physical Sciences.

Department of Physical Sciences,
Faculty of Applied Sciences,
Sabaragamuwa University of Sri Lanka.
Belihuloya.

April 2009

DECLARATION

The content described in this thesis was practically implemented by me at the Virtusa
Corporation and the Faculty of Applied Sciences under the supervision of Mr. Gayan
Subasinghe and Dr. R.G.N. Meegama and the report described on this thesis has not been

submitted by any one for another degree. |

R - O - 2009 P

---------------------------------- e o UV seessssssacac

Date Asela 1. Suwandarathne
(03/AS/011)

CERTIFICATE OF APPROVAL

We hereby declare that this thesis is from the student’s own work and effort, and all other
Sources of information used have been acknowledged. This thesis has been submitted

With our approval.

Dr. R.G.N Meegama,

Senior Lecturer,

Department of Statistics and Computer Science,
University of Sri Jayewardenepura,

Gangodawila,

Nugegoda

Mr. Gayan Subasinghe,

ATC Project Manager,

Virtusa (Pvt.) Ltd,

117 Sir Chittampalam A.Gardiner Mw, 02 fo4/ 2009,
Colombo 2. (Date)

Dr. C.P.Udawatta g!

Hgad/D.gpanment of Physical Sciences, G T T T
Faculty of Applied Sciences, Signature
Sabaragamuwa University of Sri Lanka,

Belihuloya. GG .04 ~22

...........................

il

Affectionately Dedicated To My Parents and Sister

iii

ACKNOWLEDGEMENT

Carrying out an industrial training in a virtual context is challenging and requires significant
effort and support from all concerned. In this respect, I have been blessed with many people
who extended their support and encouragement throughout the training period.

My heartfelt gratitude goes to my supervisor, Dr. Gayan Meegama Department of Statistics
and Computer Science, University of Sri Jayewardenepura, who constantly guided me during
the training period. Undoubtedly, his supervision helped me looking into new dimensions of

motivation.

Secondly, I would like to express my sincere gratitude to all my team mates in the training
and development team, fellow Virtusans and Virtusa Corporation for providing me the
opportunity to carry out my industrial training at Virtusa Corporation., especially I wish to
express my deepest gratitude to my external supervisor Mr.Gayan Subasinghe, ATC Project
Manager, Virtusa Corporation, for his advice, encouragement and guidance through the study
and for sparing his valuable time in bringing this study to a successful completion and also to
my technical leader Mr. Ramesh Maddegoda, Virtusa Corporation for his encouragement and
guidance through this project.

. I wish to express my sincere gratitude to Prof Mahinda Rupasinghe, the Vice Chancelor,
Sabaragamuwa University of Sri Lanka, Prof. K.B. Palipane, The Dean, Faculty of 'Applied
Sciences, Sabaragamuwa University of Sri Lanka, Dr Chandana Udawatta, Head, Department
of Physical Sciences, Faculty of Applied Sciences, and Senior lecturer Dr. Nirmali
Wickramarathne Sabaragamuwa University of Sri Lanka, for guiding me toward a successful

‘completion.

I express my heart-felt gratitude towards the lectures for their cooperation through out my
study and my colleagues for their individual help and guidance at all times.

Last but not least, my heartiest thanks go to my parents, the main pillars of my life, who
constantly encouraged and supported me within their capacity throughout the course of this
industrial training.

iv

ABSTRACT

‘One of the key problems identified in using computers for primary school children is to make
the students get use to the machines. It has been identified that students will use the
computers more oﬁeﬂ if an attractive interactive environment, such as adventure games, was
provided.

The main objective of this project is to launch an Edutainment software suit, which can help
players to select each and every game according to the player’s preference in the given launch
pad. |

The software development process used for this project was Agile. The requirements were
based on the main objectives as stated by the Ministry of Education (MoE). Major
requirements of this project were fulfilled by interviewing the game experts, teachers,
reviewing similar applications and also reading sample documents. Unified Modeling
Language (UML) was used to convert the requirements into an analysis model. Inputs from
the potential users such as students and teachers and their corresponding tasks were
considered when the Use Case diagram was drawn in UML diagram. The analysis model was
then translated into a design model. To verify this system, class diagrams, sequence diagrams,
logical system architecture diagram and Entity — Relational diagram were created.
Implementations part was done using the Java language while Virclipse 2.0 was used as the
IDE to implement in Java, which is a separate editing platform developed by Virtusa
Corporation. For the designing, open source software, such as Blend, GNU Image
Manipulation Program (GIMP) and Flash CS3 were utilized. An iterative approach was
applied to each phase mentioned above to give an opportunity to MoE to get interactively
involved in the development.. Evaluative feedbacks were acquired in each meetiné with team
members." Refinements and modifications were carried out after each team meeting to fulfill
the client’s expectations.

Unit testing was performed to ensure that the functionality of individual components are
accurate. F;;ially, the individual components were integrated together and system testing was
done to ensure that the necessary functionalities expected by the customers were delivered.
Thorough testing was done on performance, security features, stress testing and user
acceptance testing in order to fulfill some of the non funcﬁonal requirements. The main
objective of the project was successfully met and the Ministry of Education was fully satisfied
with the successful completion of the system’s functional and non functional requirements.

CONTENT

DECLARATION |

ACKNOWLEDGEMENT

ABSTRACT \Y4

ACRONYMS AND ABUREVIATIONS____

LIST OF FIGURES VEI

LISI OF IABLES WMII\MI\HMMWMM[HWOMWWWMMWWWWWWMWWWMWWWWWWHIAMMWEX

CONTENT X
CHAPTERY
INTRODUCTION
11 Introduction 0fVirtusa COrPOratioN.......ceiiiciiiiie st e e e e e e s s snarer e e e e s e eaes 1
1.2 AboutVirtusa Game Dev SIG with MoE. 1
G T o {0 1= o A @ =T VTSR PPI 2
1.4 MaAJar CRAllENQES. . oo ittt ekt 2
L © o] [=To3 V=T PR RTPPPR 3
T R AV = VT L @ T o 1= o1 {17 SRR SSRRR 3
1.5.2 OVErall ODJECLIVES.ueiiiiie e s i ettt e e s et e e e e e s et e e e e e s s nnae e e e e e e s s anaaaneeeeeeennnsrees 3
CHAPTER 2 5
REVIEW OF LTTERATURE 5
P R C 1T LT o] (0] SRR 5
2.2 Java Programming LanQUagE.ccoiiiuuriiieeeeiiitiiieeteesssstieeeeeeessssttteeeaaessssnstseeeeessssnnnsnseeseesss 6
2.2.1 The History 0fJava TEChNOIOQY........ccuuiiieei i raaee s 6
2.2.2 Java aS MOdEra LaANQUAGE.ccoiuueieiiiiie ittt e eitee ettt e ettt e et e e e saae e e e snnbe e e s sabaeeeannneeeeanees 7
2.2.3 Comparability between Java and other [angUAGES.........ccooverieiiiiieiiiiiee e 8

LIST OF TABLES

Table2.1: Comparison between Computer [aNQUAGES.......cvvveereeeiiiiiiieee e sciiee e e siree e e e 9
Table2.2 : Elementa 0fa SeqUENCE diagramcoiueieeiiiiee ittt e et e e seeeee e 18
Table2.3 : Game ENQINE OVEIVIBWcoiiiiiiii ettt e e ettt e e e e e s s e e e e e s s e nnneeeaeeeeanns 22
Table4.1: Game adding to the Launch pad........coceeiiiiiiiiiiiiiiee e 37
Table4.2 : Game removing from the Launch pad.........cccoiiiiiiiiiiiiie e 38
Table4.3: Game filter fiom die Launch pad.........cooooiiiiiiiiie e 38
I 1oL L YTV T o Lo £ SRR 39
Tabled.5: Game LaAUNCH ...ttt e et e et e e e st ae e e s nnseeesenees 40
Table4.6: Add game to the launch pad desCription.......cccceiiei i 43
Table4.7 : Remove Game From the launch pad desCription..........ccccvvviieeiiiciienie e 44
Table4.8 : Filter games fiom the launch pad description.........cccccceeeiiiciie e, 45
Table4.9: Student/Teacher can view scores desCription.........ccccccvveeiiiciiiieee e 46
Table4.10 : Teacher and Student can laUNCh amMES......ccc.vviiiiieiiies e 48
TableS.I: Game Concept for the Ascending Train gam €......ccccveevvieeiiiiiieiie e 50
Table5.2 : Game Concept for the ODD/EVEN number separator game........ccocceevceerveeneeenne 51
Tabie5.3 : Game Concept for the Distance and Directions game........cccceevceveeviieeeviieeesiieeens 52
Tabie5.4 : Game Concept forthe Virtual shop game........ccccoveviiiii e, 1. 53
Tabled.1: Development ENVIFONMENT..........ooiiiiiiiiiiie e e e e srrra e e e e e 54
Table7.1 : SAMPIE TSt CASES. ittt ettt ettt ettt sttt e et e sb e st e e sbe e e saree e 59
Table7.2: SAMPIS TESECASE 1L......uuiiiieeeiiiiiiiie e eerree e e e s e e e e e s s st e e e e e e ssnntaereeeessasrnneeaeeeeanns 61
Tabie7.3: Software Requirement ofthe Depioyment Environment.........ccccoceeiiiieiiiieneninenn. 62

Figure2.1:
Figur62.2:
Figure2.3 :
Figure2.4:
Figure2.S :
Figure3.1:
Figure3.2 :
Figure3.3 :
Figure3.4:
Figure3.5 :
Figure4.1:
Figure4.2:
Figure4.3 :
Figure4.4:
Figured4.5 :
Figure4.6 :
Figure4.7:
Figure4.8:
Figure4.9:
Figure5.1:
FigureS.2:
Figure5.3 :
Figure5.4:
Figured.l:
Figure6.2:
Figure7.1:
Figure7.2 :
Figure7.3 :
Figure7.4:

LIST OF FIGURES

Properties & Methods iN @ ClaSS........cooviiiiiiii e 13
F0Y 1= g1 - Vg o] OO 13
L g Tof=Y o 1S U] - U A o o PSR 14
(O 1= 1T Y/ 1 11 o1 1 PSSO 17
(1Y o o PRI 20
Agile Development Process......ccccoceeviieeeenneen. 29
Game Development Life CYCI. .. 30
A Demo Game created With SCirra CONSTIUCT.........ccvvieiiiiee e 32
A Demo game created with Java Monkey ENQIiNe.....ccccccoovviiiiiiee e 33
Demo game created with Reality FACION.......ccooiiiiiiiii e 35
Use Case Diagram for OUr SYSIEMuviiiiie i 36
Class Diagram fOrthe SYSIEIMoouiiiiiiii e 41
Add gameto the LaunCh Pad........ccccvoiiiiiiiiiiie e s 42
Remove game fiom the launch pad.........cccooiiii e 43
Filter games fiom the 1aunch pad........ccceeiiiiiiii e 44
Student Can VIeW REPOIS.....cciiiiiiee et a e e e e e e 1. 45

T e oL ot T VATV =T o o Y o SR 46

Teacher can launNCh Qam €Sii it 47
Student can launCh games..........uviiiii e 47

OverView ofthe Ascending Train Game........cccoociiiiiiiiieiiee e 50

OverView ofthe ODD/EVEN number separator Game.........ccoeeevvvveeeeesiicnvvneneennn 51

OverView ofthe Distance and direCtions Game.........cccceeviiieeiiiiiee e 52

OverView ofthe Virtual ShOPp Game........oocviiiiiii i 53

Class HIBIAICNY ..t 55
L1 =T o o1 PR 56
Before implement add game teSt CASE.....cuuviiiiieeiiiciiiie e 58
After implement add game teST CASE ...ociiviiiiiiiie e 59
Before implement login test case.............. 60
After implement I0gin teSt CASE......cuiiiiiie e 60

VIU

MB Mega Byte

MoE : Ministry of Education

OLPC One Laptop Per Child
"OOP Object Oriented Programming
OpenAL Open Audio Library

OpenGL : Open Graphics Library

OSGI Open Services Gateway initiative
PC Personal Computers

QA Quality Assurance

RAM Random Access Memory

RGB Red Green Blue

SDK Software Development Kit

SE Software Engineer

SIT System Integration Testing
SRS System Requirement Specification
UAT User Acceptance Testing

Ul User Interface

UML Unified Modeling Language
VGA Video Graphic Array

WWWwW World Wide Web

ANSI
API
AVI
CARB
CSR
ECMA
E-R Diagram
FPS
FRS
Game Dev SIG
GIF
GIMP
GIP
GPL
IDE
IEEE
IP

ISO

IT
J2EE
J2ME
J2SE

JDBC
JOGL
JRE |
LWIGL

ACRONYMS AND ABBREVIATIONS

American National Standards Institute
Application Programming Interface

Audio Video Interleave

Code Architecture Review Board

Corporate Social Responsibilities

Ecma International

Entity Relationai Diagram

First Person Shooters

Functional Requirement Specification
Game Development Special Interesting Group
Graphics Interchange Format

GNU Image Manipulation Program

Global Innovation Process

General Public License

Integrated Development Environment
Institute of Electrical and Electronics Engineers
Intellectual Property

International Organization for Standardization
Information Technology

Java 2, Enterprise Edition

Java 2 Micro Edition

Java 2, Standard Edition

Java Database Connectivity

Java Open Graphic Library

Java Runtime Environment

Lightweight Java Game Library

TESTING & DEPLOYMENT.

