
Implementation of an intrusion detection

system

BY

E.M.S.A. GUNASINGHE

00/AS/028

This thesis is submitted in partial fulfillment of the report for the degree of

Bachelor of Science
in

Physical Sciences major in Computer Science

Department o f Physical Sciences
Faculty o f Applied Sciences

Sabaragamuwa University O f Sri Lanka
Buttala

March 2004

DECLARATION

I certify that this dissertation does not incorporate without acknowledgement any material
Previously submitted for degree or diploma in any university and to the best of my knowledge
and belief it does not contain any material previously published or written or orally
communicated by another person except where due to reference is made in die text
E.M.S A . Gunasinghe.

Signature
To best of my knowledge the above particulars are correct

External Supervisor
Dr. K.MLiyanage
Senior lecturer. DeptEEE.
Faculty of engineering
University of Peradeniya
Tel-0812 385184
email liva@cc.pdn.ac.lk Date

Internal Supervisor
Dr .R.G.N. Meegama
Co-ordinator
Center for computer studies
Sabaragamuwa university of sirilanka
Belihuloya.
Tel-0452 280049

Head of the Department
Dr. Ninnalee Wickramaratne
Head/Dept Physical Sciences
Faculty of Applied Sciences
Sabaragamuwa University o f Sri Lanka.

Signature
cs/
Date

ACKNOWLEDGEMENTS

First of all I wish to thanks to my internal supervisor Dr R.G.N: Meegama, Co-ordinator,
Center for computer studies, Sabaragamuwa University of SriLanka for his assistance,
encouragement, guidance. I specially thanks him for his effort towards securing the opportunity
of training at Computing cente, Faculty of Engineering, University of Peradeniya.

I like to express my sincere gratitude to my external supervisor Dr K.M: Liyanage, Senior
Lecturer, Faculty of Engineering, University of Peradeniya, Peradeniya, who kindly offered me
die industrial placement with all the focilities.

Then my deepest gratitude is express to the Dr D.B.M: Wickramarathna the Dean, Faculty o f
Applied sciences Sabaragamuwa University of SriLanka, and Dr Nirmalee Wickramarathna
Head of the Department of physical sciences Faculty of Applied sciences Sabaragamuwa
University of Sri Lanka for guiding me towards a successful completion.

I am heavily thanks to Mr.Manjula Gunaratna. Instructor, Computing center,Faculty of
Engineering, Peradeniya, who gave me the invaluable support thought my training. I very much
like to thanks to all the staff o f Computing center, Faculty of Engineering, University of
Peradeniya giving me the help during the training period.

ABSTRACT

Internet was the most widely used information carrier and the service provider for web based
information. The Internet servers had to face major problem with illegal access. Generally, when
a person made a request to a particular web server, that massage proceeded to the web server
through the permitted logical ports (in the case of standard http request, the port number 80). If a
hacker tried to access the web server through ports that not opened to the outside world (eg. Port
25, 21 that did not permit http request), then the system detected the information about such
unusual requests and wrote die relevant information to a file, which would be read by security
experts or system administrators.

The IDS program developed to capture the data packets at the network interface before it
entering to the firewall, and captured data packet not reassembled and read their header data such
as source IP, source port, protocol etc. The program wrote in C language for the programmable
Ethernet card, and the program could run in Linux environment.

The program successfully detected unusual traffic other than http request made to a web
server. As a future development, source IP address could be converted to FQDN, that identified
domain name and time where unusual request made.

i

PAGE NO.
ABSTRACT I
ACKNOWLEDGEMENRS H
LIST OF CONTENTS HI
LIST OF FIGURES V
LIST OF TABLE VI
Chapter 1
1. Introduction

1.1 Intrusion detection 1
1.2 Objectives 5

Chapter 2
2. Theoretical background

2.1 Various type of internet packets 6
2.1.1 Considering the packet issues 6
2.12 The raw packets 9
2.1.2 IP control and error massage (ICMP) 10
2.1.3 User datagram protocol (UDP) 11
2.1.4 Transmission control protocol (TCP) 13
2.1.5 How to IP protocol fit togelher 18

