
IMPLEMENTING THE FINANCIAL MANAGEMENT AND
MARKETING SOFTWARE SYSTEM FOR FISHINGINDUSTRY

BY

Mr .K.B .Neththikumara

(04/AS/109)

This thesis is submitted in partial fiilfillment of the requirements for the degree of
Bachelor of Science in Physical Sciences.

Department of Physical Science and Technology

Faculty o f Applied Sciences

Sabaragamuwa University o f Sri Lanka.

Belihuloya.

March 2009

i
■aaa

DECLARATION

The content described in the thesis was practically implemented by me at the Asían
Destination(pvt)Ltd and the Faculty o f Applied Sciences under supervisión o f
Mr.R.K.A.R. Kariapper and Mr. M.B.B.Kiridigoda and the report described on this thesis
have not been submitted by any one for another degree.

Research Student

K.B.Neththikumara,

Department of Physical Sciences,

Faculty of Applied Sciences,

Sabaragamuwa University of Sri Lanka,

. Belihuloya.

Signature

Date

Certifíed by

Internal Supervisor

Mr.R.K.A.R. Kariapper,

Lecturer in Computer Science,

Faculty of Applied Sciences,

Sabaragamuwa University of Sri Lanka,

Belihuloya. Date

Esternal Supervisor

Mr. M.B.B.Kiridigoda,

Managing Director, Signature

Asían Destination(pvt)Ltd,

No. 129/4/3, D.S.Senanayake Street,

Kandy. Date

2

Dr. C.P.Udawatta,

Head,

Department of Physical Sciences,

Faculty of Applied Sciences,

Sabaragamuwa University of Sri Lanka,

Belihuloya.

Signature

Date

3 l

ACKNOWLEDGEMENT

I would like to thank to my interaal supervisor Mr.R.K.A.R. Kariapper, for his continuous
support in the Faculty of Applied Sciences, University of Sabaragamuwa Sri Lanka.

Programmer. Mr. M.B.B.Kiridigoda was always there to listen and to give advice. He is
responsible for involving with me in implementing this Financial Management and
Marketing software System for fishing industry. He taught how to ask questions and
express my ideas. He showed me different ways to approach a research problem and the
need to be persistent to accomplish any goal.

I express my sincere gratitude to all my team mates in the training and development team
in Asian Destination(pvt)Ltd for providing me the opportunity to carry out my industrial
training at Asian Destination(pvt)Ltd.

And I express my sincere gratitude to Prof.K.B.Pálipana, the Dean o f faculty of Applied
Sciences, University of Sabaragamuwa Sri Lanka and Dr.Udawatta, the Head of the
Physical Department, faculty of Applied Sciences, University of Sabaragamuwa Sri Lanka.

My very special thank goes to Mr. T.N.Kurukulasooriya, who encourage me to take the
very first step towards this project. He taught me Human-Computer Interaction techniques
and how to do a usability study. His guidance showed me the right path for my goal.
Thanks, Mr. Kurukulasooriya!

Finally I expressed my heartfelt gratitude towards the lectures for their cooperation
throughout my study and my colleagues for their individual help and guidance at all time.
Thanks for everyone who has helped me!

ABSTRACT

Archiving Solution for Fishing Industry

‘K.B.Neththikumara, 2R.K.A.Rifai Kariapper and3 M.B.B.Kiridigoda

1,2Department of Physical Sciences, Faculty of Applied Sciences, Sabaragamuwa
University

3 Asian Destinations (Pvt)Ltd, No. 129/4/3, D.S.Senanayake Street, Kandy

One of the key problems identifíed in using fínancial Software for fishing Industry. There
are so many retail software using in fishing industry, but any type of retad software is not
made for straight to the fishing Industry.

This is a fínancial system design for the Sri Lankan fishing industry. Targeted users are
limited and selected. Primary target of this project is providing user friendly environment
and make particular user to use this tool effectively. There will be various tools to involve
and monitor all the trance actions regarding to the given privüeges and to provide fínancial
analyzing reports based on specific sections.

The software development core technologies are Java SE, MySQL, Enterprise Java
Beans(EJB), Jasper reporting, Junit, UML. The requirements were based on the targeted
user. Major requirements of this project were achieved by interviewing, the persons with
knowledge of Computer programs and knowledge to maintain fishing business cashbooks.

Then GUI was created according to the requirements and also consider about end users
knowledge of understanding. Used netBeans 6.1 IDE to creale GUI. After that separated
database Schema was created by MySQL(database language based on Sql) databases. To
verify this system, design class diagrams, sequence diagrams. Also used Jasper reporting
and test through the Junit. Evaluative feedbacks were acquired in each meeting with
extemal supervisor. Refinements and modifications were carried out after supervisor
meeting to meet the Client’s requirements.

The components were tested individually and finally the integrated system was tested. At
the end of the development process, the main objective o f the project was achieved and the
End User was satisfied with the functionalities, usability, security and reliability o f the
system.

Table o f Contents
1.0 INTRODUCTION.. 8

2.0 Project Plan...9

2.1 Software Development Life Cycle (SDLC).. 9

2.2 Popular Software Development Models...10

2.2.1 Systems Development Life Cycle [Waterfall Model]..10

2.2.2 VM odel... 10

2.2.3 Prototyping Model...11

2.2.4 Rapid Application Development (RAD) Model...11

2.2.5 Component Assembly Model .. 11

2.2.6 Spiral Model...11

2.3 Systems Development Life Cycle [Waterfall Model]...12

3.0 Deliverables...19

3.1. Tangible substances...-................................. 19

3.2. Intangible substances... 19

4.0 Project Scope...19

5.0 Research..20

5.1 Business research... 20

5.2 Technical Research... 21

5.2.1. Java..22

Differences and why Java becomes “FISHER 2009” software main language........................29

5.2.2 SQL...33

Standardization... 35

5.2.3 JAVA ID Es..39

6.0 exe4j.. 49

7.0
Analysis..
.. 60

8.0 Designed..59

8.1 System designed... 59

8.1.1 Usecase diagrams.. 59

8.1.2 Activity diagrams..62

9.0. Screen Design.. 69

10.0 Limitations.. 76

11.0 Future enhancements.. 77

12.0 Conclusión...77

References... 78

7 \

1.0 INTRODUCCION

Our core objective is to create and develop software to facilítate the requirements in Sri
Lankan fishing industry cash book. In order to decide the most compatible programming
language to create the software we have done a research among other programming
languages. Which are mostly used in developing software?

The fishing industry in Sri Lanka ineludes any industry or activity concemed with taking,
culturing, processing, preserving, storing, transporting, marketing or selling fish or fish
produets.

The fishing industry mainly ruled by three sectors

• The recreational sector: comprises enterprises and individuáis associated for the purpose
of recreation, sport or sustenance with fisheries resources from which produets are derived
that are not for sale.

• The traditional sector: comprises enterprises and individuáis associated with fisheries
resources from which aboriginal people derive produets in accordance with their traditions.

• The commercial sector: comprises enterprises and individuáis associated with wild-catch
or aquaculture resources and the various transformations o f those resources into produets
for sale. It is also referred to as the "seafood industry", although non-food Ítems such as
pearls are included among its produets.

This software will be implemented as business software that helps business increase
productivity or measure their productivity. The term covers a large variation of uses within
the business environment, and can be categorized by using a small, médium and large
matrix.

Targeted users are limited and selected. Primary target o f this project is providing user
friendly environment and make particular user to use this tool effectively. There will be
various tools to involve and monitor all the trance actions regarding to the given privileges
and to provide financial analyzing reports based on specific sections.

This project will be able to provide the environment due to the changes of the business
arena and user requirements with plugging, Updates, Evolution copies, etc.

®1

Software Development Life Cycle (SDLC)

1. Curtain Raiser

Like any other set o f engineering producís, software producís are also oriented towards the
customer. It is either market driven or it drives the market. Customer Satisfaction was the
buzzword of the &0's. Customer Delight is today's buzzword and Customer Ecstasy is the
buzzword of the new millennium. Products that are not customer or user ffiendly have no
place in the market although they are engineered using the best technology. The interface
of the product is as crucial as the intemal technology of the product.

2.0 Project Plan

2. Market Research

A market study is made to identify a potential customer's need. This process is also known
as market research. Here, the already existing need and the possible andpotential needs
that are available in a segment of the society are studied carefully. The market study is
done based on a lot of assumptions. Assumptions are the crucial factors in the development
or inception of a product's development. Unrealistic assumptions can cause a nosedive in
the entire venture. Though assumptions are abstract, there should be a move to develop
tangible assumptions to come up with a successful product.

3. Research and Development

Once the Market Research is carried out, the customer's need is given to the Research &
Development división (R&D) to conceptualize a cost-effective system that could
potentially solve the customer's needs in a manner that is better than the one adopted by
the competitors at present. Once the conceptual system is developed and tested in a
hypothetical environment, the development team takes control of it. The development team
adopts one of the software development methodologies that is given below, develops the
proposed system, and gives it to the customer.

The Sales & Marketing división starts selling the software to the available customers and
simultariéously works to develop a ruche segment that could potentially buy the software.
In addition, the división also passes the feedback from the customers to the developers and
the R&D división to make possible valué additions to the product.

While developing software, the company outsourcers the non-core activities to other
cómpanies who specialize in those activities. This accelerates the software development
process largely. Some cómpanies work on tie-ups to bring out a highly matured product in
a short period.

2.2 Popular Software Development Models

The following are some basic popular models that are adopted by many software
development firms

System Development Life Cycle (SDLC) Model
Prototyping Model
Rapid Application Development Model
Component Assembly Model.. ect

Popular Software Development Models

Systems Development Life Cycle [Waterfall Model]

The waterfall model is a sequential software development model (a process for the creation
of software) in which development is seen as flowing steadily downwards (like a waterfall)
through the phases of

• requirements analysis,
• design,
• implementation,
• testing (validation),
• integration,
• Maintenance.

The origin of the term "waterfall" is often cited to be an article published in 1970 by
Winston W. Royce (1929-1995), although Royce did not use the term "waterfall" in this
article. Ironically, Royce was presenting this model as an example of a flawed, non-
working model (Rovce 1970).

V Model

The V-model is a graphical representation of the svstems development lifecvcle. It
summarizes the main steps to be taken in conjunction with the corresponding deliverables
within computerized svstem validation framework.

The VEE is a process that represents the sequence of steps in a project life cycle
development. It describes the activities and results that have to be produced during
product. The left side o f the VEE represents the decomposition o f requirements, and

To]

creation of system specifications. The right side o f the V represents integration of parts and
their verifícation. V stands for "Verification and Validation"

2.2.3 Prototyping Model

This is a cyclic versión of the linear modeL In this model, once the requirement analysis is
done and the design for a prototype is made, the development process gets started. Once
the prototype is created, it is given to the customer for evaluation. The customer tests the
package and gives his/her feed back to the developer who refines the product according to
the customer's exact expectation.

2,2.4 Rapid Application Development (RAD) Model

The RAD model is a linear sequential software development process that emphasizes an
extremely short development cycle. The RAD model is a "high speed" adaptation of the
linear sequential model in which rapid development is achieved by using a component-
based construction approach.