7\ Testing Strategy

7.2 UnitTesting

72.1 TestCases
7.2.2 TestData

73 System Testing - :

7.4 Dapiloy Environment
7.4.1 Hardware

742 Software REQUIFEBMERALS v

CHAPTER 08IV M= 2= A\K
CONCLUSION---====mmm—-

8.1 Future Consideration
references e

INDEX

Xiu

57

Y

57
57

9j

63

.63

61

64

65

3.3.2 JMonkey Engine 32

3.3.3 Reality Factor.... 33
CHAPTER 04 — 36
DESIGNING DEVELOPMENT — 36
o R O LI B A T- Vo =T B U PRRPPR 36

4,11 USE Case DESCIIPLIONS.uuiiiieeeiiitiiitteeeseitieeetee s s asttaeeeeessssbbbeeeeeessssbbreeeaesssansneeeeeessanes 37
N O - L1 B T T-To | -t o D PO P UP PP PURTRTP 41
e B T To (W[T ot B A =T | =1 o I USRS 42

4.3.1 Add Gameto the LaunCh Pad...........cccviiiiiiieiiiiie it e s e 42

4.3.2 Remove Game from tiie Launch Pad............ccocoiiiiiiiii e 43

4133 Filter games from the Game LauNChEr...........cooiiiiiiiiiiie e 44

4.3.4 Studenl and Teacher Can VIEW REPOITS.cccciiiiiiiiie e s sttt e st e e e e e snnaneee e 45

G J SR =10 (ol o - 1y =T PO RPN 47
CHAPTER 05
GAME CONCEPTS & ANALYSIS. 49
5.1 Ascending Train (ar Descending Train)......cocciiiiieee i e e eraer e e 50
5.2 Odd/EVEN NUMDEIr SEPAIAtOF......ccicciiiiiiie e et s sttt e e e e s s e e e e e et e e e e e e s snnnraeeeaeesaaaes 51
5.3 Distance and Directions (Treasure HUND).......oooiiiiiire i 52
oY 1 4 (0T LIS o e USSR 53
CHAPTER 06 54
DEVELOPMENT ENVIRONMENT 54
6.1 Development ENVIFONMENT..........uiiiiiie et e e e e e e e s e e e e e e e s nnnees 54

6.1.1 Hardware ENVIFONIMENT.coiiuiiiiiiiiiie ittt ettt e et e e sbe e e e snneeas 54

6.1.2 SOftWAre ENVIFONMIENT......couiiiiiiiiii ettt ettt e e e sba e e e s bbee e 54
6.2 Application Programming Interface (API) used for implementation.............. 54
6.3 Integrating ENVIFONMENT........ooii et 55
6.4 REPOMING..ciiiiiiiiieiiiie e 56
CHAPTER 07 57

Xl

2.3 Object Oriented Programming PriNCiPiesS.......oocuiieiiieieiiiiieeiiiieeesiie e ssieee e siee e seree e 11

P B R O 1= 1 OO PO U PP PPPPRTPPPPR 12
P A © 1 o] 1= £ PP OU PP OPROUPRRPI 12
2.3.3 Properties and MEtDOUS.cccuuiiiiiiie e 12
P S 101 o 1= g = Vg Lo TP PR 13
2.3.5 ENCAPSUIBLIAN.eeiiiiiiiie ettt ettt e e naeea s 14
2.3.6 POTYMOIPNISIM. ..o et 14
2.4 Unified Modeling Language (UML) ...t sinreee e 14
R R UL O Tl B T T Vo =1 a 0 J PR OURSRRTRI 15
2.5.1 Elements 0FUSE Case DIAQIAM........ocuuiiiiiiiiieeeiieee ettt ettt e ettt e e et e e s ssbaeae s snbbeee s snnaeaaens 15
P2 T O =TT D X - Vo | = o S PPERR 16
2.7, SEOUENCE DIAGIAMIS. . uuiiiiiiieeeiiiiiiieeeeeeeeeetterreee s s s antree b esrnrareereaeessaattaaereeeeesannnnnnereeeesannes 17
A R 11 O - TSR 18
2.7.2 BOUNAAIY ClaSSES......uuuriiiiieiiiiiiiiiiee e e e s it et e e e s s st e e e ee e s s astbaaeeaeeeasassttaeeeaeessanstraaneeaeeaannnes 19
2.7.3 CONIOI CIASSES. ... eieiititiei ittt ettt ettt e ettt e ettt e e s ekttt e e s eate e e e e nbeee e ettt e e e s nbeeaesanneeaeanneeaeas 19
2.8 VIICHPSE IDE ... ittt e ettt e e st e e e et e e e e ntaeeeeannaeeenas 20
P28 I C 1101 o) (o1] P SRR OURPUPRPIN 20
2.10 G aAMEENGINES . it e e b e et bt e e s anbe e e e e aneeaeann 21
2.10.1 FreEWArE ENQINES.......uiiiiiiieeiieiiieteee e e s ettt e e e e e s s asset e e e e e e s s taaeeeeeesssnsatbaeeeaeessanssnnnneeeeeaans 22
P22 5 R -3 1 o SRR 23
2011 TeStNG LEVEIS... .. e e e e e 24
P N |V V1 PR PRPRUPRN 25
P2 G T - U o =1 T o Lo o £ PP PPPPPPPPPP 26
P2 | =T 0T o] AP O TP PP 27
CHAPTERO3 28
TECHNOLOGICAL DEVELOPMENT 28
3.1 Introduction to Software Development Methodology........ccccccviiiiiiiiiiiiciieee e, 28
3.1.1 Software DeVelOPMENT PrOCESS..........uviiiieee ittt e e e e e s r e e e e s st e e e e e e e e nnraaeees 28
3.1.2 AQIle DEVEIOPIMENT.ottt ettt e et e e s st e e s st e e s nnreeeeaan 28
3.2 (jame Development Life CYCle. .. e e nrreee e 30
R B T 1 aT=T = o T] [PRSP PRRRT 31
3.3.1 Sciira Construct (Rapld Game AUthormg SYSIEM).......ccvvieeiiiiiiiiiiee e 31

Xi

CHAPTER 1
INTRODUCTION

1.1 Introduction of Virtusa Corporation

Virtusa Corporation is a leading global technology innovation services provider that creates
competitive advantage for its clients. Virtusa was founded in 1996 by the prominent
technology entrepreneur, Kris Canekeratne, who has assembled a strong leadership team from
well-known companies like Infosys, IBM, Aether, 3Com and John Keels.

Previously known as eRUNWAY, Inc., Virtusa has been grown beyond being an efficient
provider of product and application development services to being the partner of choice in
creating competitive advantage for its clients using technology solutions.

Headquarters in Westborough, MA, Virtusa employs the finest global technology talent,
spread across its Advanced Technology Centers in the US, India and Sri Lanka. It also has
sales and marketing offices in several locations around the world.

1.2 About Virtusa Game Dev SIG with MoE

Virtusa Game Development Special Interest Grolip (Game Dev SIG) is a knowledge sharing
group. This special interest group is open for anyone who is interested in game development
within Virtusa. The Game Dev SIG understands Game Development as a serious industry
which requires very high technical expertise on multiple technologies. The Game Dev SIG
believes that Game Development has a high business value in global level.

As a part of the corporate social responsibility (CSR) initiatives of Virtusa, Game Dev SIG
involves in a voluntary project to develop edutainment software for primary schools of Sri
Lanka.

1.3 Project Overview

Purpose of this proposed system is to develop simple games in an interactive and attractive
manner for primary grade students attending schools in Sri Lanka. .

At the moment, the system posses several educational games in different formats. That are
not integrated into a unique system. That helps primary students without concentrating on
learning tools.

By this edutainment game software for the primary schools covered most of the mathematics
and the language subjects for the grade 3 and grade 4 students. For the mathematics scheme
we used basic arithmetic, sorting numbers and puzzles as major concepts.

Following learning techniques were used to get the optimum usage for this age group on
account of the interactive learning is preferred. .

s Group Work
s (Observation
= Activities

= Guided Play (Guidance provided by the teachers)

» Desk work
Duration of edutainment session was requested to limit to 30 minutes of maximum by the
particular schools according to the requirements collected by interviewing, subject matter
experts. Virtusans have designed the initial game concepts and graphics and those will be
reviewed by the subject matter experts and content experts.

1.4 Major Challenges

Following major challenges were identified during the project period. They can be listed as
follows,
= . To implement the whole edutainment system, using open source software.
®* To "gather requirements - by interviewing, organizing formal discussions and
' reviewing sample documents.
= To develop a concrete understanding of the game concepts.
= To acquire technical skills this related to graphics programming.
* For the development data stored in inbuilt notepad files, that is because to get the high
_ efficiency.
® To acquire technical skills which are to be applied to the Virtusa standards as well as
touch their main functionalities.

= All the equipments and images not copied from any place any person and everything
should be under the intellectual property (IP) rights.

= All the architecture built according to the design documents. /such as Use Case,
Sequence Diagrams and the class diagrams

= Project releases may upload once per week.

1.5 Objectives

It is intended as a teaching as well as the self learning tool. Basically, the students will have
to work by themselves while the initial guidance/assistance will be given by the teacher. The
major objectives and goals behind the project work are presented below. These are evaluated
at the end of the project to ascertain whether they have been met successfully.

1.5.1 Major Objective

= Implement console Software for the Edutainment software suite.
Our major objective is to develop the game portal which is the first interface user can see.
The games can be selected by teacher for their students and students can play games through
it. It is also possible students to see the results as well as see the progress of their game skills

1.5.2 Overall Objectives

= Deploy the mathematics skills of students
Most of the primary schools are keeping their eye on increasing student skills since the small
age. As an experiment, MoE decide to increase mathematical level of the students because
mathematics is essential for the day to day life activities.

= Report Demonstration
Report demonstration is planned to be act in two ways. Considering students account, their
skills can be developed through this. Displaying the results score on screen, the students can
be motivated to achieve high scores. On teacher’s point, it is visible the student’s progress
levels to teachers and they can advice to students easily. That’s how the project implemented
with the report demonstration.

= Increase market opportunities
This implies the way of interacting with the real time conditions. That helps to increase
market opportunities with knowledgeable students with ability of using different algorithms.

= Take the latest technology to students
Most of the students lack of knowledge on latest technology. MoE is planning to familiarize
the latest technology to student’s mind through this. It is pity that even teachers of most of
rural villages have no idea on handling computers. But development of this system, make
available the latest technology to the students as well as teachers who are away from the
capital cities.

= Measure the progress of the students
By providing some time to play these kinds of edutainment games, it is possible to improve
student’s language and mathematical skills. Also teachers can measure the progress of using
new-way of technology through evaluating their performance during grade 3 and grade 4.

Chapter 2
Review Of Literatiure

CHAPTER 2
REVIEW OF LITERATURE

2.1 Games History

Computer games were introduced as a commercial entertainment medium in 1971, becoming the
basis for an important entertainment industry in the late 1970s/early 1980s in the United States,
Japan, and Europe. The first generation of PC games was often text adventures or interactive
fiction, in which the player communicated with the computer by entering commands through a
keyboard. The first text-adventure, Adventure, was developed for the PDP-11 by Will Crowther
in 1976, and expanded by Don Woods in 1977. By the 1980s, personal computers had become
powerful enough to run games like Adventure, but by this time, graphics were beginning to
become an important factor in games.

Prior to game engines, games were typically written as singular entities. Thus most game designs
through the 1980s were designed through a hard-coded rule set with a small amount of level and
graphics data. The term "game engine" arose in the mid-1990s, especially in connection with 3D
games such as first-person shooters (FPS). Modern game engines are some of the most complex
~ applications written, frequently featuring dozens of finely tuned systems interacting to ensure a
finely controlled user experience. The continued refinement of game engines has created a strong
separation between rendering, scripting, artwork, and level design. First-person shooter games
remain the predominant users of third-party game engines, but they are now also being used in
other genres. As game engine technology matures and becomes more user-friendly, the
applications of game engines has broadened in scope, and are now being used for serious games:
visualization, training, medical, and military simulation applications.

Chapter 2
Review Cf Literature

2.2 Java Programming Language

2.2.1 The History of Java Technology

In the early 90s, extending the power of network computing to the activities of everyday life was
a radical vision. In 1991, a small group of Sun engineers called the "Green Team" believed that
the next wave in computing was the union of digital consumer devices and computers. Led by
James Gosling, the team worked around the clock and created the programming language that
would revolutionize our world — Java. Java was started as a project called "Oak". [www2]

The Green Team demonstrated their new language with an interactive, handheld home-
entertainment controller that was originally targeted at the digital cable television industry.
Unfortunately, the concept was much too advanced for them at the time. But it was just right for
the Internet, which was just starting to take off. In 1995, the team announced that the Netscape
Navigator Internet browser would incorporate Java technology. [www1]

Unlike conventional languages which are generally designed either to be compiled to native
(machine) code, or to be interpreted from source code at runtime, Java is intended to be compiled
. to a bytecode, which is then run (generally using JIT compilation) by a Java Virtual Machine.
[www2] |

In 1997, Sun approached the ISO/IEC JTC1 standards body and later the Ecma International to
formalize Java, but it soon withdrew from the process. Java remains a proprietary de facto
standard that is controlled through the Java Community Process. Sun makes most of its Java
implementations available without charge, with revenue being generated by specialized products
such as the Java Enterprise System. Sun distinguishes between its Software Development Kit
(SDK) and Java Runtime Environment (JRE) which is a subset of the SDK, the primary
distinction being that in the JRE the compiler is not present. [www2]

Chagter 2
Review Of Literature

There were five primary goals in the creation of the Java language:

1. It should use the object-oriented programming methodology.

2. It should allow the same program to be executed on multiple operating systems.

3. It should contain builf—in support for using computer networks.

4. It should be designed to execute code from remote sources securely.

5. It should be easy to use by selecting what was considered the good parts of other object-
oriented languages.

To achieve the goals of networking support and remote code execution, Java programmérs
sometimes find it necessary to use extensions such as CORBA, Internet Communications Engine,
or OSGL [www2]

2.2.2 Java as Modern Language

Today, Java not only permeates the Internet, but also is the invisible force behind many of the
applications and devises that power our day-to-day lives. From mobile phones to handheld
devises, games and navigation systems to e-business solutions, Java is everywhere.

The design requirements of the Java™ programming language are driven by the nature of the
- computing environments in which software must be deployed. The massive growth of the
Internet and the World-Wide Web leads us to a completely new way of looking at development
and distribution of software. To live in the world of electronic commerce and distribution, Java
technology must enable the development of secure, high performance, and highly robust
applications on multiple platforms in heterogeneous, distributed networks.

Operating on multiple platforms in heterogeneous networks invalidates the traditional schemes of
binary disﬁibﬁtion, release, upgrade, patch, and so on. To survive in this jungle, the Java
programming language must be architecture neutral, portable, and dynamically adaptable. The
system that emerged to meet these needs is simple, so it can be easily programmed by most
developers; faxniliar, so that current developers can easily learn the Java programming language;
object oriented, to take advantage of modern software development methodologies and to fit into
distributed client-server applications; multithreaded, for high performance in applications that
need to perform multiple concurrent activities, such as multimedia; and interpreted, for maximum
" portability and dynamic capabilities. '

Chapter 2

Review Of Literature

Even in our project we have used the latest version of java 5.0 as the programming Language.

Basically we have used java 2D graphics package for our graphical requirements. Also java has
more advantages over the other programming languages like:

= Java is easy to l.eam.

= Java was designed to be easy to use and is therefore easy to write, compile, debug, and
learn than other programming languages.

= Java is object-oriented. This allows you to create modular programs and reusable code.

= Java is platform-independent.

With the advent of Java 2 (released initially as J2SE 1.2 in December 1998), new versions had
multiple configurations built for different types of platforms. For example, J2EE targeted
enterprise applications and the greatly stripped-down version J2ME for mobile applications. J2SE
designated the Standard Edition. In 2006, for marketing purposes, Sun renamed new J2 versions
as Java EE, Java ME, and Java SE, respectively. [www?3]

2.2.3 Comparability between Java and other languages

Programming languages are used for controlling the behavior of a machine (often a computer).
Like natural languages, programming languages conform to rules for syntax and semantics.
There are thousands of programming languages and new ones are created every year. Few
languages ever become sufficiently popular that they are used by more than a few people. General
Comparison of programming languages with Java indicates in following table. Table 2.1 shown a
comparison of different programming languages.

Chapter 2
Review Of Literature

Language Intended use Paradigm(s) Standardized?
Assembly Language - General --- No
C System imperative Yes, ANSI C89, ISO
C90/C99
C++ Application, System Imperative,
Object-oriented, Yes, ISO
generic
C# Application imperative ,
Object-oriented, Yes, ECMA, ISO
Functional, Generic,
Reflective
Java Application, Web imperative ,
Object-oriented, No
Functional, Generic,
Reflective
Python Application, imperative, aspect-
Scripting, Web .
oriented, No
Functional, Generic, '
Reflective
Visual Basic NET Application, Object-oriented,
Education . No
Event Driven .

Major Paradigm of using java language

. .Platfbrm Independent

Table2.1 : Comparison between computer languages

Java was designed to not only be cross-platform in source form like C, but also it is compiled in
binary form. Since this is impossible across processor architectures, Java is compiled to an
intermediate form called byte-code. A Java program never really executes natively on the host
. machine. Rather a special native program called the Java interpreter reads the byte code and
executes the corresponding native machine instructions. Thus, to port Java programs to a new
. platform all that is needed is to port the interpreter and some of the library routines. Even the

Review OF Z,ft;;
compiler is written in Java. The byte codes are precisely defined, and remain the same on all
platforms. The second important part of making Java cross-platform is the elimination of
undefined or architecture dependent constructs. Integers are always four bytes long, and floating
point variables follow the IEEE 754 standard for computer arithmetic exactly. You don't have to
worry that the meaning of an integer is going to change if you move from a Pentium to a
PowerPC. In Java everything is guaranteed.

However the virtual machine itself and some parts of the class library must be written in native

code. These are not always as easy or as quick to port as pure Java programs. [www4]

= Object Oriented and Familiar .

Priméry characteristics of the Java programming language include a simple language that can be
programmed without extensive programmer training while being attuned to current software
practices. The fundamental concepts of Java technology are grasped quickly; programmers can be
productive from the very beginning.

The Java programming language is designed to be object oriented from the ground up. Object
technology has finally found its way into the programming mainstream after a gestation period of
thirty years. The needs of distributed, client-server based systems coincide with the encapsulated,
message-passing paradigms of object-based software. To function within increasingly complex,
network-based environments, programming systems must adopt object-oriented concepts. Java
- technology provides a clean and efficient object-based development platform. [B3]

= High Security Performances
Java technology is designed to operate in distributed environments, which means that security is
of paramount importance. With security features designed into the language and run-timé system,
Java technology lets you construct applications that can't be invaded from outside. In the network
environmetit, ﬁpplications written in the Java programming language are secure from intrusion by
unauthorized code attempting to get behind the scenes and create viruses or invade file systems.

* Interpreted, Threaded, and Dynamic
The Java interpreter can execute Java byte codes directly on any machine to which the interpreter
and run-time system have been ported. In an interpreted platform such as Java technology-based
system, the link phase of a program is simple, incremental, and lightweight. You benefit from
much faster development cycles—prototyping, experimentation, and rapid development are the
normal case, versus the traditional heavyweight compile, link, and test cycles.

:f”.,

(J

rester
Review OQF Iitergrur

ﬂ‘;

While the Java Compiler is strict in its compile-time static checking, the language and run-time
system are dynamic in their linking stages. Classes are linked only as needed. New code modules
can be linked in on demand from a variety of sources, even from sources across a network. In the
case of the Hot Java Browser and similar applications, interactive executable code can be loaded
from anywhere, which enables transparent updating of applications. The result is on-line services
that constantly evolve; they can remain innovative and fresh, draw more customers, and spur the

growth of electronic commerce on the Internet. [www3]

2.3 Object Oriented Programming principles

Object-Oriented Programming (OOP) represents an attempt to make programs more closely
* model the way people think about and deal with the world. In the older styles of programming, a
programmer who is faced with some problem must identify a computing task that needs to be
performed in order to solve the problem. Programming then consists of finding a sequence of
instructions that will accomplish that task. But at the heart of object-oriented programming,
instead of tasks we find objects— entities that have behaviors, that hold information, and that can
interact with one another. Programming consists of designing a set of objects that model the
problem at hand. Software objects in the program can represent real or abstract entities in the
- problem domain. This is supposed to make the design of the program more natural and hence
easier to get right and easier to understand.

Object-Orientation is a set of tools and methods that enable software engineers to build reliable,
user friendly, maintainable, well documented, reusable software systems that fulfills the
requirements of its users. It is claimed that object-orientation provides software developers with
new mind tools to use in solving a wide variety of problems. Object-orientation provides a new
view of compﬁtation. A software system is seen as a community of objects that cooperate with
each other by passing messages in solving a problem.

Object-oriented programming is one of several programming paradigms. Other programming
paradigms include the imperative programming paradigm (as exemplified by languages such as
Pascal or C), the logic programming paradigm (Prolog), and the functional programming
paradigm (exemplified by languages such as ML, Haskell or Lisp). Logic and functional
languages are said to be declarative languages.

An object-oriented programming language provides support for the following Concepts and those
described as follows. [B3]

Chapter 2
Review Of Literature

2.3.1 Class

A class is a blueprint or prototype from which objects are created. This section defines a class that
models the state and behavior of a real-world object. It intentionally focuses on the basics,
showing how even a simple class can cleanly model state and behavior.

Once a class of items is defined, a specific instance of the class can be defined. An instance is
also called “obj ec .

2.3.2 Objects

Objects are the physical and conceptual things we find in the universe around us. Hardware,
software, documents, human beings, and even concepts are all examples of objects.

Objects are thought of as having state. The state of an object is the condition of the object, or a set
of circumstances describing the object. It is not uncommon to hear people talk about the "state
information” associated with a particular object. For example, the state of a bank account object
would include the current balance, the state of a clock object would be the current time, the state
of an electric light bulb would be "on" or "off." For complex objects like a human being or an
. automobile, a complete description of the state might be very complex. Fortunately, when we use
objects to model real world or imagined situations, we typically restrict the possible staﬁes of the
objects to only those that are relevant to our models. [www3]

2.3.3 Properties and Methods

Properties in a class are used to present the structure of the objects: their components and the
information or data contained therein shown in figure 2.1. An instance of a class has the
properties defined in its class and all of the classes from which its class inherits. Methods in a
class describe the behavior of the objects. It represents a function that an instance of the class can
be asked to perform. Methods in a class describe the behavior of the objects. It represents a
function that an instance of the class can be asked to perform. [www6]

Chapler 2
Re\ iew Of Litcrature

Y .