2.2.5 Component Assembly Model

Object technologies provide the technical framework for a component-based process
model for software engineering. The object oriented paradigm emphasizes the creation of
classes that encapsulate both data and the algorithm that are used to manipúlate the data. If
properly designed and implemented, object oriented classes are reusable across different
applications and Computer based system architectures. Component Assembly Model leads
to software reusability. The integration/assembly of the already existing software
components accelerates the development process. Nowadays many component librarles are
available on the Internet. If the right components are chosen, the integration aspect is made
much simpler

2.2.6 Spiral Model
- t „

The spiral model is a software development process combining elements of both desien
and prototyping- in-stages. in an effort to combine advantages of top-down and bottom-up
concepts. Also known as the spiral lifecycle model, it is a systems development method
(SDM) used in information technologv (IT). This model o f development combines the
features of the prototyping model and the waterfall model. The spiral model is intended for
large, expensive and complicated projects.

Til

2.2.7 Chaos Model

The Chaos model is a structure of software development that extends the spiral model and
waterfall model. The chaos model was defined by L.B.S. Raccoon.The chaos model notes
that the phases of the Ufe cycle apply to all levels of projects, from the whole project to
individual lines of code.

2.3 Popular Software Development Models in Details

2.3.1 Systems Development Life Cycle [Waterfall Model]

SDLC, the Software Development Life Cycle relates to models or methodologies that
people use to develop Systems, generally Computer Systems. Note: the acronym is
sometimes thought of to represent Software Development Life Cycle and sometimes the
process/model is simply referred to as the SLC. Computer systems have become more
complex and usually (especially with the advent of SOA) link múltiple traditional systems
often supplied by different software vendors.

To manage this, a number of system development life cycle (SDLC) models have been
created: waterfall, fountain and spiral build and fix, rapid prototyping, incremental, and
synchronize and stabilize.

Small to médium database software projects are generally broken down into six
Stages:

Requirements
Definition

---- ----------- --------- -------------------

Development
---------- -- —

•

Integra tion
& Test

i

Insta llation
& Acceptance.

• • - x , • -

mm

1 2

The relationship o f each stage to the others can be roughly described as a waterfall, where
the outputs from a specific stage serve as the initial inputs for the following stage. During
each stage,
Additional information is gathered or developed, combined with the inputs, and used to
produce the stage deliverables. It is important to note that the additional information is
restricted in scope;
“New ideas” that would take the project in directions not anticipated by the initial set of
high-level requirements are not incorporated into the project. Rather, ideas for new
capabilities or features that are out-of-scope are preserved for later consideration.

1. System Information Engineering and Modeling

As software is always of a large system (or business), work begins by establishing the
requirements for all system elements and then allocating some subset of these
requirements to software. This system view is essential when the software must interface
with other elements such as hardware, people and other resources. System is the basic and
very critical requirement for the existence o f software in any entity. So if the system is not
in place, the system should be engineered and put in place. In some cases, to extract the
máximum output, the system should be re-engineered and spruced up. Once the ideal
system is engineered or tuned, the development team studies the software requirement for
the system.

2. Software Requirement Analysis

This process is also known as feasibility study. In this phase, the development team visits
the customer and studies their system. They investígate the need for possible software
automation in the given system. By the end of the feasibility study, the team fumishes a
document that holds the different specific recommendations for the candidate system. It
also ineludes the personnel assignments, costs, project schedule, target dates etc.... The
requirement gathering process is intensified and focused specially on software. To
understand the nature of the program(s) to be built, the system engineer or "Analyst" must
understand the information domain for the software, as well as required fiinction, behavior,
performance and Ínterfacing. The essential purpose of this phase is to find the need and to
define the problem that needs to be solved.

3. System Analysis and Design

In this phase, the software development process, the software's overall structure and its
nuances are defined. In terms of the client/server technology, the number of tiers needed
for the package architecture, the database design, the data structure design etc... are all
defined in this phase. A software development model is thus created. Analysis and Design
are very crucial in the whole development eyele. Any glitch in the design phase could be

13]

very expensive to solve in the later stage of the software development. Much care is taken
during this phase. The logical system of the product is developed in this phase.

4. Code Generation

the design must be translated into a machine-readable form. The code generation step
performs this task. If the design is performed in a detailed manner, code generation can be
accomplished without much complication. Programming tools like compilers, interpreters,
debuggers etc... are used to generate the code. Different high level programming languages
like C, C++, Pascal, Java are used for coding. With respect to the type of application, the
right programming language is chosen.

5. Testing

Once the code is generated, the software program testing begins. Different testing
methodologies are available to unravel the bugs that were committed during the previous
phases. Different testing tools and methodologies are already available. Some companies
build their own testing tools that are tailor made for their own development operations.

6. Maintenance

The software will definitely undergo change once it is delivered to the customer. There can
be many reasons for this change to occur. Change could happen because of some
unexpected input valúes into the system. In addition, the changes in the system could
directly affect the software operations. The software should be developed to accommodate
changes that could happen during the post implementation period.

2.3.2. Prototyping Model

This is a cyclic versión of the linear model In this model once the requirement analysis is
done and the design for a prototype is made, the development process gets started. Once
the prototype is created, it is given to the customer for evaluation. The customer tests the
package and gives his/her feed back to the developer who refines the product according to
the customer's exact expectation. After a finite number of iterations, the final software
packageás given to the customer. In this methodology, the software is evolved as a result
of periodic shuttling of information between the customer and developer. This is the most
popular development model in the contemporary IT industry. Most of the successful
software products have been developed using this model - as it is very difficult (even for a
whiz kid!) to comprehend all the requirements of a customer in one shot. There are many
variations of this model skewed with respect to the project management styles of the
companies. New versions of a software product evolve as a result of prototyping.

T Á]

Prototype Model Advantages

Creating software using the prototype model also has its benefits. One o f the key
advantages a prototype modeled software has is the time ir ame of development. Instead of
concentrating on documentation, more effort is placed in creating the actual software. This
way, the actual software could be released in advance. The work on prototype models
could also be spread to others since there are practically no stages of work in this model.
Everyone has to work on the same thing and at the same time, reducing man hours in
creating a software. The work will even be faster and efficient if developers will
collaborate more regarding the status of a specific fimction and develop the necessary
adjustments in time for the integration.

Another advantage of having a prototype modeled software is that the software is created
using lots o f user feedbacks. In every prototype created, users could give their honest
opinión about the software. If something is unfavorable, it can be changed. Slowly the
program is created with the customer in mind.

o Prototype Model Disadvantages

Implementing the prototype model for creating software has disadvantages. Since its being
built out of concept, most of the models presented in the early stage are not complete.
Usually they lack flaws that developers still need to work on them again and again. Since
the prototype changes from time to time, it’s a nightmare to create a document for this
software. There are many things that are removed, changed and added in a single update of
the prototype and documenting each of them has been proven difñcult.

T5|

There is also a great temptation for most developers to create a prototype and stick to it
even though it has flaws. Since prototypes are not yet complete software programs, there is
always a possibility o f a designer flaw. When flawed software is implemented, it could
mean losses of important resources.

Lastly, integration could be very diffícult for a prototype model. This often happens when
other programs are already stable. The prototype software is released and integrated to the
company’s suite of software. But if there’s something wrong the prototype, changes are
required not only with the software. It’s also possible that the stable software should be
changed in order for them to be integrated properly.

2.3.3. Spiral Model

The steps in the spiral model can be generalized as follows:

1 * The new system requirements are defined in as much detail as possible. This usually
involves interviewing a number o f users representing all the extemal or intemal users
and other aspects of the existing system.

2. A preliminary design is created for the new system.
3. A fírst prototype of the new system is constructed from the preliminary design. This is

usually a scaled-down system, and represents an approximation o f the characteristics o f
the final product.

4. A second prototype is evolved by a fourfold procedure:
1. evaluating the fírst prototype in terms of its strengths, weaknesses, and risks;
2. defining the requirements o f the second prototype;
3. planning and designing the second prototype;
4. Constructing and testing the second prototype.

5. At the customer's option, the entire project can be aborted if the risk is deemed too
great. Risk factors might involve development cost overruns, operating-cost
miscalculation, or any other factor that could, in the customer's judgment, result in a
less-than-satisfactory final product.

6. The existing prototype is evaluated in the same manner as was the previous prototype,
and, if necessary, another prototype is developed from it according to the fourfold
procedure outlined above.

7. The preceding steps are iterated until the customer is satisfied that the refíned prototype
represents the final product desired.

8. The final system is constructed, based on the refíned prototype.
9. The final system is thoroughly evaluated and tested. Routine maintenance is carried out

on a continuing basis to prevent large-scale failures and to minimize downtime.

ü l

Cycle Requirements

• If alternatives or uncertainties are found they must be resolved.
• Risk-driven “subsetting” allows a mixture of other software process models, as
necessary, until a high-risk situation is resolved.

- Specification-oriented (Transform or Stage wise)
- Prototype-oriented (Waterfall)
- Automatic-transformation oriented (Transform)
- Simulation-oriented (Evolutionary)

• Each cycle is completed by a review by the people concerned with the project.
• Plans for the next cycle should be introduced.
• With each succeeding level in the spiral the level of detail increases.

Overlapping Spirals

• Necessary for alternatives and parallel components.
• Stop everything until the break-away spiral is complete???
• Problems?

m

i ■ í

■ ' iu * * P _ ------ v ,
y /■ i- ,"** -

* * T ^ | ̂ ***■“?**- te¿l-
V * ' l ? i /r

v: k W

Advantages
□It balances resource expenditure.
□Doesn’t involve sepárate approaches for software development and software
maintenance.
□Provides a viable framework for integrated hardware-software system development.

Disadvantages
□Spiral model not yet complete (in 1988).
□Matching to contract software
- Intemal projects have more freedom.
- Contract software demands total control and a fiill picture of the deliverables in advance.
□Relying on risk-assessment expertise.
□Need for fiirther elaboration of spiral model steps.
- Milestones and specifications.
- Guidelines and checklists.

Tel

3.0 Deliverables

FISHER 2009 will provide some tangible and intangible objects to our valuable clients to
drive the software more smoothly and gently. With these the client is able to involve in to
a full user friendly environment.

3.1. Tangible substances.
• This project documentation
• User guide
• Software CD

3.2. Intangible substances
• The software
• The database

4.0 Project Scope

The areas we decided to cover in our software are:

• To create efñcient and accurate Accounting system.
• To create user friendly and best benefited system for users.
• To create best logging system.

19|
na

5.0 Research

5.1 Business research
Background

Our main task was to create and develop software for the financial sector of Fishing
Industry. Therefore we have done a business research with few businesses located in
Trinco malee area. The main reason to do a business research is to analyze the problems
where fishing industry are facing in financial sector of fishing business. Even though there
were many systems relate to the financial sector o f fishing business, many o f them weren’t
assured 100%. While on the research below are the main requirements we found.

Findings

■. Requirement of a system to find profit of end of the month.
■ Special requirement o f them is, to print day today account reports of business
■ Project will be able to provide the environment due to the changes of the business arena
and user requirements with plugging, Updates, Evolution copies, etc.

Finally gathered all information and analyzed what are the main requirements in financial
sector.

According to the requirements which have been gathered we have given our máximum
benefits to flilfill requirements as results the profit finding system could be presented with
the FISHER2009.