3 Properties
‘ifp AppHLIKm

7

N

[0 Mt]
Voo

v Y /

Figure 2.1 : Properties & Methods in a class

2.3.4 Inheritance

Different kinds of objects often have a certain amount in common with each other. Mountain
bikes, road bikes, and tandem bikes, for example, all share the characteristics of bicycles (current
speed, current pedal cadenee, current gear). Yet each also defines additional features that make
them different: tandem bicycles have two seats and two sets of handlebars; road bikes have drop
handlebars; some mountain bikes have an additional chain ring, giving them a lower gear ratio.

Object-Oriented programming allows classes to inherit commonly used State and behavior from
other classes. In this example, Bicycle now becomes the superclass of MountainBike, RoadBike,
and TandemBike. In the Java programming language, each class is allowed to have one direct
superclass, and each superclass has the potential for an unlimited number of subclasses: [www3].

Figure 2.2 give a sample inheritance case.

Mountain&Ke RoadBike TandemBike

Figure 2.2 : Inheritance

C hapter 2
Re\ icw Oi Lilcrature

2.3.5 Encapsulation

Encapsulation means as much as shielding. Each object-oriented object has a shield around it.
Objects cant see’ each other. They can exchange things though, as if they are interconnected
through a hatch. Figure 2-4 shows the concept of the encapsulation. It separates the extemal
aspects of an object from the intemal implementation details of the object, which are hidden ffom
other objects. The object encapsulates both data and the logical procedures required to manipulate

the data.

rpm

Figure 2.3 : Encapsulation

2.3.6 Polymorphism

Polymorphism indicates the meaning of “many form.” In object-oriented design, polymorphism
present a method can has many definitions (forms). Polymorphism is related to Overloading and
Overriding. Overloading indicates a method can have different defmitions by defining different
type of parameter. Overriding indicates that subclass and parent class have the same methods,

parameters and retum types (namely to redefme the methods in parent class). [www3]

2.4 Unified Modeling Language (UML)

The Unified Modeling Language (UML) is a general purpose visual modeling language that is
used to specify , visualize , construct and document the artifacts of a software System. It captures
decisions and understanding about system that must be constructed. It is used to understand,

design , browse, configure, maintain and control information about such Systems. It is intended

Chapter 2

Review Of Literature

for use with all development methods, life cycle stages, application domain and media. The

modeling language is intended to unify past experience about modeling techniques and to

incorporate current software best practices into a standard approach. UML includes semantic

concepts, notations and guidelines. It has static, dynamic environmental and organizational parts.

It is intended to be suﬁported by interactive visual modeling tools that have code generators and

report writers. The UML specification does not define a standard process but it is intended to be
useful with an iterative development process. [B1]

2.5 Use Case Diagrams

The use case view models the functionality of the system as perceived by outside users called
‘Actor’s. A use case is a coherent unit of functionality expressed as a transaction among actors
and the system. The purpose of the use case view is to list the actors and use cases and show
which actors participate in each use case. [B1]

2.5.1 Elements of Use Case Diagram

The use case view captures the behavior of the system, subsystem or class as it appears to an
outside user .It partitions the system functionality into transactions meaningful to actor’s
idealized users of a system. The pieces of interactive functionality are called use cases. A use case
described an interaction with actors as a sequence of messages between the system and one more

actors.

s Actor

An actor is an idealization of an external person, process or thing interacting with a system,
subsystem or class. An actor characterizes the interactions that outside users may have with the
system. At run time, one physical user may be bound to multiple actors within the system.
Different users may be bound to the same actor and therefore represent multiple instances of the
same actor definition.

Each actor participate in one or more use cases. It interacts with the use case by exchanging
messages. The internal implementation of an actor is not relevant in the use case. An actor may
be characterized sufficiently by a set of attributes that define its state.

Actors may be defined in generalization hierarchies, in which is an abstract actor description is
shared and augmented by one or more specific actor descriptions. An actor may be a human,

Chapter 2
Review Of Literature

another computer system or some executable process. An actor is drawn as a small stick person
with the name below it. [B1]

@ Use Case

A use case is a coherent unit of externally visible functionality provided by system unit and
expressed by sequence of messages exchanged by the system unit and one or more actors of
the system unit. The purpose of a use case is to define a piece of coherent behavior without
revealing the internal structure of the system.

The definition of use case includes all the behavior it entails the main sequences, different
variations on normal behavior, and all the exceptional ‘conditions that can occur with such
behavior, together with the desired response. From the user’s point of view, these may be
abnormal situations. From the system’s point of view, they are additional variations that must
be described and handled.

In the model execution of each use case is independent from the others, although an
implementation of the use case may create implicit dependencies among them due to shared
objects. Each use case represents an orthogonal piece of functionality whose execution can be
mixed with the execution of other use cases. A use case is drawn as an ellipse with its name
inside or below it. It is connected by solid lines to actors that communicate with it. [B1]

2.6 Class Diagrams

Class diagrams are widely used to describe the types of objects in a system and their
relationships. Class diagrams model class structure and contents using design elements such as
classes, packages and objects. Class diagrams describe three different perspectives when
designing a system, conceptual, specification, and implementation. These perspectives become
evident as the diagram is created and help solidify the design. This example is only meant as an
introduction to the UML and class diagrams. If you would like to learn more see the Resources
page for mo;; detailed resources on UML.

Classes are composed of three things: a name, attributes, and operations. Below is an example of
a class. Figure 2.4 given an example of class symbol.

Chapter 2
Rc\ iew Of Literature

Class Name -» Custorner

. “narne : String
Attributes Naddress : String

Operations A creditRatingQ

Figure 2.4 : Class Symbol

Class diagrams also display relationships such as containment, inheritance, associations and
others. Class diagrams are some of the most difficult UML diagrams to draw. To draw detailed
and useful diagrams a person would have to study UML and Object Oriented principies for a long
time. Therefore, this page will give a very high level overview of the process.

Before drawing a class diagram consider the three different perspectives of the system the
diagram will present; conceptual, specification, and implementation. Try not to focus on one
perspective and try seeing how they all work together.

When designing classes consider what attributes and operations it will have. Then try to
determine how instances of the classes will interact with each other. These are the very first steps
of many in developing a class diagram. However, using just these basic techniques one can

develop a complete view of the software system. [www7]

2.7 Sequence Diagrams

A sequence diagram is made up of objects and messages. Objects are represented exactly how
they have been represented in all UML diagrams—as rectangles with the underlined class fiame
within the rectangle. A Sequence diagram depicts the sequence of actions that occur in a system.
The invocation of methods in each object, and the order in which the invocation occurs is
captured in a Sequence diagram. This makes the Sequence diagram a very useful tool to easily
represent the dynamic behavior of a system.

A Sequence diagram is two-dimensional in nature. On the horizontal axis, it shows the life of the
object that it represents, while on the vertical axis, it shows the sequence of the creation or
invocation of these objects. Because it uses class fiame and object fiame references, the Sequence

diagram is very useful in elaborating and detailing the dynamic design and the sequence and

Chapter 2
Review Of Literature

origin of invocation of objects. Hence, the Sequence diagram is one of the most widely used
dynamic diagrams in UML. Table 2.2 given the elements of a sequence diagram.

Element and its description Symbol

Object: The primary element involved in a sequence diagram is an

Object—an instan f a class. A Se di ists of .
j an instance of a class quence diagram consists o obj ame

sequences of interaction among different objects over a period of

time. An object is represented by a named rectangle. The name to the
left of the ":" is the object name and to its right is the class name.

Message: The interaction between different objects in a sequence

-| diagram is represented as messages. A message is denoted by a
directed arrow. Depending on the type of message, the notation
differs. In a Sequence diagram, you can represent simple messages,

special messages to create or destroy objects, and message

responses.

Table2.2 : Elements of a sequence diagram

" 2.7.1 Entity Classes

An entity class models information and associated behavior that is generally long lived. This type
of class may reflect a real-world entity or it may be needed to perform tasks internal to the
system. They are typically independent of their surroundings; that is, they are not sensitive to how
the surroundings communicate with the system. Many times, they are application independent,
meaning that they may be used in more than one application.

The first step is to examine the responsibilities documented in the flow of events for the identified
use cases (i.e,, what the system must do). Entity classes typically are classes that are needed by
the system to accbmplish some responsibility. The nouns and noun phrases used to describe the
responsibility may be a good starting point. The initial list of nouns must be filtered because it
could contain nouns that are outside the problem domain, nouns that are just language
expressions, nouns that are redundant, and nouns that are descriptions of class structures.

Entity classes typically are found early in the Elaboration Phase. They are often called "domain"
classes since they usually deal with abstractions of real-world entities.

Chapter 2
Review Cf Literature

2.7.2 Boundary Classes

Boundary classes handle the communication between the system surroundings and the inside of
the system. Theycqnprovidetheinterfacetoauseroranothersystem(i.e.,theinterfacetoan
actor). They constitute the surroundings-dependent part of the system. Boundary classes are used
to model the system interfaces.

Each physical actor/scenario pair is examined to discover boundary classes. The boundary classes
chosen in the Elaboration Phase of development are typically at a high level. For example, you
may model a window but not model each of its dialogue boxes and buttons. At this poiht, you are
docﬁmenting the user interface requirements, not implementing the interface.

User interface requirements tend to be very vague—the terms user-friendly and flexible seem to
be used a lot. But user-friendly means different things to different people. This is where
prototyping and storyboarding techniques can be very useful. The customer can get the "look and
feel" of the system and truly capture what user-friendly means. The what is then captured as the
structure and behavior of the boundary class. During design these classes are refined to take into
consideration the chosen user interface mechanisms—how they are to be implemented.

Boundary classes are also added to facilitate communication with other systems. During design,

these classes are refined to take into consideration the chosen communication protocols.

2.7.3 Control Classes

Control classes model sequencing behavior specific to one or more use cases. Control classes
coordinate the events needed to realize the behavior specified in the use case. You can think of a
control class as "running" or "executing" the use case—they represent the dynamics of the use
case. Control classes typically are application-dependent classes.

In the early stages of the Elaboration Phase, a control class is added for each actor/use case pair.
The control tlass is responsible for the flow of events in the use case. The use of control classes is
very subjective. [B2]

Chaplcr 2
Re\ jcu Of Literature

2.8 Virclipse IDE

In this project | have used Eclipse Integrated Development Environment as the coding tool. We
have used Eclipse to code java classes, compile them and run those classes. Virclipse IDE is of
the updated and a modified version of a Eclipse IDE. Therefore for this project a customized
version of eclipse called Virclipse is used. Virclipse is a customized in Virtusa as a productivity

improvement tool for software development with some additional Eclipse plug-ins.

2.9 Gimp tool

The GIMP (GNU Image Manipularon Program), is a raster graphics editor used to process
digital graphics and photographs. GIMP is a freely distributed piece of software for such tasks as
photo retouching, image composition and image authoring. It works on many operating systems,
in many languages. In this project Gimp is used to design the user interfaces, graphics etc. Figure

2.5 given a sample scene of GIMP.

Figure 2.5 : GIMP tool

Chapter 2
Review Of Literature

2.10 Game Engines

The game engine is generally the library of core functions used in the game, usually related to
graphics, input, networking and other systems. Another way to understand what a game engine is
would be considering them as the non game-specific part of the game, so we can have several
games ranging from RPGs to FPSs using the same engine. There are many game engines that are
designed to work on game consoles and desktop operating systems such as Linux, Mac OS X, and
Microsoft Windows. The core functionality typically provided by a game engine includes a
rendering engine (“renderer”) for 2D or 3D graphics, a physics engine or collision detection (and
collision response), sound, scripting, animation, artificial intelligence, networking, -streaming,
memory management, threading, and a scene graph.

Game engines provide a suite of visual development tools in addition to reusable software
components. These tools are generally provided in an integrated development environment to
enable simplified, rapid development of games in a data-driven manner. These games engines are
sometimes called "game middleware" because, as with the business sense of the term, they
provide a flexible and reusable software platform which provides all the core functionality
needed, right out of the box, to develop a game application while reducing costs, complexities,
and time-to-market—all critical factors in the highly competitive game industry.

Some game engines only provide real-time 3D rendering capabilities instead of the wide range of
functionality required by games. These engines rely upon the game developer to implement the
rest of this functionality or assemble it from other game middleware components. These types of
engines are generally referred to as a "graphics engine," "rendering engine," or "3D engine"
instead of the more encompassing term "game engine." However, this terminology is
inconsistently used as many full-featured 3D game engines are referred to simply as "3D
engines." A few examples of graphics engines are: RealmForge, Truevision3D, OGRE, Crystal
Space and Genesis3D. Table 2.3 given the overview of game engines.

Review O

Chasier 2
f Literature

Name Language | Platform License Graphics Sound Scripting
. Windows / 2D via Direct3D or
AgateLib | NET Mono Free OpenGL Yes No
AGL 2D via DirectDraw,
Engi C++ Windows Commercial Direct3D or Yes No
ngine OpenGL
C4 Windows,
Engine C++ Mac, PS3 Commercial 3D Yes Visual Scripting
DXGame | yp¢ Windows | Free 2D+ via Direct3D | Yes No
Engine
Game . . Free and) Its own scripting
Maker Delphi Windows Commercial 2D/3D Yes i 2e(GML)
Engine code is .
Ghost . o e 3D via
P C++ Windows Z1ib/1ibPNG- . No -
Engine licensed OpenGL/DirectX,
Windows,
JGame Java Unix, Free (BSD) 2D Yes No
MacOSX
iMonk Windows, Yes - Yes - jMonkey
Enoine | | Java Linux, Free (BSD) 3D via LWIGL OpenAL | Scripting
ngine MacOS X Sound Framework
The .
Windows Free (Closed
Rea!Feel VB6 XP/Vista Source) 2D Yes No
Engine
Reality None . . 3D via Genesis3D
Factory needed Windows Genesis 3D (DirectX) Yes Yes

2.10.1 Freeware Engines

Table2.3 : Game Engine Overview

These engines are available for free use, but without the source code being available under an

open source license. Many of these engines are commercial products which have a free edition

available for them.
Adventure Game Studio — Mainly used to develop third-person pre-rendered adventure

Build engine — A first-person shooter engine used to power Duke Nukem 3D

" games, this engine is one of the most popular for developing amateur adventure games.

dim3 — Freeware 3D JavaScript engine for the Mac (although finished games are cross

platform).

DX Studio — Real-time professional 3D engine and editing suite produced by World

" weaver Ltd

Chapter 2
Review Of Literature
= Game Maker Lite — Object-oriented game development software with a scripting
language as well as a drag-and-drop interface
= JMonkeyEngine — An open-source, BSD licensed Java scene graph engine.

Out of all freeware engines for our development we were used JMonkeyEngine , Scirra Construct
and reality factor.

2.11 Testing

Software Testing is an empirical investigation conducted to provide stakeholders with
information about the quality of the product or service under test, with respect to the context in
which it is intended to operate. This includes, but is not limited to, the process of executing a
program or application with the intent of finding software bugs.

A primary purpose for testing is to detect software failures so that defects may be uncovered and
corrected. This is a non-trivial pursuit. Testing cannot establish that a product functions properly
under all conditions but can only establish that it does not function properly under specific
conditions. The scope of software testing often includes examination of code as well as execution
of that code in various environments and conditions as well as examining the aspects of code:
does it do what it is supposed to do and do what it needs to do. In the current culture of software
- development, a testing organization may be separate from the development team. There are
various roles for testing team members. Information derived from software testing may be used to
correct the process by which software is developed.

A common source of requirements gaps is non-functional requirements such as testability,
scalability, maintainability, usability, performance, and security. Software faults occur through
the following process. A programmer makes an error (mistake), which results in a defect (fault,
bug) in the software source code. If this defect is executed, in certain situations the system will

produce wrong results, causing a failure. Not all defects will necessarily result in failures.

Chanter 2
Review Of Literature

2.11.1 Testing Levels

= Unit Testing

The primary goal of unit testing is to take the smallest piece of testable software in the
application, isolate it from the remainder of the code, and determine whether it behaves exactly as
you expect. Each unmit is tested separately before integrating them into modules to test the
interfaces between modules. Unit testing has proven its value in that a large percentage of defects
are identified during its use.

The most common approach to unit testing requires drivers and stubs to be written. The driver
simulates a calling unit and the stub simulates a called unit. The investment of developer time in
this activity sometimes results in demoting unit testing to-a lower level of priority and that is
almost always a mistake. Even though the drivers and stubs cost time and money, unit testing
provides some undeniable advantages. It allows for automation of the testing process, reduces
difficulties of discovering errors contained in more complex pieces of the application, and test
coverage is often enhanced because attention is given to each unit.

= Integration Testing
'Integration testing' called abbreviated I1&T is the phase of software testing in which individual
software modules are combined and tested as a group. It follows unit testing and precedes system
testing.
Integration testing takes as its input modules that have been unit tested, groups them in larger
aggregates, applies tests defined in an integration test plan to those aggregates, and delivers as its
output the integrated system ready for system testing.
The purpose of integration testing is to verify functional, performance and reliability
requirements placed on major design items. These design items are exercised through their
interfaces using Black box testing, success and error cases being simulated via appropriate
parameter and data inputs. Simulated usage of shared data areas and inter-process communication
is tested and individual subsystems are exercised through their input interface. Test cases are
constructed 10 test that all components within assemblages interact correctly, for example across
procedﬁre calls or process activations, and this is done after testing individual modules, i.e. unit
testing.
The overall idea is a "building block" approach, in which verified assemblages are added to a
verified base which is then used to support the integration testing of further assemblages.
Some different types of integration testing are big bang, top-down, and bottom-up.

Chapter 2
Review Of Literature

= System Testing

.System testing of software is testing conducted on a complete, integrated system to evaluate the
system's compliance with its specified requirements. System testing falls within the scope of
black box testing, and as such, should require no knowledge of the inner design of the code or
" logic. System testing is performed on the entire system in the context of a Functional
Requirément Specification(s) (FRS) and/or a System Requirement Specification (SRS). System
testing is an investigatory testing phase, where the focus is to have almost a destructive attitude
and tests not only the design, but also the behavior and even the believed expectations of the
customer. It is also intended to test up to and beyond the bounds defined in the software/hardware
requirements specification(s). System testing includes the i..oad testing and Stress testing. Once
the Load testing and Stress testing is completed successfully, the next level of Alpha Testing or
Beta Testing will go ahead.

= System Integration Testing

System Integration Testing (SIT), in the context of software systems and software engineering, is
a testing process that exercises a software system's coexistence with others. System integration
testing takes multiple integrated systems that have passed system testing as input and tests their
required interactions. Following this process, the deliverable systems are passed on to acceptance
testing. .

Systems integration testing (SIT) is a testing phase that may occur after unit testing and prior to
user acceptance testing (UAT). Many organizations do not have a SIT phase and the first test of
UAT may include the first integrated test of all software components.jwww13]

2.12 MySQL

MySQL is the world's most popular open source database software, with over 100 million copies
of its software downloaded or distributed throughout its history. With its superior speed,
reliabiiity, and ease of use, MySQL has become the preferred choice for Web, Web 2.0, SaaS,
ISV, Telecom companies and forward-thinking corporate IT Managers because it eliminates the
major problems associated with downtime, maintenance and administration for modern, online

applications.

Chapter 2
Review Of Literature
Many of the world's largest and fastest-growing organizations use MySQL to save time and
money powering their high-volume Web sites, critical business systems, and packaged software
including industry leaders such as Yahoo!, Alcatel-Lucent, Google, Nokia, YouTube, Wikipedia,
and Booking.com.The flagship MySQL offering is MySQL Enterprise, a comprehensive set of
production-tested software, proactive monitoring tools, and premium support services available in
an affordable annual subscription.
MySQL is a key part of LAMP (Linux, Apache, MySQL, PHP / Perl / Python), the fast-growing
open source enterprise software stack. More and more companies are using LAMP as an
alternative to expensive proprietary software stacks because of its lower cost and freedom from
platform lock-in. The MySQL database is owned, developed and supported by Sun
Microsystems, one of the world's largest contributors to‘open source software. MySQL was
originally founded and developed in Sweden by two Swedes and a Finn: David Axmark, Allan
Larsson and Michael "Monty" Widenius, who had worked together since the 1980's.

Advantages than other database:
= The best and the most-used database in the world for online applications
= Available and affordable for all
= [Easy to use
= Continuously improved while remaining fast, secure and reliable
= Fun to use and improve

® Free from bugs

2.13 JasperReports

JasperReports is an open source Java reporting tool that can write to screen, to a printer or into
PDF, HTML, Microsoft Excel, RTF, ODT, Comma-separated values and XML files.

It can be used in Java-enabled applications, including Java EE or Web applications, to generate
dynalhic content. It reads its instructions from an XML or .jasper file.

JasperReports is an open source reporting library that can be embedded into any Java application.
[wwws5]

Crapter 2
Review Of Literature

Features include:

The engine allows report definitions to include charts, with the rendering provided by the
JFreeChart library which supports many chart layouts, such as Pie, Bar, Stacked Bar,
Line, Area, Scatter Plot, Bubble, and Time series.

Scriptlets may accompany the report definition, which the report definition can invoke at
any point to perform additional processing. The scriptlet is built using Java.

can be invoked before or after stages of the report generation, such as Report, Page,
Column or Group.

Sub-reports

There are many tools providing JasperReport capabilities IReport is one of them.

2.14 IReport

IReport is a program that helps users and developers that use the JasperReports library to visually

design reports. Through a rich and very simple to use GUI, iReport provides all the most
important functions to create nice reports in little time. [wwwS5]

Features of iReport:

98% of JasperReports tags support

Visual designer with toqls for draw rectangles, lines, ellipses, text fields, charts, sub
reports.

Built-in editor with syntax highlighting for write expression

Support of all JDBC compliant databases

Support for sub reports

Facilities for fonts

CHAPTER 03
TECHNOLOGICAL DEVELOPMENT

3.1 Introduction to Software Development Methodology

3.1.1 Software Development Process

A software development process is a structure imposed on the development of a software product.
Synonyms include software lifecycle and software process. There are several models for such
processes and each describes approaches to a variety of tasks or activities that take place during
the process.

A decades-long goal has been to find repeatable, predictable processes or methodologies that
improve productivity and quality. Some expertise try to systematize or formalize the seemingly
unruly task of writing software. Others are focusing on applying project management techniques
to writing software. Problems arising during software projects such as delivering lately and over
budget can easily be eliminated through application of project management techniques. Project
management has been a challenge and it urge for effective management since it has been
problematic to meet the expectations of software projects in terms of functionality, cost, or
delivery schedule.. There are several models available for development of effective project
management. Those processes can be identified as Waterfall process, Iterative process,
Prototyping, Agile development, Spiral etc. [B1]

3.1.2 Agile Development

Agile software development is a group of software development methodologies that are based on
similar principlés. Agile methodologies generally promote a project management process that
encourages frequent inspection and adaptation, a leadership philosophy that encourages
teamwork, self-organization and accountability, a set of engineering best practices that allow for
rapid delivery of high-quality software, and a business approach that aligns development with
customer needs and company goals. '

There are many specific agle development methods. Most promote development iterations,
teamwork, collaboration, and process adaptability throughout the life-cycle of the project. Agile
chooses to do things in small increments with minimal planning, rather than long-term planning.
Iterations are short time frames (known as ‘timeboxes') which typically last from one to four
weeks. Each iteration is worked by a team through a full software development cycle, including
planning, requirements analysis, design, coding, unit testing, and acceptance testing when a
working product is demonstrated to stakeholders. This helps to minimize the overall risk, and
allows the project to adapt to changes quickly. Documentation is produced as required by
stakeholders. Iteration may not add enough functionality to warrant releasing the product to
market, but the goal is to have an available release (with minimal bugs) at the end of each
iteration. Multiple iterations may be required to release a product or new features.

The following are other features that describe software development projects that use agile

methodologies: Figure 3.1 shown the development process of agile development.

m The fast tumaround time and the regular delivery of working software should ensure
customer satisfaction

m Late changes can be handled easily, or even welcomed

m Progress is measured by the deliveiy of working software

m Clients and developers communicate regularly face-to-face

m All meetings within the development team are held face-to-face

m All developers are highly competent and trustworthy

[www 15]

Figure 3.1: Agile Development Process

3.2 Game Development Life Cycle

Basically, there are five major phases in our game development life cycle. Out of all five phases,
the Game Concept is considered as the most important phase. Therefore, when figuring out the
most suitable Game concept for our project, initially focusing on requirements and ideas
regarding Game Concepts found that they believe all Game Concepts should be based on
mathematics as well as on language. After several team discussions, suitable Game Concept for
our project was developed.