2 0 |

5.2 Technical Research

Programming Languages

Predecessor(s) Year Ñame Chief developer, Company

1980s
C, SIMULA 67
BASIC, Compiler Systems,
Digital Research
Smalltalk, C
BASICA
Green
C with Classes

BASIC

COBOL
sh
Forth. Lisp
ML
dBase
LISP

Pascal
dBase
InterPress
BASIC.
BASIC

SIMULA 67

C
INFORM
Smalltalk

1980 C with classes
1980-
1981 CBASIC

1982 Objective-C.
1983 GW-BASIC
1983 Ada
1983 C++

1983 Trae BASIC

1983? ABAP
1984? Kom Shell (ksh)
1984 RPL
1984 Standard ML
1984 CLIPPER
1984 Common Liso

1984 Redcode

1985 Obiect Pascal
1985 PARADOX
1985 PostScript
1985 QuickBASIC
1986 GFA BASIC

1986 Miranda

1986 LabVIEW
1986 Eiffel
1986 Informix-4GL
1986 PROMAL
1986 CorVision
1987 Self fconcepf)

Stroustrup

Gordon Eubanks

Brad Cox
Microsoft
CU Honevwell Bull
Stroustrup
Kemenv. Kurtz at
Dartmouth College
SAP
David Kom
Hewlett-Packard

Nantucket
Guv Steele and many others
A.K. Dewdnev and D.G.
Jones
Apple Computer
Borland
Wamock
Microsoft
Frank Ostrowski
David Tumer at Universitv
ofKent
National Instruments
Mever
Informix

Cortex
Sun Microsystems Inc.

Ada, C++, Lisp

C, C++, Java, Delphi

C, C++, Java, PHP, Python,
Ruby, Scheme
Java
Self, NewtonScript
C#, ML, MetaHaskell
Joy, Forth, Lisp
Smalltalk, Java, Haskell,
Standard ML, OCaml
BASIC
Mobile Development
*

Python, C#

Qbiect Pascal. C#

Java

BASIC

Haskell

*

C#, ksh, Perl, CL, DCL. SQL

APEX
C#
C, R

1987 HvperTalk
2000 XL

2000 C#

2000 Ferite

2001 AspectJ
2002 lo
2003 Nemerle
2003 Factor

2003 Scala

2004 FreeBASIC
2004 WinDev Mobile
2004 Subtext
2004 Boo

2004 Oxvgene (formerlv
Chrome)

2004 Groow

2004 ThinBasic

2006 Links

2006 Kite

2006 Windows
PowerShell

2007 APEX
2007 Vala
2008 PCASTL

Apple
Christophe de Dinechin
Anders Heilsbére at
MicrosofifECMA')

Chris Ross

Xerox PARC
Steve Dekorte
University of Wroclaw
Slava Pestov

Martin Oderskv

Andre Victor
PC Soft
Jonathan Edwards
Rodrigo B. de Oliveira

RemObjects Software

James Strachan
Eros Olmi thinBasic
communitv
Phil Wadler. Universitv of
Edinburgh
Mooneer Salem

Microsoft

Salesforce.com
GNOME
Philippe Choquette

5.2.1. Java

Java, the language, is a high-level object-oriented programming language, influenced in
various ways by C, C++, and Smalltalk, with ideas borrowed from other languages as well
(see O'Reilly's Historv of Programming LanguagesL Its syntax was designed to be familiar
to those familiar with C-descended "curly brace" languages, but with arguably stronger
0 0 principies than those found in C++, static typing of objects, and a fairly rigid system of
exceptions that require every method in the cali stack to either handle exceptions or declare
their ability to throw them. Garbage collection is assumed, sparing the developer from
having to free memory used by obsolete objects.

22]

One of Java's more controversial aspects--widely accepted at the time of its release but
increasingly criticizéd today--is its incomplete object-orientation. Specifically, Java
primitives such as int, char, boolean, etc. are not objects, and require a completely different
treatment from the developer: as int is not a class, you cannot subclass and declare new
methods on it, cannot pass it to a method that expects a generic Object, and so on. The
inclusión of primitives increases Java performance, but at the arguable expense o f code
clarity, as anyone who's had to work with the so-called "wrapper classes" (Integer,
Character, and Boolean) will attest. Java 5.0 introduces an "autoboxing" scheme to
eliminate many uses of the wrapper classes, but in some ways it obscures what is really
going on.

Philosophically, Java is a "fail early" language. Because o f its syntactic restrictions, many
programming failures are simply not possible in Java. With no direct access to pointers,
pointer-arithmetic errors are non-existent. Using an object as a different type than what it
was originally declared to be requires an explicit cast, which gives the compiler an
opportunity to reject illogical programming, like calling a String method on an Image.

Many Java enterprise frameworks require the use of configuration files or deployment
descriptors, typically written in XML, to specify functionality: what class handles a certain
HTTP request, the order of steps to execute in a rule engine, etc. In effect, they have to go
beyond the language to implement their functionality. Critics point out that this has the
perverse effect of not only escaping Java's compiler checks, but also that a developer can
no longer determine how a program will opérate just by looking at its source code. Java
5.0 adds annotations to the language, which allows the tagging of methods, fields, and
classes with valúes that can then be inspected and operated on at runtime, usually through
reflection. Many programmers like annotations because they simplify tasks that might
otherwise be addressed by deployment descriptors or other means. But again, they can
make it difficult to understand Java code, as the presence or absence of an annotation may
affect how the code is executed, in ways that are in no way obvious from the annotation.

Despite these criticisms, Java is generally understood to be the most popular general-
purpose computing language in use today. It is a widely used standard in enterprise
programming, and in 2005, it replaced C++ as the language most used by projects on
SourceForee. What it has going for it is immense: free tools (on múltiple platforms: Linux,
Windows, Solaris, and Mac can all compile and execute Java apps), a vast base o f
knowledge, and a large pool of readily available developers.

The Java language hits a specific point in the tradeoff between developer productivity and
code performance: CPU cycles keep getting cheaper, developers largely don't, so it is
perhaps inevitable to accept another layer of abstraction between the developer and the
executioa of CPU opcodes, if it allows the developer to create better software faster. In
fact, critics o f Java's productivity, such as Bruce Tate in Bevond Java, may simply be
observing this trend continuing past Java to a new sweet spot that further trades
performance for developer productivity.

23|

The Java Platforms

Java is generally thought of in terms of three platforms: Standard Edition (SE), Enterprise
Edition (EE), and Micro Edition (ME). Each describes the combination of a language
versión, a set of standard libraries, and a virtual machine (see below) to execute the code.
EE is a superset of SE~any EE application can assume the existence of all o f the SE
libraries~and EE's use of the language is identical to SE's.

Because of the limitations of small devices like phones and set-top boxes, Java Micro
Edition differs significantly from its siblings. It is not a subset of SE (as SE is o f EE), as
some of its libraries exist only in Micro Edition. Moreover, ME eliminates some language
features, such as the float primitive and Float class, refiecting the computing limitations of
the platforms it runs on. Requiring different tools than SE and EE, and with profound
differences in devices that makes code portability far less realistic in the micro space,
many Java developers see ME as utterly alien.

The Java Virtual Machine

At some point, Java source needs to become platform-native executable code. This
typically requires a two-step process: the developer compiles his or her source into Java
bytecode, and then a Java Virtual Machine (JVM) converts this into native code for the
host platform. This latter step originally was performed by interpretation--taking each
JVM instruction and converting it on the fly to one or more native instructions. Later, just-
in-time (JIT) compilers converted all o f a Java program from JVM bytecode to native code
as the program started up. In the modem era, there are múltiple approaches. Sun's HotSpot
compiler starts by interpreting code and profiling it at runtime, compiling and optimizing
those parts that are found to be most critical to the program's operation. The "mixed mode
interpreter" of IBM's JVMs works much the same way. These approaches avoid the startup
performance hit entailed by JITing the entire program, but means that performance arrives
over time, as critical code sections are located and optimized. Long-running server
processes are well-served by this approach, client applications less so.

As is the case with primitives, the two-step compile cycle of Java now starts to look like a
premature optimization to some critics. If you're going to wait until runtime to compile
from Java bytecode to native, they ask, why not save the developer a step by interpreting
not Java bytecode, but Java source? As Tate notes in Beyond Java, "Java is not the
simplest of languages. Ñor is it friendly to very short iterations ... Other languages let you
move from one change to the next without a cumbersome compile/deploy cycle."

The JVM Without Java

Indeed, one of Tate's key criteria in finding potential successors to Java's success is the
idea that "the next commercially successful language should have a versión that runs in the
JVM. That would help a language overeóme many obstacles, both political and technical."
He points out that a VM approach gives you security ("if you can secure the virtual

24

machine, it's much easier to secure the language"), portability, interoperability, and
extensibility. With the JVM having effectively solved these problems, a new language
wouldn't need its own VM if it can simply run in the JVM that is already on millions of
computers.

In many ways, this is already happening. Writing interpreters for scripting languages in
Java effectively brings these languages to the JVM, like Rhino for JavaScript, Jvthon for
Python, or JRubv for Ruby.

But it's also possible to bypass the Java language altogether and go straight to the JVM
level. There are already C-to-JVM bytecode compilers, such as the commercial Axiomatic
Multi-Platform C. which provides a subset of ANSI C. Furthermore, the growth of Java
bytecode manipulation with tools such as ASM and Apache BCEL allow Java applications
to create executable classes at runtime. This is no longer Java, but effectively a form of
assembly language programming for the JVM.

Perhaps appreciating the desire to run non-Java code on the JVM, a new JSR, "Supporting
Dynamically Typed Languages on the JavaTM Platform" (JSR^292), has recently been
introduced, specifying a new bytecode that would make the JVM better suited to running
languages without static type information.

Java Without the JVM

You can also tum the tables the other way, and run Java without a JVM. After all, at some
point, Java source becomes bytecode, which in tum becomes native code--and nobody said
you can't do it all at once. The GNU Comniler for Java (GCJ) allows for a one-time, up-
front compilation of Java source into an executable for a single platform. While
incomplete—it does not support the Abstract Windowing Toolkit (AWT), thus making it
unsuitable for AWT or Swing GUI programming—there's enough there to compile server-
side and command-line applications.

This process has one obvious downside: cross-platform code becomes bound to a single
platform in one step. Moreover, the static compilation is not an automatic trump of
HotSpot's dynamic compilation—the author once worked on a project where the
performance gain from GCJ was found to be less than five percent beyond the HotSpot
versión. Still, GCJ can solve important problems, like deploying a runnable Java
application without having to worry whether a JVM is available or running a specific
versión!

Advantages of JAVA

JAVA offers a number of advantages to developers.

Java is simple: Java was designed to be easy to use and is therefore easy to write, compile,
debug, and leam than other programming languages. The reason that why Java is much
simpler than C++ is because Java uses automatic memory allocation and garbage
collection where else C++ requires the programmer to allocate memory and to collect

25|

garbage.

Java is object-oriented: Java is object-oriented because programming in Java is centered on
creating objects, manipulating objects, and making objects work together. This allows you
to create modular programs and reusable code.

Java is platform-independent: One o f the most significant advantages o f Java is its ability
to move easily from one Computer system to another.

The ability to run the same program on many different systems is crucial to World Wide
Web software, and Java succeeds at this by being platform-independent at both the source
and binary levels.

Java is distributed: Distributed computing involves several computers on a network
working together. Java is designed to make distributed computing easy with the
networking capability that is inherently integrated into it.

Writing network programs in Java is like sending and receiving data to and from a ñle. For
example, the diagram below shows three programs running on three different systems,
communicating with each other to perform a joint task.

Java is interpreted: An interpreter is needed in order to run Java programs. The programs
are compiled into Java Virtual Machine code called bytecode.

The bytecode is machine independent and is able to run on any machine that has a Java
interpreter. With Java, the program need only be compiled once, and the bytecode
generated by the Java compiler can run on any platform.

Java is secure: Java is one o f the first programming languages to consider security as part
of its design. The Java language, compiler, interpreter, and runtime environment were each
developed with security in mind.

Java is robust: Robust means reliable and no programming language can really assure
reliability. Java puts a lot of emphasis on early checking for possible errors, as Java
compilers are able to detect many problems that would first show up during execution time
in other languages.