In Pre-production phase, we carried out all the preliminary design work which ineludes designing
use case diagrams, class diagrams and sequence diagrams and selecting the required software.
During next phase, which was the production phase, all the design concepts were implemented by
carrying out all code level functionalities.

In testing and release phase we performed all kinds of testing such as unit testing as well as
system testing to ensure the accuracy product’s functionality. Figure 3.2 shown the game

development life cycle.

’ - ’ r: eym -m 1
Game Concept Pre- Production
T T A
Testing & Release Production

Figure 3.2: Game Development Life Cycle

3.3 Game Engines

3.3.1 Scirra Construct (Rapid Game Authoring System)

Construct is free powerful and easy to use development software for both DirectX 9-based games
and applications. It includes an event based system for defining how the game or application will
behave, in a visual, human-readable way - easy enough for complete beginners to get results
quickly. Optionally, advanced users can also use Python scripting to code our creations. Construct
is not a commercial software project, and is developed by volunteers. It is 100% free to download
the full version - no nag screens, adverts or restricted features at all.

Features of Scirra Construct

= Super fast hardware-accelerated DirectX 9 graphics engine

= Add multiple pixel shades for special effects, including lighting, HDR, distortion, lenses
and more

= Advanced rendering effects like motion blur, skew and bump mapping (3D lighting)

= Innovative Behaviors system for defining how objects work in a flexible way

= Physics engine for realistic object behavior

= Place object on different layers for organizing display, paralleling, or whole-layer effects
- also freely zoom individual layers in and out with high detail '

= Python scripting for advanced users - however, Construct's Events system is still
powerful enough to complete entire games without any scripting.

= Smaller, faster specialized runtime for applications

Construct is developed open source under the General Public License (GPL). This means we can
download and use Construct for free, but it also means that the underlying source code - the code
that defines how the program works - is also freely available. This means other programmers are
free to fix emors in the code and make their own contributions to Construct. Figure 3.3 show a
demo game made up with Scirra construct.

Figure 3.3: A Demo Game created with Scirra Construct

3.3.2 JMonkey Engine

JME (JMonkey Engine) is a high performance scene graph based graphics API. JME was built to
fulfill the lack of full-featured graphics engines written in Java. Using an abstraction layer, it
allows any rendering system to be plugged in. Currently, both LWJGL and JOGL OpenGL
bindings are supported. JME is completely open source under the BSD license.

JME was created by Mark Powell in 2003 while he was investigating OpenGL rendering. After
discovering LWJGL he decided that Java (his language of choice) would be perfect for his own
graphics tools. These tools soon grew into a primitive engine. After reading David Ebery’s 3D
Game Engine Design, scene graph architecture was implemented. It was then that JME became

part of Sun’s Java.net software repository.

LWJIGL

The Lightweight Java Game Library (LWJGL) is a solution aimed directly at professional and
amateur Java programmers alike to enable commercial quality games to be written in Java.
LWJGL provides developers access to high performance cross platform libraries such as OpenGL
(Open Graphics Library) and OpenAL (Open Audio Library) allowing for State of the art 3D
games and 3D sound. Additionally LWJGL provides access to controllers such as Gamepads,

Steering wheel and Joysticks. All in a simple and straight forward AP1.

JOGL
JOGL (Java OpenGL) are a set of bindings to OpenGL that are officially supported by Sun.

Features of JIMonkey Engine

m JME is a scenegraph based architecture. The scenegraph allows for organization of the
game data in a tree structure, where a parent node can contain any number of children
nodes, but a child node contains a single parent. Typically, these nodes are organized
spatially to allow the quick discarding of whole branches for processing.

m JME’ camera system uses frustum culling to through out scene branches that are not
visible. This allows for complex scenes to be rendered quickly, as typically, most of the
scene is not visible at any one time.

m jME also supports many high level effects, such as: Imposters (Render to Texture),
Environmental Mapping, Lens Fiare, Tinting, Particle Systems, etc.

m jME supplies the user with easy to use, but powerful application classes for building the
application. Jumping into jME should be a quick and painless process. With a small
leaming curve. [www?9]

Figure 3.4 illustrates a demo game using JMonkey engine.

Figure 3.4 : A Demo game created with Java Monkey Engine

3.3.3 Reality Factor

Reality Factory is a program that - in conjunction with other tools - allows us to create I and 3d
person perspective games without programming! Reality Factory is built on top of the powerful
Genesis3D Open Source engine and supports all major 3D graphics cards. Reality Factory

provides most of the tools we need to make a game.

We will still need a program to create actors (characters and props in our game) and software to
make textures with, but what we won't need is a C/C++ compiler and a couple of coders to build
our engine for us. By using objects called "entities" which you place in our world, we can set up a
game - with audio effects, multiple soundtracks, and special effects.

Reality Factory is intended to be a "rapid game prototyping tool" - it is able to make playable,
interesting games across a wide range of genres but it's not optimized for any ONE kind of game.

Features of Reality Factory

= Complete game & machine creation system without requiring any programming
knowledge. ‘

= Predefined character and camera controls provide 1* and 3™ person viewpoints,
changeable on-the-fly in-game as desired

= Complete interactive conversation engine, complete with a GUI conversation tree
builder for writing your conversation scripts

= Customizable script editor for creating scripts

= Basic physics, collision detection

= Per vertex, light mapping, radiosity

= Dynamic colored (RGB) lighting

= Projected Shadows

= Basic multi-texturing, bump-, sphere-, mip-mapping, procedural textures

= Video AVI & animated GIF support for cut scenes and animated level textures

= Dynamic texturing effects such as proéedurals, animations and morphing

= Key frame animation, skeletal animation, animation blending

= Customizable effects & explosions system

= 3D audio engine with mp3, wav and support

Figufe 3.5 shown demo game created with reality factor.

Figure 3.5 : Demo game created with Reality Factor

CHAPTER 04

DESIGNING DEVELOPMENT

Use Diagram

Figure 4.1: Use Case Diagram for our system

Teacher - Teacher represents the main actor of the system. Teacher can add games to the
portal remove games from the system, filter games; he/she can view the student progress.

Also teacher acts like the administrator of the entire system.

Student - Student represents the second main role of the system. Student is the final end
use of the system. Student can play the games which only teacher permits him to play.
Also he can select the level of the game he wants to play from fmished levels. Student

can see the progress of their subject knowledge.

Logging - Logging use case is entirely based on the security of the system. To advance

the system first of all actors have to log on to the System.

= Add Game - This use case is responsible with adding a game to the system. Only the

Teacher can add games to the portal.

*» Remove Game — This use case deals with removing existing games of the system. Only

Teacher can remove the games from the system.

= Filter Game — This use case is responsible about the filtering of the games. According to
the students subjective knowledge Teacher can filter games.

= View Student Reports — Teacher can see the proéress of the students by examine the

progress reports of the students

Above Figure 4.1 shown a use case diagram for teacher and student actors.

4.1.1 Use Case Descriptions

Table 4.1 — 4.5 shows the use case description for design use case diagram

Use Case Number

1

Use Case Name Add game to the Game Launcher .
Use Case To the game launcher pad actor named Teacher can add games according to
Description the student’s level.
Primary Actor Teacher
Precondition Teacher should log into the system before adding games.
Trigger Pressing the add button.
1.) There are several games displayed
Basic Flow 2.) Teacher should select games to be display in the launch pad
- 3.) Then teacher should press the add button to add the games
4.) Selected games added to the system.
Alternate Flows Should select less than or equal 5 games to add to the launcher pad
Post Condition Games add to the launcher pad

Table4.1 : Game adding to the Launch pad

-Use Case Number

2

Use Case Name

Remove game from the Game Launcher

Use Case To the game launcher pad actor named Teacher can remove games according
Description to the student’s level.
Primary Actor Teacher
Precondition Teacher should log into the system before adding games.
Trigger Pressing the Remove button. .
1.) There are several games displayed
Basic Flow 2.) Teacher can remove the selected games
3.) Then teacher should press the remove button to remove the games
4.) Selected games removed from the system.
Alternate Flows Should have games in between 1 and 5
Post Condition Games remove from the launcher pad
Table4.2 : Game removing from the Launch pad
Use Case Number | 3

Use Case Name

Filter games from the Game Launcher

Use Case To the game launcher pad actor named Teacher can filter what kind of games
Description should be in the game launcher.
Primary Actor Teacher
Precondition Teacher should log into the system before adding games.
Trigger - Pressing the Filter button.
Basic Flow 1.) There are several games displayed
2.) All the games are with different game types.
3.) Teacher can select either game type is language or mathematics.
4.) After selecting the game type teacher should press on filter button.
Alternate Flows Should select either type from the game.
Post_Condition Display selected types of game sin the launcher pad.

Table2.3: Game filter from the Launch pad

Use Case Number 4
‘Use Case Name View Reports
Use C. Student actor as well as the teacher actor can check the reports. From
se Case
L. student’s part they can see their previous marks as well as teachers can see
Description
student’s level in each type of games.
Primary Actor Both Teacher and Student
. Teacher as well as the student should log into the system before adding
Precondition
games.
Trigger Pressing the View Report button.
Student:
1.) In each logging student can see view report button.
. 2.) After pressing the View report student can see their history Report.
Basic Flow
Teacher:
3.) In each logging teach can see view report button.
4.) Teacher can view the student’s report.
Student:
They can see only their marks
Alternate Flows
Teacher:
They can see marks on each and every student.
Post Condition Display previous records and marks.

Table4.4: View Reports

Use Case Number

5

‘Use Case Name

Launch Game

Use Case
L. Student actor as well as the teacher actor can play the games.
Description :
Primary Actor Both Teacher and Student
. Teacher as well as the student should log into the system before playing the
Precondition
games.
Trigger After reach to the game point in game launcher.
Student:
: Teacher:
Basic Flow
1.) In game launcher it has several games.
2.) By selecting the game either student or teacher can play the game.
Student:
Alternate Flows Teacher:
Can play only one game at a once.
Post Condition Teacher or Student can play the game.

Table4.5: Game Launch

4.2 Class Diagram

Game GameStore

gameld r deleteGame 0
gameName * | addGame ¢
gameCatagory
gameType

| gameLocation
loadGame
launchGame Q

t
Plaver

userName

age

name

password

1

Teacher Student smuamscore|

teacherid studentid studentid
subject ageCatogory 1 1 type

T T catogory

1 1 getScore
|

Login
loginid
foginName
loginPassword
fogin
isLogged

|
|
GamePortal
playGame ()
addGame (
removeGame ()
filterGame ()
isGameStored {
isvalidGame ¢

Figure 4.2: Class Diagram for the system

Figure 4.2 indicates the class diagram for the edutainment launch pad and its functionalities.
Player class specialized into the teacher and student. which the main entity classes on our system
of display corresponding methods and attributes for each and every class.

Out of the given class structure, StudentScore and the GameStore are the boundary classes and
GamePortal , Login Game are the control classes. According to above structure, most of the
functionalities depend upon Game and GamePortal classes.

4.3 Sequence Diagrams

According to the use case diagram ,
Figure 4.3 - 4.9 and tables of 4.6 — 4.10 show the sequence diagram of the use cases.

4.3.1 Add Game to the Launch Pad

« requirements »

Teacher add games.

Teacher - Entity Class

Login - Control Class
GamePortal - Baoundary Class

Jeac Login :GamePortal
L] L
| |
] |
login (userName , pas%‘ml)
|

— e - — - ws w—

lisLogged {userName)

addGame (gamelli, ageGroup ,path)
I

Yo

]
ipGameStoled (gameld)
}

— e — e - - —— e = ——

Figure 4.3 : Add game to the Launch Pad

s Teacher

Involved Classes = Login
®= GamePortal
Pre Condition ' To add a game Teacher must first log into the

system using username and password.

This scenario explains about the class
behaviors when Teacher adds a game to the
Description Launcher. addGame and isGameStored
methods are used to implement main
functionalities.

Table4.6 : Add game to the launch pad description

4.3.2 Remove Game from the Launch Pad

« requirements »

Teacher can remove games.
Teacher - Entily Class

Login - Contvol Class
GamePonal - Baoundary Class
GameStore - Entity Class

deleteGame (gamg)
] i

) 1] 1
]] 1 I
] 1)]
1 N , svgd I 1
og:n (userName , pas:) | '
| 1] 1
!)] |
) [} 1
1] })
1 jisLogged fuserName) |)
1 I 1 1
| :’ | |
]] I I
| removeGame (Iserid , gameld) ! :
1 1 1
1]
I |sValidGanje (gameld)
I 1
¥ 1
| [
]
|

Figure 4.4 : Remove game from the launch pad

m Teacher

m Login
Involved Classes
m GamePortal

m GameStore

To remove a game Teacher must first log into
the system using usemame and password.
This scenario explains about the class
behaviors when Teacher remove unwanted
games from the Launcher. The added games
were store in the GameStore class. In that case
removeGames and deletedGame methods take
all the main functionalities.

Table4.7: Remove Game From tfae launch pad description

Pre Condition

Description

As above diagram same scenario acts on logging to the system.
Then cali the removeGame method with the corresponding parameters to remove game. Like

wise adding in GamePortal class validate the game before removing. Then delete the game from

GameStore class.

4.3.3 Filter games from the Game Lanncher

<requiremente >

Teactier can Filter gamas.
Teacher- EnfllyCiass

Login- Control Class
GamePortal- Baoundaiy Class
GameStore - Enfily Class

Teacher ‘Laten :QamePortai GameStore
e P [R— i

IIiSLogged userName)

ffiarojime fusertd. gamete.aj*Name.cofidftlofUa”3iMi)

jsVabdGan e (gam elij)

teteteGame (gam eta\)

| addGame(gameldjj

1: Filter games fix>mthe launch pad

Involved Classes

= Teacher
- Logm
= GamePortal

= GameStore

Pre Condition To filter a game Teacher must first log into the
system using username and password.
This scenario explains about the class
behaviors when Teacher filter the games
Desi:ription according‘to the types of student categories. To

make that functionality strong filterGame
deletedGame and addGame methods are
important.

Table4.8 : Filter games from the launch pad description

4.3.4 Student and Teacher can view Reports

<« requirements »

Student can view student reports.
Student - Entity Class

Login - Control Class
GamePortal - Baoundary Class
Score - Entity Class

S

| e |

togin (ussrName , pass¥igrd)

isLogged {userName)

-

cords (studentid

re (studentScore

2 : Student Can View Reports

« requirements »

Teacher can view student reporls.
Teacher - Entity Class

Login - Confrol Class
GamePortal - Baoundary Class
Score - Entity Class

)
1

n (userName , pass\‘gm)
!

1
)
1
|
I
1 I
1 1
| E—— |
:isLogged userName) :
] 1.
1
1

e |

I
]]
getStuden]Records (eacherD , sfudentid)

—— Y=

I
dcore (studeniScore]
' !

Figure 4.7: Teacher can view reports

= Student/Teacher
- Lo gin
® GamePortal

= Score

Involved Classes

. To view reports both Student and Teacher must
Pre Condition first log into the system using username and
password.

This scenario explains about the class
behaviors when Student/Teacher view the
reports. getStudentRecords and score are the
respective methods important in that scenario.

Description

Table4.9 : Student/Teacher can view scores description

4.3.5 Launch Game

Teacher can launch a game

« requirements »

Teacher can play games.
Teacher - Entity Class

Login - Control Class
GamePortal - Baoundary Class
GameStore - Entity Class
Game - Entity Class

[E] (] [[oms] [
louln (userName , Emdl)

isLogged {userName)
| ; |

mel eName location,

Ioa{eamo (gamald,lnﬁon)

-—g--

_getGamelnfo () _

t__launchGame () 3'

Figure 4.8 : Teacher can launch games

Student can launch game

« requirements »
Student can play games.
student- Entity Class
Login - Control Class

GameSiore - Entity Class
Game - Entily Class

GamePontal - Baoundary Class

[[owcen | | iso | [amePoral|

g._.....

login (useritame , pass¥ighd)

i

isLogged {userName)

ame (gameld eName location,

Ioa@mo (gamald,!oﬁon)

Figure 4.9 : Student can launch games

Involved Classes

Teacher/ Student
Login
GamePortal
GameStore
Game

Pre Condition

To launch a game both Teacher and Student
must first log into the system using username
and password. .

Description

This scenario explains about the clas
behaviors when Teacher /Student launch
games. playGame method takes all the
important functionality during the game
launching. Rest of the methods like loadGame
and launchGame are supportive methods on to
this method.

Table4.10 : Teacher and Student can launch games

CHAPTER 05
GAME CONCEPTS & ANALYSIS

A game-concept document expresses the core idea of the game. It is a one- to two-page document

that is necessarily brief and simple in order to encourage a flow of ideas. The target audience for

the game concept is all those to whom we want to describe our game.

A game concept should include the following features:

Introduction

Introduction implies the objective of the selected game. Out of concepts what are the
sub areas going to touch from this game. As an example under the mathematics
concept we can try out the identification of sorting ,arithmetic operations.. . . . etc.
Background (optional)

Background implies how the game background looks like and how those figures and
pictures are arranged.

Description

Description gives the clear idea about the game instructions.

Platform(s)

Platform means game design platform. It can be either Windows platform or Linux
platform.

Concept art (optional)

This chapter discusses some of the game concepts that we have used in this project. Table 5.1

figure shows game concept for ascénding train game.

5.1 Ascending Train (or Descending Train)

Table 5.1 figure shows game concept for odd even number separator game.

This game was designed to improve the mathematical skills of the
Introduction students. The main objective of this game is to teach students about
the ascending and descending order of the numerical numbers.

There are few coaches in ground with a number on it. Also there is a

Background)]
train engine.
You have to collect the coaches using train engine in ascending order
Description to make a train. Ifyou collect a coach with a wrong number the game
will be reset and you have to start from beginning.
Platform Windows / Linux

Table5.1: Game Concept for the Ascending Train game

Figure5-1 : OverView of the Ascending Train Game

5.2 Odd/Even number Separator

Table 5.2 shows the game concept and the Figure 5.2 corresponds the overview of the Odd/Even
separator game.
This game was designed to improve the mathematical skills of the
Introduction students. The main objective of this game is to teach students odd and
even numbers.

There are few bouncing balls inside a box with two parts separating

Background
with a moving gate.
You have to separate some bouncing balls using a moving gate. You
Description
have to put odd numbers in right side and even numbers in left side.
Platform Windows / Linux

Table5-2 : Game Concept for the ODD/EVEN number separator game

Figure5-2 : Overview of the ODD/EVEN number separator Game

5.3 Distance and Directions (Treasure Hunt)

Table 5.3 lists the game concept of the distance and direction game and the figure 5.3 shows the
overview of that game.
This game was designed to improve the mathematical skills and to
Introduction teach about the main directions NORTH, EAST, SOUTH, and
WEST. Also this game tries to teach how to count.
Background There is a map with a pirate and a treasure.
You have to move the pirate step wise to the treasure by avoiding
Description obstacles. You can have a treasure hunt based on knowledge of
directions and distance.
Platform Windows / Linux

Table5.33 : Game Concept for the Distance and Directions game

#

%

Figure5.3 : Overview of the Distance and directions Game

54 Virtual Shop

Table 5.4 shows the game concept and the figure 5.4 corresponds the overview of the game.

Introduction

Background

Description

Platform

This game was designed to improve the skills of using money and to
improve the billing & balance, selecting necessary items for the
money they have, measure the weight of items, & separation.
There is a Kids shop and student given the money and the item list to
buy. Student has to click and order the items and finally have to pay
the bili.
1) Students have to buy a list of items from their school Shop.
2) Mother has given------- Rupees for that.
(Example 2-50 Rupees Notes, 1- 20 Rupees Note & 3- 5 Rupees
Coins 1- 1 Rupees Coin)
3) Student visits virtual shop
4) Order items as per the money they have.
5) Pay amount of money using virtual coins and notes which have
being given by Mother).
6) Collect the balance
7 If they want to buy any more (for the balance) go back to 4
8) Go to home
9) Measure the weight of items and separate them based on

that.

Windows / Linux

Table5.4 : Game Concept for the Virtual shop game

Figure 5.4 : OverView of the Virtual Shop Game

CHAPTER 06
DEVELOPMENT ENVIRONMENT

6.1 Development Environment

A brief introduction of the development environment is given below.

6.1.1 Hardware Environment

= A personal computer with processor 3.0 GHz Intel Pentium 4, RAM 512MB

6.1.2 Software Environment

Table 6.1 given the system environment of the system

| IDE [Virclipse (Customized of eclippsed)
E Languages . .} ava]

i = Java 2D Graphic Package
I Operating system | Windows XP/ Windows Vista / Linux
| Third Party Components and Tools = Scirra Construct

= Java Monkey Engine
= Napkinlaf freely available jar file

| Enhancing Tools = Blender
2 = Gimp
| Database | Text Pads

Table6.1 : Development Environment

6.2 Applicétion Programming Interface (API) used for implementation

= Java 1.5 API

= Java2D API

= Scirra Construct Tutorial

= JMonkey Engine API

= JMonkey Engine User Guide

6.3 Integrating Environment

* Java - Game Launchei/sic/cam/Teach
File Edfr Source Refactor Navigate Search

rj” 2

PackageF~In~g g | Tf Hie~cl»

Li [Jj Game.java
0 0 Game
gameCatogory
gameid
gameLocation
gameName
gameType
getGameCatogoryG
getGameldQ
getGameLocationf)
getGameNamef)
getGameTypeO
launchGameO
loadGameO
setGameCatogory(String)
setGamddfnt)
$etGameLocation(int)
setGameName(String)
setGameTypefnt)
(S }Jj GamePortaijava
® a Player.iava
0 a Teacher java
O © Teacher
o subject
teacherld
getSubfectfl
getTeacherlcfl}
setSub(ect{String)
9 setTeacherid(Shing)
ffi a JRE System Libraiy rei 50 07]
13 a Referenced Libraries
0 e« napkinlaf jar
> tb netsourceforge. napkinlai

® O ©® ooowOd

0O® ®o0 ©° 0O0"

o]

® ©® © o

Figured. 1 : Class Hierarchy

Figure 6.1 illustrates the class hierarchy of the eclipse development environment. Coding
standards, all the algorithms and naming Conventions were according to the Virtusa policies.
We can identify the used classes according to the class diagrams and sequence diagrams. For the

reference library, we have used napkinlafjar file as the selected jar file is open source.

6.4 Reporting

There are different team members for different functionalities. Therefore regarding reporting
there is a separate team. They all conducted this by using of Jasper Reports. The selected
JasperReports are designed by the iReport. Once again according to the Virtusa policies we
cannot figure out any of the reports. All reports are up to the Virtusa standards. Figure 6.2

indicates the iReport environment.

s
ritDiff gdiuon fprm.it Qatmits Constiujfe Options Plugins Fenclrt Arde dtl E
~
100% n P
ji iReport Options E
10 11 M b 1 | Crwérai CampHer Barkup Programmes «untes
-
Lt . X Edileur «teme
P AA Gt AT l&?IT"FJ3l¥I
Explorer
Foven rr_
Afficheurs
B‘ Affidirur PDF
Wt A il 1 Explorer
Affidteur HTML
om .- _ i Explorer
Affictieur XES
' 1 Explorer
Affidieur CSV
1 1 Explorer
Affictieur TXT
OMHnum «luaifi» Explorer
_] Doourert Affidieur RTF
background =
4 e i o | Explorer
[J statcText-1 [256,2
pageHeader
columnHeader
detall
colurrmFooter
er
lastPaoeFooter Sanet Appliquei _Annuier
1 o [

Figure6.2 : iReport

CHAPTER 07
TESTING & DEPLOYMENT

7.1 Testing Stratégy

According 10 typical software development process there are mainly tWO teams. One for
development and other for {esting. Testiog was found t0 bea challenging task and those are the
people looking at major aspect of quality product. Testing is done by several phases: Considering
the whole testing process, the development tea® conducted the unit testing i work it i8 supposed
1o write test €as€ related with the system. After integrating the system, the integration {esting Was

oonducted.