Java is multithreaded: Multithreaded is the capability for a program to perform several
tasks simultaneously within a program. In Java, multithreaded programming has been
smoothly integrated into it, while in other languages, operating system-specific procedures
have to be called in order to enable multithreading. Multithreading is a necessity in visual
and network programming.

26]

Disadvantages of JAVA

Performance: Java can be perceived as significantly slower and more memory-consuming
than natively compiled languages such as C or C++.

Look and feel: The default look and feel o f GUI applications written in Java using the
Swing toolkit is very different from native applications. It is possible to specify a different
look and feel through the pluggable look and feel system o f Swing.

Single-paradigm language: Java is predominantly a single-paradigm language. However,
with the addition o f static imports in Java 5.0 the procedural paradigm is better
accommodated than in earlier versions of Java.

FEATURES

Here we list the basic features that make Java a powerful and popular programming
language:

• Platform Independence
o The Write-Once-Run-Anywhere ideal has not been achieved (tuning for different

platforms usually required), but closer than with other languages.
• Object Oriented

o Object oriented throughout - no coding outside of class definitions, including
main ().

o An extensive class library available in the core language packages.

• Compiler/Interpreter Combo
o Code is compiled to bytecodes that are interpreted by a Java virtual machines (JVM)
o This provides portability to any machine for which a virtual machine has been written.
o The two steps of compilation and interpretation allow for extensive code checking and

improved security.

• Robust
o Exception handling built-in, strong type checking (that is, all data must be declared an
explicit type), local variables must be initialized.

• Several dangerous features of C & C++ eliminated:
o No memory pointers
o No preprocessor
o Array Índex limit checking

27|

• Automatic Memory Management
o Automatic garbage collection - memory management handled by JVM.

• Security
o No memory pointers
o A program runs inside the virtual machine sandbox.
o Array Índex limit checking
o Code pathologies reduced by

■ bytecode verifier - checks classes after loading
■ class loader - confines objects to unique namespaces. Prevents loading a hacked
"java.lang.SecurityManager" class, for example.
■ security manager - determines what resources a class can access such as reading and
writing to the local disk.

• Dynamic Binding
o The linking of data and methods to where they are located, is done at run-time.
o New classes can be loaded while a program is running. Linking is done on the fly.
o Even if libraries are recompiled, there is no need to recompile code that uses classes in

those libraries.

This differs from C++, which uses static binding. This can result in fragüe classes for
cases where linked code is changed and memory pointers then point to the wrong
addresses.

• Good Performance
o Interpretation of bytecodes slowed performance in early versions, but advanced virtual

machines with adaptive and just-in-time compilation and other techniques now typically
provide performance up to 50% to 100% the speed of C++ programs.

• Threading
o Lightweight processes, called threads can easily be spun off to perform

multiprocessing.
o Can take advantage of multiprocessors where available
o Great for multimedia displays.

• Built-in Networking
o Java was designed w ith networking in mind and comes w ith many classes to develop

sophisticated Internet Communications.

Why Software Developers Choose Java

Java has been tested, refined, extended, and proven by a dedicated community. And
numbering more than 6.5 million developers, it's the largest and most active on the planet.
With its versatility, efficiency, and portability, Java has become invaluable to developers
by enabling them to:

2 8 1

• Write software on one platform and run it on virtuaUy any other platform
• Create programs to run within a Web browser and Web Services
• Develop server-side applications for Online forums, stores, polis, HTML forms

Processing, and more
• Combine applications or Services using the Java language to create highly

customized applications or Services
• Write powerful and efficient applications for mobile phones, remóte processors, low-

cost consumer producís, and practically any other device with a digital heartbeat

Differences and why Java becomes “FISHER 2009” software main language

Java is easier because...

• Java checks for errors. For example, Java checks subscripts to make sure they are in the
correct range.

• Java does things for the programmer. There are a huge number of things that Java has
already written for programmer. For example, expandable arrays, many data structures,
etc. In C it would take a very long time to write and debug these things by ourselves.

• Java doesn't have the most dangerous things. The things in C which cause the most
program errors are pointers, pointer arithmetic, and memory management. Java has
replaced these with much, much safer things: references, subscription, and garbage
collection.

The reason that everyone is very enthusiastic about Java is because it is easier (faster,
cheaper,) to produce good programs

Object Oriented programming

• Classes form the basis for Object Oriented Programming (OOP). Java classes are like
C++ class, which are something like a C struts that ineludes both data fields and fimetions.
Objects are created when memory is allocated for one of these class "struts". The basic
idea is simple.

Java support for large programming project

For small programming projeets it's sufficient to use fimetions, sometimes in sepárate
source files. Large programming projeets need more control over the structure and
visibility o f the program elements. Java provides this control in the form of classes,
packages, and interfaces, along with a number of ways to control who can see what. In
FISHER 2009, a lot of packages and interfeces have been used so it was more compatible
to handle java than C.

29]

Class Libra ríes

Sometimes someone says that Java is a small language, smaller than C++, and perhaps
smaller than C. This may be true if you ignore one of the most important things: the class
libraries. There are a huge number of methods (the special OOP word for function) in the
thousands o f classes that are grouped in packages. Packages and OOP are the reasons that
it's possible to have such large libraries.

Java is harder because ...

• Java is more powerful and can do much more than C. For example, C doesn't have a
graphical user interface (GUI), and C doesn't have any way to do object-oriented
programming (OOP). It's possible to write in Java in a C style, avoiding the new powerfid
features of Java. But that is foolish.

• Java either checks for errors, or makes you check for errors. C lets you do many things
that would cause errors (for example, convert strings to integers, or do I/O), but doesn't
make you write code to handle the errors. Java makes you write try...catch statements
around things that might cause problems.

Portability and types

• Because of the lack of complete type defmitions, moving a C program from one
machine to another can be a giant headache, or even impossible. For example, to preserve
the range of an integer variable you might have to change shorts to ints, but then you also
have to change the corresponding format speciñers, unión declarations, bit fíeld
declarations, shift operators, etc. This is only one example o f the tremendous number o f
portability problems in C.

• The Java types are well defíned, there are none of these problems.

Third Major Trend: Visual Programming and Components

As noted previously, visual programming and the use o f components is one of the
pioneering strengths of Java and Visual Basic. 0 0 methods make GUI and general
program development using components even easier to do. But these techniques have been
spawned by a two very real needs. N-tier distributed processing has brought two real
benefits - isolated islands of information and inefficient use of data and program resources
are being eliminated. With intranets and Online processing, users can reach into every nook
and crariñy of an organization to get at the data and information they need to solve a
problem. But the cost as noted is the much greater complexity of distributed programs -
even ones that use web browser front ends. Henee the move to outsourcing and/or
packaged programs.

However a second pressing need is to develop software so much faster. For over 3Ó years
two. of the major complaints against IT departments has been that systems cannot be

30|
M i

developed fast enough (the 2-3 year backlog of IT projects) and then when delivered
changes and updates to programs cannot be done on a timely basis. But with the huge
repository o f Computer systems built up over the last 30 years and with the availability of
complete backbone office systems from major ERP vendors, programming has been tumed
upside down. Now IT staffs are being told "No” about re-inventing the IT wheel - it takes
too long and is fraught with high risk of complete failure (50% failure rate for large
client/server projects according to the Standish Reports). Reuse and Ínterfacing to new
ERP backbones as well as legacy systems are the new marching orders for IT development
teams at small as well as large businesses. In effect, all programming has become
maintenance programming. Very few programs are built from scratch. Programs have to
interface with legacy databases or web systems. Many have to link to or just become a
customized user called procedure of some ERP or other packaged program. What better
way to create these component systems? Bingo - visual programming and component
development with Java and Visual Basic

The Essential Advantages of Java and Visual Basic...

Without a doubt one of the essential advantages of both Java and Visual Basic is that
programmers can develop a wide range of programs so much faster than other language.
So called 4GLs (fourth generation languages) like Focus, PowerBuilder and Uniface once
held an advantage in ease and speed of development (but at the cost of poor runtime
performance). But 3GL-3rd Generation Languages and especially Java and Visual Basic
with their visual programming, components and use of clever wizards or third party design
tools have matched if not surpassed 4GL for speed of development and have superior
runtime performance. Relative to other 3GLs such as Ada, C/C++, COBOL, FORTRAN,
Pascal and others; Java and Visual Basic have three compelling advantages:

-new, uniform and comprehensive APIs for every aspective of web, client/server, and n-
tier programming;

-several modes of deployment including .EXEs, components, servlets and applets;
-superior visual programming development environs with many 3rd party suppliers o f
tools and components.

And the runtime performance of both Java and Visual Basic have steadily impro ved to the
point that they can approach within 10-30% of the fastest programs developed in C/C++,
Cobol, Fortran or Pascal. Finally, Java in particular but also Visual Basic can be used to
deliver web programs.

On the Web, Java and Visual Basic can be used as servlets - web applications sitting on a
server and sending down dynamically created HTML and Scripts to your browser. Java

with its great cross platform portability can also be used to develop applets that run
directly on any PC or client browser. With new ADSL and cable módems running 20 times
faster than current 56K módems, look for even more exciting (and secure) Java applets
coming to your web browser. In sum, both Java and Visual Basic have come to the fore as
programming languages because they were built to fit the mold for new system
development - rapid development through visual IDEs and comprehensive SDK/APIs to
meet all the latest programming requirements, especially the Web. Perhaps even more
important are 0 0 methods and componentized code which can be stand alone or linked to
existing programs and data sources in a variety of ways - servlet, downstream application,
application server or web applet. It is this versatility in deployment that makes both
languages so attractive.

Over the next 4-5 years the proliferation in programming languages should subside. This
situation has persisted so long as client/server and n-tier processing needs were not being
well served. But the current balance of comprehensive APIs, rapid development for a
variety o f deployment modes and competitive runtime performance make Java and Visual
Basic compelling choices for many business applications. So expect programming
languages to gravitate towards the specialties that they serve well: Prolog and some LISP
variants for AI-Artifícial Intelligence, Fortran for intensive engineering/numeric analysis
systems; C/C++ for commercial software development, Cobol for transaction processing
and most notably Java and Visual Basic leading the way on the new web and component
based systems that acts as links and linchpins among backoffice applications.

Stability and Reliability

Traditionally, programming languages have had very good records for stability and
reliability for both the development systems and the program code they produce. However,
in the rush to get newest versions and features out the door, both Java and Visual Basic let
down developers. Part of this may be inevitable - rapid changes in web and programming
standards mean that some code and APIs gets obsolete - as for example when many AWT
classes were quickly superseded by the new event-listener classes and Swing GUI
componente and interfaces. In VB a similar pattem has seen two or three data access
methods proliferate into over a dozen. Unfortunately, performance, reliability, and
functionality trade-offs among the competing access methods make choosing an approach
in VB, even with the new OLE-DB standard, a daunting task. But perhaps the worst
problem is the lacunae of bugs in both languages.

To an extent bugs come with rapid change and huge APIs. But for the last 3 versions of
VB, users have had to wait for two or even three Service packs to be able to get reliable
code for some new features either in the development system or in the language. See the
editorial in April 1999 Visual Basic Programmer's Journal "Five Things You Hate about
VB6" for the latest episode on VB bugs. Yes, most of the oíd code works. Yes, most of the
bugs are clustered around new features. No, most users do not want to develop with what

32|

is in effect beta code and features. Want to kill a function or feature in a language - make it
buggy so developers have to spend extra hours and days proving that the bug is in the
language not their code.

Java is somewhat better. But in the rush to get various releases of JDK 1 .x out the door
serious bugs have crept into some o f the new APIs. Also compatibility o f the GUI routines
on various OS platforms has lead to pungent humor - Java is the language you get to write
once and debug everywhere. Now it is important to point out that these are not catastrophic
bugs by any means. Ninety five percent or more of the fimctionality of both languages is
rock solid. However when you are developing using some of the 5 percent of features that
are a bug infested swamp (the lacunae),

In their defense, both Microsoft and Sun have rededicated themselves to producing more
reliable code. Microsoft, for example, has made Service packs easier to access and more
quickly available. Sun has released later versions o f the 1.x JDK in smñller and more
reliable chunks while delaying key features like some EJBs and Hotspot technology for
many months. But there is a lot at stake. Other languages like C/C++ or
ObjectPascal/Delphi or the new versions o f Cobol and PowerBuilder have a better record
for reliability. In effect, by delivering buggy code and/or development systems Java and
Visual Basic may jeopardize their own critical advantage - speed of development.

c# is one of the most visible aspects of Microsoft's .NET initiative. Developers commonly
see the world through the lens of their language, and so C# can be their main aperture into
.NET. Misconceptions abound, however. In this article, I'd like to address the confusions I
hear most often about this new tool.

Summarizatíon

When we work through those details which have been included in above section it can be
easy to understand that VB language family is being changed rapidly the key point is when
this change is happening the core concepts , objectives & even the technical syntax have
been changed therefore the one who work with VB languages must be changed their
technical culture and the core objectives according to the trends but, when we consider
about java it has very strong and stable culture and core concepts. So the programmers
who involve or work with java no need to rapidly changed according to the trends, only
need to vast their knowledge throughout the new implementations. Therefore ffo creating
FISHER2009 java has been used over VB languages.

5.2.2 SQL

SQL is a standard interactive and programming language for querying and modifying data
and managing databases. Although SQL is both an ANSI and an ISO standard, many
database products support SQL with proprietary extensions to the standard language. The

33|

core of SQL is formed by a command language that allows the retrieval, insertion,
updating, and deletion of data, and performing management and administrative functions.
SQL also ineludes a Cali Level Interface (SQL/CLI) for accessing and managing data and
databases remotely.

The first versión o f SQL was developed at IBM by Donald D. Chamberlin and Raymond
F. Boyce in the early 1970s. This versión, initially called SEQUEL, was designed to
manipúlate and retrieve data stored in IBM's original relational database product, System
R. The SQL language was later formally standardized by the American National Standards
Institute (ANSI) in 1986. Subsequent versions of the SQL standard have been released as
International Organization for Standardization (ISO) standards.

Originally designed as a declarative query and data manipulation language, variations of
SQL have been created by SQL database management system (DBMS) vendors that add
procedural constructs, control-of-flow statements, user-defined data types, and various
other language extensions. With the release of the SQL: 1999 standard, many such
extensions were formally adopted as part o f the SQL language via the SQL Persistent
Stored Modules (SQL/PSM) portion of the standard.

Common criticisms of SQL inelude a perceived lack of cross-platform portability between
vendors, inappropriate handling of missing data (Nuil (SQL)), and unnecessarily complex
and occasionally ambiguous language grammar and semantics.

History

During the 1970s, a group at IBM's San José research center developed the System R
relational database management system, based on the model introduced by Edgar F. Codd
in his influential paper, A Relational Model of Data for Large Shared Data Banks.Donald
D. Chamberlin and Raymond F. Boyce of IBM subsequently created the Structured
English Query Language (SEQUEL) to manipúlate and manage data stored in System R.
The acronym SEQUEL was later changed to SQL because "SEQUEL" was a trademark o f
the UK-based Hawker Siddeley aircraft company.

The first non-commercial non-SQL RDBMS, Ingres, was developed in 1974 at the U.C.
Berkeley. Ingres implemented a query language known as QUEL, which was later
supplanted in the marketplace by SQL.

In the late 1970s, Relational Software, Inc. (now Oracle Corporation) saw the potential of
the concepts described by Codd, Chamberlin, and Boyce and developed their own SQL-
based RDBMS with aspirations of selling it to the U.S. Navy, CIA, and other govemment
agencies. In the summer of 1979, Relational Software, Inc. introduced the first
commercially available implementation of SQL, Oracle V2 (Version2) for VAX
computers. Oracle V2 beat IBM's release o f the System/38 RDBMS to market by a few
weeks.

34|

After testing SQL at customer test sites to determine the usefulness and practicality of the
system, IBM began developing commercial products based on their System R prototype
including System/38, SQL/DS, and DB2, which were commercially available in 1979,
1981, and 1983, respectively.

Standardization

SQL was adopted as a standard by ANSI in 1986 and ISO in 1987. In the original SQL
standard, ANSI declared that the official pronunciation for SQL is "es queue el".

Until 1996, the National Institute of Standards and Technology (NIST) data management
standards program was tasked with certifying SQL DBMS compliance with the SQL
standard. In 1996, however, the NIST data management standards program was dissolved,
and vendors are now relied upon to self-certify their products for compliance.

The SQL standard has gone through a number of revisions, as shown below:

Year Ñame Alias Comments

1986 SQL-86 SQL-87 First published by ANSI. Ratified by ISO in 1987.

1989 SQL-89 fips 127-1 Minor revisión, adopted as FIPS 127-1.

1992 sql-92 SQL2, FIPS 127-2 Major revisión (ISO 9075), Entry Level SQL-92
adopted as FIPS 127-2.

1999 SQL: 1999 SQL3 Added regular expression matching, recursive queries,
triggers, support for procedural and control-of-ñow
statements, non-scalar types, and some object-oriented
features.

2003 SQL:2003 Introduced XML-related features, window ñmctions,
standardized sequences, and columns with auto-
generated valúes (including identity-columns).

2006 SQL:2006 ISO/IEC 9075-14:2006 defines ways in which SQL can
be used in conjunction with XML. It defines ways of
importing and storing XML data in an SQL database,
manipulating it within the database and publishing both
XML and conventional SQL-data in XML form. In
addition, it provides facilities that permit applications to
intégrate into their SQL code the use of XQuery, the XML
Query Language published by the World Wide Web
Consortium (W3C), to concurrently access ordinary SQL-
data and XML documents.

35|

Language elements

m

tSMGK

■(yPOATe country
{SET populación
«{KWERC iw«e

Vi— Hn—n»

populatlon

¿P

This chart shows several o f the SQL language elements that compose a single statement.

The SQL language is sub-divided into several language elements, including:

• Statements which may have a persistent effect on schemas and data, or which may
control transactions, program flow, connections, sessions, or diagnostics.

• Queries which retrieve data based on specifíc criteria.
• Expressions which can produce either scalar valúes or tables consisting o f columns and

rows of data.
• Predicates which specify conditions that can be evaluated to SQL three-valued logic

(3VL) Boolean truth valúes and which are used to limit the effects of statements and
queries, or to change program flow.

• Clauses which are (in some cases optional) constituent components of statements and
queries.

• Whitespace is generally ignored in SQL statements and queries, making it easier to
format SQL code for readability.

• SQL statements also inelude the semicoIon statement terminator. Though not
required on every platform, it is defíned as a standard part of the SQL grammar.

Queries

The most common operation in SQL databases is the query, which is performed with the
declarative SELECT keyword. SELECT retrieves data from a specified table, or múltiple
related tables, in a database. While often grouped with Data Manipulation Language
(DML) statements, the standard SELECT query is considered sepárate from SQL DML, as it
has no persistent effects on the data stored in a database. Note that there are some
platform-specific variations of SELECT that can persist their effects in a database, such as
the SELECT INTO syntax that exists in some databases.

SQL queries allow the user to specify a description of the desired result set, but it is left to
the devices of the database management system (DBMS) to plan, optimize, and perform
the physical operations necessary to produce that result set in as efficient a manner as
possible. An SQL query ineludes a list of columns to be included in the final result
immediately following the SELECT keyword. An asterisk ("*") can also be used as a
"wildcard" indicator to specify that all available columns of a table (or múltiple tables) are
to be retumed. SELECT is the most complex statement in SQL, with several optional
keywords and clauses, including:

36]

• The FROM clause which indicates the source table or tables from which the data is to be
retrieved. The FROM clause can inelude optional JOTN clauses to join related tables to
one another based on user-specified criteria.

• The WHERE clause includes a comparison predicáte, which is used to restrict the
number of rows retumed by the query. The WHERE clause is applied before the
GROUP BY clause. The WHERE clause eliminates all rows from the result set where
the comparison predicáte does not evalúate to True.

• The GROUP BY clause is used to combine, or group, rows with related valúes into
elements o f a smaller set of rows. GROUP BY is often used in conjunction with SQL
aggregate functions or to eliminate duplícate rows from a result set.

• The HAVING clause ineludes a comparison predícate used to eliminate rows after the
GROUP BY clause is applied to the result set. Because it acts on the results of the
GROUP BY clause, aggregate functions can be used in the HAVING clause predícate.

• The ORDER BY clause is used to identify which columns are used to sort the resulting
data, and in which order they should be sorted (options are ascending or descending).
The order of rows retumed by an SQL query is never guaranteed unless an ORDER B Y
clause is specified.

Data manipulation

First, there are the standard Data Manipulation Language (DML) elements. DML is the
subset of the language used to add, update and delete data:

• INSERT is used to add rows (formally tupies) to an existing table, for example:

INSERT INTO My_table (fieldl, field2, field3) VALUES ('test', N ’, NULL);

• UPDATE is used to modify the valúes of a set of existing table rows, eg:

UPDATE My_table SET fieldl = 'updated valué' WHERE field2 = N ';

• DELETE removes zero or more existing rows from a table, eg:

DELETE FROM M yjable WHERE field2 = N ';

• MERGE is used to combine the data of múltiple tables. It is something o f a combination
of the INSERT and UPDATE elements. It is defined in the SQL:2003 standard; prior to
that, soriie databases provided similar fiinctionality via different syntax, sometimes called
an "upsert".

Transaction Controls

Transactions, if available, can be used to wrap around the DML operations:

• START TRANSACTION (or BEGIN WORK, or BEGIN TRANSACTION, depending
on SQL dialect) can be used to mark the start of a database transaction, which either
completes entirely or not at all.

• COMMIT causes all data changes in a transaction to be made permanent.

371

• ROLLB ACK causes all data changes since the last COMMIT or ROLLB ACK to be
discarded, so that the State of the data is "rolled back" to the way it was prior to those
changes being requested.

Once the COMMIT statement has been executed, the changes cannot be rolled back. In
other words, its meaningless to have ROLLBACK executed after COMMIT statement and
vice versa.

COMMIT and ROLLBACK internet with areas such as transaction control and locking.
Strictly, both termínate any open transaction and release any locks held on data. In the
absence of a START TRANSACTION or similar statement, the semantics of SQL are
implementation-dependent.

Example:

A elassie bank transfer o f funds transaction.

START TRANSACTION;
UPDATE Account SET amount=amount-200 WHERE account number=1234;
UPDATE Account SET amount=amount+200 WHERE account number=2345;

IF ERRORS=0 COMMIT;
IF ERRORSoO ROLLBACK;

Data defínition

The second group of keywords is the Data Defínition Language (DDL). DDL allows the
user to define new tables and associated elements. Most commercial SQL databases have
proprietary extensions in their DDL, which allow control over nonstandard features of the
database system. The most basic Ítems of DDL are the CREATE, ALTER, RENAME,
TRUNCATE and DROP statements:

• CREATE causes an object (a table, for example) to be created within the database.
• DROP causes an existing object within the database to be deleted, usually irretrievably.
• TRUNCATE deletes all data from a table (non-standard, but common SQL statement).
• ALTER statement permits the user to modify an existing object in various ways — for

example, adding a column to an existing table.