7.2 Unit Testing

their code, such as @ class or function or & procedure used o yalidate that individual units of
source code are working properly- The goal of unit testing is ¥ isolate each part of the program

and show that fhe individual parts are correct.
All the public methods were tested bY negative and positive manner and finally the code

7.2.1 Test Cases

A test case '15 a detailed pmoedurethaaﬁxl\y tests a feature OF an aspect of a feature- Whereas the
test plan describes what 10 test, a test €as® describes how 10 perform 2 particular test. Developers

peed to develop @ test case for each test Jisted in the test plan.

A test case ineludes:
m The purpose of the test.
m Special hardware requirements, such as a modem.
m Special software requirements, such as a tool.
m Specific setup or configuration requirements.
m A description of how to perform the test.
m The expected results or success criteria for the test.
Test cases were written by a team member who understands the function or technology being

tested, and each test case was submitted for peer review.

7.2.2 Test Data

According to the test cases we have to fill all the procedures in following manner.

Test data used to check whether the system is running on corrective manner. With the following
real time screen shots implement how the system is working on and for each of the time how can
we write the test cases.

Implementation of Test Case ID of *SPFjPI': Teacher trying to add a game to the launch pad

m Figure 7.1 shows a screen before adding the game into the launch pad

| Game Launcher

FlIi€ view Help

Recave

Figure7.1 : Before implement add game test case

Test
Case
ID
SPF P1

Figure 7.2 shows the screen after adding the game into the launch pad

Message

Vi*)

File EAIf view Help

AAAeA NASI<ressiNly

ok

Figure7.2 : After implement add game test case

Table 7.1 illustrates corresponding Test Case for the add a game to the launch pad

Test Case
Description

Teacher
trying to add
a game to the
launch pad

Prerequisite

User login to
the system
with
appropriate
login
credentials.

Table7.1 : Sample Test Cases

Test
Procedure

After the
logging.

Select add
game from
the menu
bar.

Games
select and
click on
add
selected
games
button.

Input
Data

Expected
Result

Selected
game(s)
should
added to
the
system

Actual
Result

Selected
game(s)
added to
the
launch
pad

Test
Result

Test Case
succeeded

Implementation of Test Case ID of ‘SPL_P1’: Student logging to the system

m Figure 7.3 shows screen before login to the system

Figure7.3 : Before implement login test case

m Figure 7.4 shows test case after logged to the system

= Table 7.2 illustrates corresponding Test Case for the student logging to the system

SPL_P1 | Student Launch pad | After the Student Logged Logged Selected
i logging to should open. | loading of | details to the to the test case is
the system launch with launch launch success.
pad. correspond | pad pad Not
usernames | viewer student’s | completely
Student & with details executed.
should passwords | student’s | may not
enter the may need | previous | appear
user name | to add to game
and the details
password. | database.
Then click
on logging
Table7.2: Sample Test Case 11
7.3 System Testing

System testing is testing conducted on a complete, integrated system to evaluate the system's
compliance with its specified requirements. System testing falls within the scope of black box
testing, and as such, should require no knowledge of the inner design of the code or logic.
Thorough testing was done on following categories.

= Performance

= Security features

= Stress testing

= User acceptance
That is because we need to verify as well as the functional requirements of all the non functional
requirements are satisfied in order to fulfill all the project requirements.

7.4 Deploy Environment

After integrating the system it is finally zipped into a jar file. Installing the system in client’s
machine involves copying and pasting the jar into a specific location.
To run the system only users have to double click the jar.

7.4.1 Hardware Requirements

A personal computer with processor 3.0 GHz Intel Pentium 4, RAM 512MB

‘ 7.4.2 Software Requirements

Table 7.3 given the software requirement of the system

Operating System Windows XP

Packaging Tool Jar

Third Party Components and Tools | Not used

Machine should install MySQL before use the

Setup Machine game launcher.

Table7.3: Software Requirement of the Deployment Environment

CHAPTER 08
CONCLUSION

The aim of this project was to implement a launch pad for edutainment software suit for
primary schools students of Sri Lankan schools using free and open source software.
Reusability and extensibility issues could be achieved to evolve the system.

The clients’ comments on the prototype evaluation must be first fulfilled. The usability is the
main issue on how comfortable potential users are of using this system. All functions they
requested for main stage are working properly and user friendly. The original objectives and
goals set forth in developing the system are achieved successfully.

User interfaces could adapt to the changes by modifying the program code. Although time
spent on designing and implementing components was longer than traditional design and
implementation, the time spent on future changes would be saved.

8.1 Future Consideration

Future consideration for this project is to enhance some of the present features and add new
features for the system. Because of using open source software we can implement this
edutainment launch pad for Linux machines as well. In near future, subject to the availability
can implement the same system in OLPC as well.

Existing system is a menu driven system that could be enhanced to provide more user
friendliness by adding some colorful themes to user interfaces.

Reporting system can be enhanced in a graphical manner instead of typical indication of
score. '

Extra features should be added to the system so that it can meet the client’s

requirements, such as using this game console for disable students.

REFERENCES

[BI] - Rumbaugh, J. (2004) The Unified Modeling Language Reference manual, Addison
Wesley Longman, Inc., 3-66

[B2] - Quatrani, T. (2000) Visual Modeling with Rational Rose 2000 and UML, Publisher
Pearson Education India, 77-85

[B3] - Eliens, A. (2000) Principie of Object-Oriented Software Development, 2rd Edition,
Pearson Education Limited 2000.18-35

[B4] - Summerville. (1995). The fifth edition of Software Engineering. Addison
Wesley Publishers in autumn, pp.210-400

[B5] - Lieberman, H., Liu, H., Singh, P., Barry, B.: Beating common sense into
interactive applications. Gante Magazine 25(4) (2004) 63-76

[B6] - Rollings, A. & Morris, D. (2004). Game Architecture and Design. New Riders
Publish pp 120-133

[WWW1] -The Histoiy ofJava Technology or Home Page, URL:http://www.java.com/en
21stFebruaiy2009
[WWW?2] -Java Histoiy with Tutorial or Home Page, URL :http://www.freejavaguide.com
,21" Februaiy 2009
[WWW3]-Developer Resources for Java Technology or Home Page, URL.:
http://java.sun.com ,21* Februaiy 2009
[WWW4] -Java News and Resources or Home Page, URL.: http://www.cafeaulait.org,
22"“*Februaiy 2009
[WWWS5] -JasperReports and iReports or Home Page, URL: http://jasperforge.org/, 1*
March 12009
[WWW6] -Java Developer’s Journal or Home Page, URL.: http://java.sys-con.com, 22“*
February 2009
[WWWT7] -Unified Modeling Language Tutorial and Home Page, URL.:
http://atlas.Imnnesaw.edu, 22“*February 2009
[WWWS8] -Java Software Developer or Home Page, URL.: http://www.developer.com/,
22**February 2009
[WWW?9] -Java Monkey Engine or Home Page, URL.: http://www.jmonkeyengine.com,
2"dFebruary 2009
[WWW10] -Open Source Software or Home Page, URL: http://sourceforge.net, 18th
November 2008

3

3D 11,29, 30, 31, 41, 42, 43, 44, 45
3D games - 11 .

INDEX

functions - 29
Future - 75

A

Actor - 22

adaptation - 37

Agile software development - 37

aim - 75

API -3, 42,43,68

Application Programming Interface - 3, 68

G

Game - 40

Game Concept - 40

Game Dev SIG - 7

game-concept - 62

Generic - 15

Gimp - 2, 29, 68

GIMP - 29, 68

GIP-5,6,7

GNU Image Manipulation Program - 29

B

Boundary Classes - 2, 27

H

Hardware Requirements - 3, 73

C

C#-15

CARB - 40

class- 19

Class - 18,23, 24

client-server - 13, 16

code architecture review board - 40
composition - 29

Computer - 11

Construct - 31, 41, 42

Control Classes - 2, 27

I

IDE - 28, 68

IEEE - 16

Inheritance - 19

inspection - 37

instance - 18, 19, 26
Integrating - 3, 69
Integration Testing - 32, 33
IReport - 2, 35, 36
iteration - 38

Iterative process - 37

D

database - 34, 72

defect - 32

Deploy Environment - 3, 73
Designing - 46

Development - 7, 10, 12, 28, 37, 39, 40, 46, 68

DirectX - 30, 41

E

Edutainment - 9
Encapsulation - 20, 21
engine - 29, 41

Entity Classes - 2, 26
Event Driven - 15

J

J2EE - 14

J2ME - 14

J2SE - 14

JasperReport - 35
JasperReports - 2, 35, 36, 70, 78
Java- 12, 13, 14, 15, 16, 17
java2D- 14

Java Monkey Engine - 44, 68
Java Virtual Machine - 12
JDBC- 36

JMonkeyEngine - 31

JOGL - 42,43

F

frequent - 37

L

Languages - 68
life cycle - 7, 21, 40
LWIJIGL - 30, 42,43

M

message - 16, 26

messages - 18, 22, 23, 25, 26
methodologies - 38

Methods - 19

" models - 18, 19, 22, 26, 37
MoE - 7, 8, 10, 40

MySQL - 2, 34

System Requirement Specification - 33

System Testing - 33, 73
Systems integration testing - 34

N

non functional requirements - 73

T

Testing Levels - 2, 32
Testing Strategy - 3, 71
Third Party Components - 68
Tools - 68

o

Oak - 12

Object - 15, 16, 17, 18, 20, 24, 26

Object Orient Programming * 17
Object-oriented - 15, 18, 20

object-oriented programming - 13, 17, 18

objects - 41
OLPC-7,75

OOP- 17

open source * 42
OpenGL - 30, 42, 43
Operating system - 68
Overloading - 21
Overriding - 21

U

UML - 21, 24, 25

Unified Modeling Language - 21
Unit Testing - 3, 32, 71

use case - 22, 23

Use Case - 9, 22, 23

user acceptance testing - 34

P

Pascal - 18

PC-11

Performance - 73
Platform Independent - 15
Polymorphism - 21
Properties - 19
Prototyping - 37

V

Virclipse - 28, 68
Virtusa - 5,7, 8
w

Waterfall process - 37
Windows - 29, 30

R

radiosity - 44

Reality Factory - 31, 44
Reporting - 3, 69, 75
Requirement Specification - 33

requirements - 7, 8, 13, 14, 18, 38, 40, 73

A

Scirra Construct - 31, 41, 42, 68
security - 16, 47

Security - 16, 73

sequence diagram - 25, 26
Sequence diagram - 25, 26
Sequence Diagrams - 9
software-9,29,38 .
Software Development Kit - 12
Software Requirements - 3, 74

X

XML - 35

National Digitization Project

National Science Foundation

Institute : Sabaragamuwa University of Sri Lanka

1. Place of Scanning : Sabaragamuwa University of Sri Lanka, Belihuloya

2. Date Scanned LT o) W X @ & N I I PP eeeeneeens

3. Name of Digitizing Company : Sanje (Private) Ltd, No 435/16, Kottawa Rd,
Hokandara North, Arangala, Hokandara

4. Scanning Officer

Name : g'ﬂ -G '6&“&»‘?\&“’.\0\\/\—‘’_

Signature Ceeeeeeees .-,.-C&-B—s_ ..

Certification of Scanning

I hereby certify that the scanning of this document was carried out under my supervision, accordivig_to
: o CGE ko €T
the norms and standards of digital scanning accurately, alsg keeping with the’originality of the origin ki

document to be accepted in a court of law.

Certifying Officer
Designation : LIBRARIAN.......ccoiviiiiiiiiiiee e reeneeetree e
Name T TN.NEIGHSOOREL.....c.titiiiiitiitietieeie ettt eieeaeaaeareneaneaaanenaes
. (0]
Signature 1. N N
;Vira.i.N.Ntwn:v sJREl
Date: ... 0O\ QWU =. X0l (MSSCPGDASLA.BA)

baragamuwa University of Sri Lanks
P.O.Box 02,Belibuloya,Sri Lanka
Tole 0094 25 2230045
Fax 0008 45 7730N45

“This document/publication was digitized under National Digitization Project of the
National Science Foundation, Sri Lanka”