Example:

CREATEJABLE M yjable (
my_fieldl INT,
my_field2 VARCHAR(50),
my_field3 DATE NOT NULL,
PRIMARY KEY (my_fieldl, my_field2)

Data control

The third group of SQL keywords is the Data Control Language (DCL). DCL handles the
authorization aspects o f data and permits the user to control who has access to see or
manipúlate data within the database. Its two main keywords are:

• GRANT authorizes one or more users to perform an operation or a set of operations on
an object.

• REVOKE remo ves or restricts the capability of a user to perform an operation or a set of
operations.

Example:

GRANT SELECT, UPDATE ON My_table TO some user, another_user;

SQ1 is the base language for databases. For getting máximum benefits of database
designing, some database tools are used in modem world.

5.2.3 JAVA IDEs
In the modem competitive world Time has become everything with that reason creating
software has become a great challenge to overeóme that challenge JAVA programmer
considered the best and fast ways to present Quality software ,that system named as
Integrated Development Environments or in short form IDE. Integrated Development
Environments (IDE) provides benefits to programmers that plain text editors cannot match.
IDEs can parse source code as it is typed, giving it a syntactic understanding of the code.
This allows advanced features like code generators, auto-completion, refectory and
debuggers.

IDEs are programs designed to make programming easier

> Graphical Interface is intuitive

> Program management is easier

> Source code readability is improved

> Too many features to list

You do not need an IDE to create a program. But they are very helpful.

39|

Present use Java IDEs in brief

■ BlueJ
■ CodeLab
■ Code W arrior
■ DrJava
■ Eclipse
■ IDLE
■ JBuilder
■ JCreator
■ JES
■ jGrasp
■ Jython
■ NetBeans
■ Python
■ Sun’s JDK/SDK
■ TextPad

JBuilder

JBuilder Professional is a comprehensive, visual development environment for creating
JAVA 2, platform-independent database and Web applications. JBuilder combines a rapid
application development environment for building and deploying JavaBeans, applets,
servelets, and Java/XML. This environment ineludes extensive source management and a
professional graphical debugger.

JC reator

JCreator is a powerful IDE for Java. JCreator provides the user with a wide range of
functionality such as : Project management, project templates, code-completion, debugger
interface, editor with syntax highlighting, wizards and a fully customizable user Ínter face.
With JCreator you can directly compile or run your Java program without activating the
main document first. JCreator will automatically find the file with the main method or the
html file holding the java applet, then it will start the tool.

NetBeans

The original free and open source IDE. Develop cross-platform desktop, mobile and web
applications based on industry standards utilizing the latest technologies with full-featured
integrated'development environment for Java Software Developers.

Python

Python is an interpreted, interactive, object-oriented programming language. It is often
compared to Tcl, Perl, Scheme or Java. Python combines remarkable power with very
clear syntax. It has modules, classes, exceptions, very high level dynamic data types, and

40|

dynamic typing. There are interfaces to many system calis and librarles, as well as to
various windowing systems (X I1, Motif, Tk, Mac, MFC). New built-in modules are easily
written in C or C++. Python is also usable as an extensión language for applications that
need a programmable ínter face. The Python implementation is portable: it runs on many
brands o f UNIX, on Windows, OS/2, Mac, Amiga, and many other platforms. The Python
implementation is copyrighted but freely usable and distributable, even for commercial
use.

The Main Features of MySQL:

Internáis and Portability

Written in C and C++.
Uses GNU Automake (1.4), Autoconf (Versión 2.52 or newer), and Libtool for

portability.
Works on many different platforms; APIs for C, C++, Eiffel, Java, Perl, PHP, Python,

Ruby, and Tcl.
Fully multi-threaded using kemel threads, this means it can easily use múltiple CPUs

if available.
Very fast B-tree disk tables with Índex compression and thread-based memory

allocation system.
Very fast joins using an optimised one-sweep multi-join, can mix tables from different
databases in the same query.

In-memory hash tables which are used as temporary tables.
SQL ñmctions are implemented through a highly optimised class library and should be as
fast as possible!

Usually there isn't any memory allocation at all after query initialisation.

Security

All password traffic is encrypted connecting to a server.
A privilege and password system that is very flexible and allows host-based

verification.

Scalability and Limits

Handles large databases. Máximum size for a table is 8TB (default 4GB).
Up te 32 indexes per table. Each Índex may consist o f 1 to 16 columns or parts of

columns.
The máximum Índex width is 500 bytes (this may be changed when compiling

MySQL Server).
An índex may use a prefix of a CHAR or VARCHAR field.

4 Í|

Connectivity

Clients may connect to the MySQL server using TCP/IP Sockets, Unix Sockets (Unix), or
Named Pipes (NT).

All ODBC 2.5 functions and many others.

Localization

All comparisons for normal string columns are case-insensitive.
The server can provide error messages to clients in many languages.
MySQL Server supports many different character sets that can be specified at compile

and runtime.

Clients and Tools

. Ineludes myisamchk, a very fast utility for table checking, optimisation, and repair.
All of the functionality of myisamchk is also available through the SQL interface as

well.
All MySQL programs can be invoked with the —help or -? options to obtain Online

assistance.

Growth of MySQL

MySQL represents the most impressive market success, exceeded only perhaps by Apache
in free and open source software. In terms of installed base, MySQL has left the
technically impressive rival
PostgreSQL in the dust. It has marginalized mSQL, SQLite, and SAP DB

It has started to challenge the proprietary database companies on their own turf, asalready
mentioned. Nobody
can say why licensing costs for proprietary databases haveplummeted in recent years, but
one suspeets that it’s due to
MySQL9 s eompetition, as are the large discoimts Microsoft has offered certain customers.

Charmedstatus of the MySQL

A textbook case of a disruptive technology

MySQL, first of all, illustrates in almost puré form thesequence of events Clayton M.
Christensen documented as a “disruptive technology” in his ground-breaking book The
Innovator ’s Dilemma. Early versions o f MySQL lacked thebasic features, such as ACID

42|

transactions and referentialintegrity, that experienced users expected from a relational
database. In a pattem familiar to anyone who has read Christensen’s book, knowledgeable
observers dismissed MySQL as a toy.

But MySQL’s very simplicity made it so small and fast that it quickly won o ver small
users who wouldn’t even understand what they were missing and how to use the fancy
features offered by “real” database engines. In particular, MySQL proved ideal for the
exploding area of dynamic Web content.

Most indicative of its mantle as a true disruptive technology, MySQL proved that many of
the missing high-end features weren’t as indispensable as people used to claim. For
instance, referential integrity (jeez, who could be opposed to integrity?) wasn’t required in
a database when it could be achieved in the application code, o fien more reliably. You
could also achieve efficient locking without row-level locks; in fact, supporting row-level
locks took so much overhead that the application was almost better without them.

I

Having rewritten the rules for what constituted a useful relational database engine, MySQL
AB proceeded to invest resources to implement the very features which they were
originally sneered at for lacking. Bit by bit they have added check-off Ítems to their T-
shirts. And what’s most interesting is how they found the resources to pulí off this kind of
upgrade cycle.

The importance of dual-licensing

Of course, any agreement under which you release free software (other than the public
domain) is a license, but “licensing” usually refers to selling licenses. And MySQL AB
has become one of most successfiil companies with a completely complementary dual-
licensing model: they offer everything under an open license for certain users, but charge
money for everything under other circumstances.

As we’ll see, the parallel existence of GPL licensing and commercial licensing leaves a
mark on every aspect o f the company.

The CEO of MySQL AB, Marten Mickos, said that more than half o f their money comes
from license fees. This contrasts with an impression of open source software left by Novell
vice president Chris Stone in his keynote.

Stone, claiming that Novell had already settled on a maintenance model for revenue,
suggested that, because of this, the move to open source will not be as hard for Novell
as for other traditional Computer companies. The remarks implied that an open source
business model has to be a support model, but MySQL AB staff pointed out that support
contraéis have been shown to be insufficient to fund software development. It may be
enough in the future, but it’s not yet.

43]

The other side of dual licensing is equally important. In terms of adoption, open licenses
do more for a software project than twenty thousand billboards and glossy ads. The GPL
allowed MySQL to penétrate millions of sites that would never have otherwise known
about it.

MySQL AB also benefíts directly from contributions; for instance, its most feature-rich
storage engine, InnoDB, started as an outside project.

But MySQL would have remained a stepping stone to other databases for many people,
were it not for its continual growth and improvement. This rate of improvement is not
exceedingly fast (managers stress that they always check for stability, correctness, and
performance before releasing enhancements) but it’s fast enough to give customers the
impression that features are worth waiting for-that what they want will in due time be
added to the product.

And there’s a symbiosis between technical development and payments for licenses. Each
requires the other. If a substantial body of enhancements to MySQL grew up outside
the company-even if they were put under the GPL and MySQL AB could incorpórate
them into its versión of MySQL-they would not be part of the valué MySQL AB could
offer paying customers. There would thus be few paying customers, and MySQL AB
could not afford to hire people to keep up development. In order to keep up with customer
needs, MySQL AB has managed one of the coolest tricks in open source development:
keeping most development in-house. And making users happy about it!

Whereas Linux and Apache belong to everybody and nobody, MySQL is taken seriously
by large companies with money to spend because there’s a company that owns a trademark
on it and markets it like a proprietary product.

So MySQL succeeds at maintaining two faces. To paying customers, it’s a traditional,
responsible vendor. To programmers and database administrators, it’s a flexible,
responsive network of independently-minded developers in free-software style.

SAP adds its muscle

Nobody would be sorry to have the backing that comes from such a large and well-
established Corporation as SAP. But in addition to SAP’s prestige and endorsement of
MySQL, what is the main contribution of the partnership?

Not MaxDB. This is the new ñame for SAP DB, and was honored with several sessions at
the conference, all poorly attended.

441

And probably not the money SAP invested in MySQL AB as part of the partnership they
announced in May 2003. Certainly this helped to spur the enormous hiring campaign
MySQL has been on during the past year.

In particular, MySQL 5.1 is supposed to contain server-side cursors, views, standard error
handling, standard security handling, schemas, and constraints.

There are three reasons for incorporating SAP DB features into MySQL:

1. They are genuinely useful.
2. They are needed to run SAP.
3. They are ANSI-compliant.

Java Database Connectivity

Java Database Connectivity (JDBC) is an API for the Java programming language that
defines how a client may access a database. It provides methods for querying and updating
data in a database. JDBC is oriented towards relational databases

The selected Java IDE for FISHER 2009

After, the latest IDEs have been considered we decided to choose Net Beans as our
FISHER2009 Software due to its’ user friendly features and it is totally free but the key
point was it the IDE that SUN Microsystems has recommended.FISHER2009 was started
with Net Beans 5.5 but when the process was going Net Beans 6.0 and Net Beans 6.1 has
been implemented.

NETBEANS 6.1

ice »<va HttBoans Pfetfom» »r» m Mftwtt* íw v
Lcacing modules W b u c i arg, h n bttn du»i uccftaed i*nd*r «ha CanwMn

«nd CMIrtbutMn (CDCt) Wid fh* G3W
Pv£llc Lumac ■strtion 2 nUti «(taptiwi.

___________________________________ fo r mona rtfonramm. v»*» __________

NetBeans IDE 6.1 Information

The NetBeans IDE is a modular, standards-based, integrated development environment
(IDE) written in the Java programming language. The NetBeans project consists of an
open source IDE and an application platform, which can be used as a generic framework to
build any kind of application.

Release OverView

The NetBeans IDE 6.1 release provides several new features and enhancements, such as
rich JavaScript editing features, support for using the Spring web framework, tighter
MySQL integration, and an improved way of sharing libraries among dependent projects.
The acclaimed support for Ruby/JRuby has been enhanced with new editor quick fixes, a
Ruby platform manager, fast debug support for JRuby, and many other new features and
fixes.

By popular demand, the bean pattem and JSF CRUD generation features that were missing
in the 6.0 release have retumed. In addition, early versions of new modules, such as
ClearCase support, are available as plugins.

This release also provides improved performance, especially faster startup (up to 40%),
lower memory consumption and improved responsiveness while working with large
projects. See below for a list of features in this release.

NetBeans IDE 6.1 - Faster, Better, Stronger

NetBeans IDE versión 6.1 has been released recently. This versión comes relatively soon
after its widely successful predecessor - NetBeans IDE 6.0. Although NetBeans 6.1 is not
as revolutiónary as 6.0 (which brought a completely redesigned Java editor), the new
release has many new features. In this article we'll discuss the new features one by one.

This article only covers the major improvements, so if you want to see a complete list
please visit the 6.1 New and Noteworthy page.

Lef s look at what is new and improved in the new release.

Performance and Quality
The main themcs of thc release are performance and quality - after all, as a minor release it
stabilizes the previous major release. These goals are rather intangible but developers
should notice a faster startup (up to 40% over versión 6.0 if múltiple projects are open) and
different performance boosts all across the board. One of the big issues in 6.0 was slow
parsing of JSP files, and feedback íforn the NetBeans community indicates that versión 6.1
doesn't suffer from this problem anymore. A new incremental parser has been integrated
into the Java editor, so all Java syntax related features such as code completion, navigator,
refactorings, etc. should be noticeably faster, especially on large classes. Several I/O
related optimizations have been used to reduce the number of disk accesses, improving
responsiveness in many cases.

One performance improvement needs closer examination - the Visual Web Designer
received many performance-related fixes leading to lower memory usage. The
performance team fixed several issues with memory leaks which may have caused the
Visual Designer to grow consumption of memory over time. The most significant change,
though, is that the binding attributes no longer get generated by default - which leads to
many performance improvements because the classes generated by Visual Web are much
smaller and do not inelude unnecessary attributes, getters and setters. However, this
change may be surprising to some users - you need to make sure you generate the
necessary binding attribute to have access to the element you want to manipúlate, as seen on
the screenshot:

iny Sise
Edit java Source
Auto-Submít on Change
8¡nd to Data...
Add
Property Bindings...

Binding Attribute
Edit JSP Source

Edit Inline ►

Sekct Párent

Edit Event Handiér >

In the beginning it may be surprising that you need to add binding attributes for each page element
you want to manipúlate, but the performance gains are defmitely worth the extra work.

New JavaScript Editor
Screencast: New JavaScript editor in NetBeans 6.1

NetBeans 6.1 provides a brand new JavaScript editor based on the GSF framework (General

47|

Scripting Framework) which was introduced together with Ruby editor in 6.0. It took only a few
months to provide many new JavaScript editing features, such as:
• Semantic highlighting
• Mark occurrences
• Instant rename
• Rename refactoring
• Quick fixes and semantic checks
• Tasklist integration

• Code completion and type analysis
• JavaScript documentation in code completion
• Browser compatibility information in code completion
• Go to declaration
• Open JavaScript type
• ... and much more.
The editing experience with JavaScript in versión 6.1 is similar to the Java and Ruby editors. Work
on a JavaScript debugger is in progress and its first prototype should be demo-ed at NetBeans Day
in San Francisco in May 2008.

MySQL Support
Due to the recent acquisition of MySQL AB by Sun Microsystems, the NetBeans IDE 6.1 added
integration with MySQL. You can start or stop the MySQL server right from the IDE. A default
connection is generated for you, and you can browse database tables easily and create connections
to these tables with one click. Getting started developing with the NetBeans IDE and MySQL is
even easier than before.

Mobility
In the Java ME area, Mac OS X is now officially supported and the Mpower emulater can be easily
used from the IDE. Several new SVG components have been added and the quality and stability of

Mobility Pack has been enhanced as well.

RESTful Web Services Support
The RESTful web Service support in the Netbeans IDE is based on the JSR 311 standard. The IDE
has a wizard to create RESTful Services from JPA entity classes. You can also create RESTful

Services based on popular design patterns provided by the IDE. Another wizard generates

JavaScript client stubs that invoke these Services. A popular feature is the test client that provides
an interactive way to test and view the result of web Service invocations. RESTful web Service
support was available since NetBeans 6.0 as a plugin, now it is part of the Netbeans IDE 6.1

standard distribution.

48]
HM

6.0 exe4j

exe4j is a Java exe maker that helps you intégrate your Java applications into the Windows
operating environment, whether they are Service, GUI or command line applications. If you want
your own process ñame instead of java.exe in the task manager and a user friendly task-bar
grouping in Windows XP, exe4j does the job. exe4j helps you with starting your Java applications
in a safe way, displaying native splash screens, detecting or distributing suitable JREs and JDKs,
startup error handling and much more.

The use of exe4j s use is not time limited, but restricted to evaluation purposes. Evaluation
wamings

are removed after purchasing an exe4j license .

exe4i Licensing

Without a valid license, exe4j may be used for evaluation purposes only. The evaluation period is
not

time limited, but exeludes any use for creating distributions of commercial producís.

exe4j licenses can be purchased easily and securely online. They accept a large variety of payment

methods including credit cards, checks and purchase orders. Pricing information is available
online.

The license key can enter in the welcome step of the exe4j wizard. If a license has been

entered, the licensing information is visible there. The exe4j command line compiler also prints

licensing information except when invoked with the quiet option.

exe4i wizard

When invoking exe4j from the start menú, the desktop icón or by executing bin\exe4j.exe in the
exe4j installation directory, the exe4j wizard is started. It guides you step by step through
completing the required information for building the executable.

The window of the wizard has three distinct areas:

49|

-W‘X*

(1)Index

The Índex of steps lists all steps of the wizard and highlights the current step in bold face. You can

click on any step in the índex to arbitrarily move between wizard steps. Altematively, you can use

the navigation Controls.

• (2) Current step

The information for the current step is entered here. See the help pages for each step for

specific information.

• (3) Navigation

The navigation bar allows you to move back and forward through the steps of the wizard with the
[Next] and [Previous] buttons. The [Finish] button allows you to complete the wizard
immediately without moving through the remaining steps. Should any required information be
missing, the wizard will alert you to it. The [Help] button shows context specific help that is also
available by pressing F l. With the [Cancel] button you can leave the wizard at any time. Should
you have made modifications to the configuration, you will be asked whether you want to save
your changes before the wizard exits.

By default, the wizard starts with a témplate config file that contains default valúes where
appropriate.

The témplate config file is loaded from config\template.exe4j in the exe4j installation directory.

If you would like to load a config file at startup, you can pass the path of the desired config file to
the wizard executable (bin\exe4j.exe in the exe4j installation directory).

Versión Info

A versión info resource will enable the Windows operating system to determine meta
information about your executable. This information is displayed in various locations. For
example, when opening the property dialog for the executable in the Windows explorer, a
"Versión" tab will be present in the property dialog if you have chosen to generate the
versión info resource. The versión info resource consists of several pieces o f information.
If you check Generate versión info resource, there are several fíelds whose valúes must be
entered in the text fíelds on this step. Note that the "original file ñame" and the "product.
ñame" fíelds in the versión info resource are filled in automatically by exe4j.

• Product versión
The product versión must be composed of a máximum o f 4 numbers, separated by spaces,
commas or dots. By using the -r flag for the command line compiler, the product versión
can be overidden. The product versión is also used in the splash screen versión line config
as a replacement valué for the variable %VERSION%.

• File versión
If you want to specify a versión for the file which is a different from the product versión,
you can do it here. If this field is left empty, the product versión will be used for the file
versión.

• Intemal ñame
Choose a short intemal ñame for identifying your application.

• Company ñame
Enter the ñame of your company.

• File description
Enter a description o f the application.

• Legal copyright
Enter a copyright statement for your application.

Native librarv directories

If your application uses native libraries that you would lke to load with a
System. loadLibrary() cali, the directory where the .dll is located must be included in the
PATH environment variable.

5i |

You can add such directories in the path list of this step.

• Add native library directory (key INS)
Lets you add a new directory to the end of the list. Choose the native library directory in
the file chooser that appears after clicking this button. The directory will be converted to a
path relative to the distribution source directory.

• Remove native library directory (key DEL)
Removes the currently selected native library directory entry without further confirmation.

• Move entry up (key ALT-UP)
Moves the selected native library directory entry up one position in the path list.

• Move entry down (key ALT-DOWN)
Moves the selected native library directory entry down one position in the path list.

Configure Search Sequence

The search sequence list shows all search sequence entries that have been added so far. For
new configurations, a default search sequence is pre-defined.

The following types o f search sequence

entries are available:

• Search registry
• Directory
• Environment variable
The control buttons on the right allow you to modify the contents of the search sequence
list:
• Add search sequence entry (key INS)

Invokes the search sequence entry dialog. Upon closing the search sequence entry dialog
with the [OK] button, a new search sequence entry will be appended to the bottom of the
search

sequence üst.

• Remove search sequence entry (key DEL)

Removes the currently selected search sequence entry without further confirmation.

52|

• Move search sequence entry up (key ALT-UP)

Moves the selected search sequence entry up one position in the class path list.

• Move search sequence entry down (key ALT-DOWN)

Moves the selected search sequence entry down one position in the class path list.

It is possible to generate a log file that contains information about the JRE search sequence
and any potential problems. In order to switch on logging, please define the environment
variable EXE4J_LOG=yes and look for the newest text file whose ñame starts with
i4j_nlog_ in the Windows temp directory. This information can be used for debugging
purposes.

Preferred VM

• default VM

exe4j will use the default VM for the found JRE.

• client hotspot VM

exe4j will try to use the client hotspot VM for the found JRE. This is equivalent to using the -client
switch when invoking java from the command line.

• server hotspot VM

exe4j will try to use the server hotspot VM for the found JRE. This is equivalent to using the -
server switch when invoking java from the command line. Please note that it is not an error if the
selected JVM is not present for the found JRE. exe4j will simply use another JVM to launch your
application in that case.

Splash Scréen Options

The behavior of the splash screen can be defined in the General section of this step:

53]

• Hide splash screen when first application window is shown

If this option is checked, the exe4j executable will monitor the State of your application
and hide the native splash screen as soon as a window is opened. If you want to hide the
splash screen programmatically, you can use exe4j's launcher API.

• Splash screen is always on top

If this option is checked, the splash screen remains always on top of other Windows opened
by your application.

The Status line and Versión line sections allow you to position the text Unes on the splash
screen and configure their font. The status line is dynamically updatable with exe4j's
launcher API. If you inelude the variable %VERSION% in the versión line text, it will be
replaced with the product versión defined in the versión info step of the wizard. With the -r
flag, you can override this setting for the command line compiler .

You can configure the following properties of a text line

• Text

The (initial) text displayed in the text line.

• Position
The x and y-coordinates of the text line on the splash screen. The origin o f the coordínate
system is the top left comer of the splash screen window.

• Font
The font used for drawing the text line:

• Ñame
The ñame of the font. Please choose a common font ñame that is likely to be available on

all target plátforms. If unavailable at runtime, the MS Dialog font will be used as a

fallback.

• Weight
The weight of the font. The 8 Windows standard font weights are offered as a choice.

• Size
The size of the font in points.

54|

Color

The color of the font. By clicking on [...], a color chooser dialog is brought up.

To visually position the text lines with mouse and keyboard on the actual splash screen
image,please click on the [Position text lines visually] button. The visual positioning
dialog will then be displayed. On exiting the dialog with the [OK] button, the X/Y
coordínate text fields will be updated for both text lines.

exe4j features

• Customized JRE/JDK detection
The executable can detect appropriate Java JREs and JDKs in the Windows registry, in
environment variables, special directories and on the system path. You can fully customize
the search sequence, error handling and supported JRE/JDK versions.

• Optional distribution of a bundled JRE
exe4j allows you to distribute your own prívate JRE with your application. This way you
can ensure that your application's requirements are definitely met. You can even configure
where the JRE is located.

• Flexible classpath construction
The classpath for your Java application can be fully customized to sean directories for JAR
files, inelude specific directories and archives as well as inserí environment variables.
Customizable error handling allows you to interrupt the startup sequence with a specific
error message instead of obscure NoClassDefFound exceptions later on.

• GUI or consolé applications
exe4j lets you compile GUI applications or consolé applications with an associated
terminal window.

• Windows Services
exe4j enables you to easily create a Windows Service with Java. With the command Une
switches /install, /uninstaU, /start and /stop you have fiill control over your Service.

• Optional inclusión of JAR files into the executable exe4j lets you inelude JAR files
into the executable - in this way you can distribute your Java appücations as a single EXE
file.

• Custom process ñame instead o f java/javaw exe4j launches your Java application in
such a way, that the exe4j executable and not java.exe or javaw.exe will appear in the task
manager. In Windows XP, the task bar grouping will display the ñame of your executable
and the associated icón, instead of the non-descript terminal icón and the string "javaw".

• Custom icón for your executable
exe4j lets you specify an icón file that will be compiled into your executable. This gives
your application a much more professional appearance than a batch file or an executable
JAR file would.

• Custom working directory
If required you can adjust the working directory to a specific directory relative to the
executable. This is especially helpful for consolé applications which can be invoked from
arbitrary directories. This way, you don't need to define fiagile environment variables like
MYAPPHOME.

• VM parameters file
For every executable, you can create a user editable VM parameters file. If your executable
is called hello.exe, the VM parameters file is called helio.exe.vmoptions and each line in it
is added as a single VM parameter.

• Versión info resource
exe4j can generate a versión info resource entry in your executable. This versión info is
displayed for example in the property dialog of the Windows explorer. If you wish to
obtain the "Designed for Windows" logo, this is an important requirement.

• Native splash screen
For GUI applications, a native splash screen gives the users o f your application an
optimum feedback about application startup within fractions o f a second. Textual status
information about application startup and versión information can be freely placed on the
splash screen. From within your Java code, this status information can be easily updated
with one simple cali. With exe4j's "auto-ofF' mode activated, the splash screen is hidden,
as soon as your application displays a window.

• Redirection of stderr and stdout
Output stream and error stream can be redirected to customized files. This gives you
access to valuable information like an exception stack trace on stderr that would otherwise
be lost foca Java GUI application.

• Startup failure detection
No more flashing terminal Windows and GUI applications that hang without displaying
anything. exe4j executables can monitor a stderr output file and display a native dialog
with helpful information to inform about startup failures.

56|

• Optional single application instance enforcement and múltiple startup notification
If your application must only be started once, an exe4j generated launcher can enforce this
condition. Existing application Windows will be brought to the top if a user starts the
application a second time. The exe4j API allows you to register a listener that reacts to
múltiple startups and receives the parameters of the command line.

• Fully localizable messages of the executable
All messages of the. executable are localizable. This way, the executable can blend into the
target lócale of your application.

s 7 |

7.0. Analyze
System specification
Efficiency
To feed data for day to day financial transaction, we have used a sound ways with smooth
interfaces in FISHER2009. We use the FISHER2009 software to create standard financial
statement and it also 100% assured.
User fríendliness
our system has user friendly GUI s which can be understood by any user and also it can
avoid many errors.
Upgradeabilíty
Can extent the system according to the user’s needs. Adding new features extend the
flexibility.
Neediness
In our system we have categorize the main sections and b selecting each section the user
can put any data that is needed him or her.
Security
It takes a user ñame and password to logging the system
E rro r handling
In our software there cannot be any data redundancy errors that means same data cannot be
repeated again and again.

User reauirem ent specification

Financial analyzing

In FISHER2009 one of the required section was financial analyzing, in the business field if
some company need to survive one of the compatible thing is to get a pleasant idea o f the
current situation o f the company when the financial section which is binned with
FISHER2009 give a perfect idea to the manager about the position of the company.

Financial Forecasting

In FISHER2009 one of the most required sections was financial forecasting, in the modern
business field. If businessman need to survive and be developed for that the administration
must plañe the fiiture and must take the decisión to fulfill the financial targets.

s i]

8.0 Designed

8.1 System designed

8.1.1 Usecase diagrams

Administrator

View Admin Profile Update Admin Profile

59|

System

Valídate Users View Reports

60l

Data Entry Operator

Create Broker's Profile Show Broker's profiles

6 Í |

8.1.2 Activity diagrams

Logging

62

Change Password

___'V
Start

application

NI/
Select relecent
user or admin

\/
.-----7-------- \

user ñame pasword password
^ ^ ^------- s v >

___________________^ / __________________
Press enter -----V

button
v_)

Incorrect

Valídate oíd user
ñame password

s._____________________________J

<

\

s
Correct

/_____________
Issue new

password for user
V____________________________>

\ /
View home page
with user access

 ̂ -

Create User Account

63|

View User Account

View Admin Profile

View Admn
login Interface

New Password
Error Message

A

Not ok

Valídate Admin
Pasword

64~[

Create Boatman Profile

Delete User Account

65

Boatman Profile Search

v
Start

A pp lication

V
S e le c t B o a tm a n

A c c o u n t

E n te r B oatm an
N um ber

V ie w U s e r
A c c o u n t

V ie w B o a tm a n
A c c o u n t Interface

V a líd a te B oatm an
N um ber

Error M e s s a g e
O c c u re

Not A c c e p t

->

VA c c e p t

S h o w Relavant
B o a tm a n Profile

Boatman Profile Update

3LStart
Application

Select Boatman>
V

Enter Boatman
Number

Select Update
Button

View Main
Interface

View Boatman
Interface

Valídate Boatman
Number

-3H Update Relavent
Detai Is

Error Message
Occure

View Relavent
Boatman Profile

66

B° a,ma" Day Acco unt

060

Broker Proíife Search

67

Broker Profile Update

Broker Day Account

___ y
Insert Broker

Number Invalid Broker

Inserí Data

BrokerNum ber
Valídate

Number Ok

P roces s
Calculations

68

9.0. Screen Design

M ain Screen

▼
(Login Window)

(1.0.Owner Window)

Upa sena & Sons (P \T)L td

-Optton------------------------
rDate & Time-----------------

Mar 5» 2009 9t2tfc4S AM

rPicture

------ ► (2.0.Boatman Window)

i-------- ►(3.0.Broker Window)

_____ fc(4.0.Administrator Window)

Login Window

Welcome FiShEr 2009

User Ñame

Password

SĈr.

&

O w ner W indow

Personnel Details of Owner

70

Day Account details of Owner

Profile Details of Boatman & Broker

Owner Window

Personel

Serch Boatman Profile.

-Actions-

A r r « j P r o f i t sHl-t-

Date Mar 5, 2009 10:48:17 AM Boat No
■

B roke r

n f

Boatman Window

Boatman Personnel Details

Boatman Details

Day Account Debits

Personnel Details Of Boatmens-------------------------

Date Mar 5, 2009 10:55:34 AM

Boatmen No p .'
Ñame Oí Boatmen

ID No

Birth Day

Gender

Address

Phone Type

Phone No

O Male (3 Female

Mobile

rPhoto

Database Activities-

Returns

"v

Serch picture from here

~3

Boatman Day Account Details

72

Boatman Debit details

73

. . Y - . . . ’ • ! " " " ~

Broker Window
Broker Personnel Details

Broker Details

[Pr<,fjje Day Account Debits

Personnel Details Of Broker

Date

Broker District

Broker No

Ñame Of Broker

ID No

Birth Day

Gender

Address

Mar 5, 2009 11:00:43 AM

Trincomalee

O Male i. y Female

Phone Type

Phone No

B

Photo

rDatabase Activities-

-

rReturns

OWNER

Serch photo from here

Add Photograph

Broker Day Account Details

74

B roker Day Final
Account sheet

Broker Debit Details

75

10.0 Limitations

Single PC software — Though it is a multi user multi tasking software but this can be used
by single user at one time.

The product code scenario has been predefined by the software development team and it
cannot be deñned by the user in the run time environment.

The product code range has been limited according to the software team the range cannot
be varied according to the user in the run time environment.

Though it can generate standard accounting statements it is not able to generate cash flow
statement.

The profit tnargin cannot be generated by quarter but it can be generated by year only.

The software doesn’t make any sense about some analyzing areas.

11.0 Future enhancements

Multi PC software — Because this is a multi user multi tasking software we are willing to
enhance this to a multi PC software which can be used by many users at one time.

We intend to generate cash flow statement.

We are planning to generate the profit margin according to the quarter basis while
performing the year basis.

12.0 Conclusión

The FISHER2009 System designed, is the end result of a lot of dedication, hard work and
commitment on a part o f all our group members. However this system was a dream
before it could actually be implemented. Nevertheless this system would be a great valué
to all Financial Sector of Fishing Industry. This project has taught us a valuable lesson.

References

❖ Paul R. Reed, JR. 2000. Developing Applications with CORE JAVA and UML.
Addison Roger Cadenhead, Inc.

❖ Michael McKelvy. 1997. MCSD:JAVA 6 Desktop Applications Study Guide.BPB
Publications

❖ Summerville. 1995. The fifth edition of Software Engineering. Addison Wesley
Publishers in autumn, pp.210-400

❖ http://www.w3schools.com/sql/default.asp

❖ http://www.w3schools.com/sql/sql_tryit.asp

❖ http://www.w3schools.com/sql/sql_fimctions.asp

❖ Coding Information, http://sourceforge.net/

78|

National Digitization Project

National Science Foundation

Institute : Sabaragamuwa University of Sri Lanka

1 . Place of Scanning : Sabaragamuwa University of Sri Lanka, Belihuloya

2. Date Scanned : .. .20.V1:.OG\.7.

3. Ñame of Digitizing Company : Sanje (Prívate) Ltd, No 435/16, Kottawa Rd,
Hokandara North, Arangala, Hokandara

4. Scanning Offícer

Ñame 5.: B ; . C .. So.Y\. .-r

Signature i■w—

I

Certifícation of Scanning
_ y *

/ hereby certify that the scanning o f this document was carried out under my supervisión, accordihgto* J fe; í tñStS
í • "ir * ’ ■icfifc.

the norms and standards o f digital scanning accurately, alsq keeping with the'originality o f the origiñak
h.

document to be accepted in a court o f law.

CertifVing Offícer

Designation : LIBRARIAN

Ñame : T.N. NEIGHSOOREI

Fax2Q0*H 7">"0045
“This docum ent/publication was d ig itized under N ational D igitization P roject o f the
N ational Science Foundation, Sri Lanka ”