2.2 Data packet and layers 19
2.2.1 Packet filtering firewall and layers 20

2.3 Firewall 21
2.3.1 Packet filtering firewall 22
2.3.2 Proxy servers 23

2.4 What is a socket 24
2.5 Web server 26
2.6 Internet layer addressing 27
2.7 Network intrusion detection system 30

2.7.1 H5w do intruder get in to system 31
2.7.3 Why can intruder get in to system 32
2.7.4 System configuration 33
2.7.5 Password cracking 34

CONTENTS

in

2.7.7 Sniffing unsecured traffic 34
2.7.8 Design flaws 35
2.7.9 How do intruders get password 35
2.7.10 What is a typical intrusion scenario 37
2.7.11 What are some common intrusion signatures 38
2.7.12 What are some common exploits 38
2.7.13 Web server attracts 38
2.7.12 Web browser attracts 38
2.7.13 SMTP (send mail) attracts 39
2.7.14 DNS poisoning through sequence prediction 41
2.7.15 What are some common reconnaissance scan 42
2.7.16 What are some common DOS (Daniel of services) 43
2.7.17 How are intrusion detected 44
2.7.18 How does a NIDS match signatures with incoming traffic 44
2.7.19 What happens after a NIDS detects an attract 45
2.7.20 What other countermeasures 46
2.7.21 Where do I put IDS systems on my network 46
2.7.22 How does IDS fit with rest of my security frameworks 47
2.7.23 how can I detect if someone is running a NIDS 48

Chapter 3
3. Methodology 49

Chapter 4
i

4.1 Results 51
4.2 Discussion 51

Chapter 5
5.1 Conclusion 53
52 Recommendation 53

Chapter 6 ~
6. References 54

IV

LIST OF FIGURE
1.1 Usual access for web server 5
1.2 Unusual access for web server 5
2.1 Structure of icmp header 11
2.2 Structure of udp header 13
2.3 Structure of ip header 16
2.4 How data packet physically fit together 18
2.5 Structure of ip header 19
2.6 different packet and different layers 20
2.7 Packet filtering firewall 21
2.8 Transmit the data between two computer using socket 24
2.9 Internet protocol 25

v

LIST OF TABLE
2.1 Packet type benefits
2.2 The three-way handshake
2.4 TCP connection close

vi

CHAPTER 1

1 Introduction

1.1 Intrusion detection
A computer system should provide confidentiality, integrity and assurance against
intrusion attempts. However, due to increased connectivity on the Internet, more and
more systems are subject to attack by intruders Intrusion Detection Systems (IDS) are
used by organizations to extend their security infrastructure by detecting and
responding to unauthorized access o f resources in real time this chapter discuss what
an intrusion Detection system, model is and main techniques.

What is an IDS?. ID stands for Intrusion Detection, which is the art of detecting
inappropriate, incorrect, or anomalous activity. An Intrusion Detection System (IDS)
analyze a system for file system changes or traffic on the network, this system, learns
what normal traffic looks like, then notes changes to the norm that would suggest an
intrusion or otherwise suspicious traffic. So an IDS protect a system from attack,
misuse, and compromise. It can also monitor network activity, audit network and
system configurations for vulnerabilities, analyze data integrity, and more. Depending
on the detection methods someone choose to deploy.

There are basically 3 main types o f IDS used : Network based (a packet monitor),
Host based (looking for instance at system logs for evidence of malicious or suspicious
application activity in real time), and Application Based IDS (monitor only specific
applications).

Host-Based IDS (HIDS). Host-based systems were the first type o f IDS to be
developed and implemented. These systems collect and analyze data that originate on a
computer that hosts a service, such as a Web server. Once this data is aggregated for a
given computer, it can either be analyzed locally or sent to a separate or central
analysis machine. One example of a host-based system is programs that operate on a
system and receive application or operating system audit logs. These programs are
highly effective for detecting insider abuses. On the down side, host-based systems
can get unwieldy. With several thousand possible endpoints on a large network,

1

can get unwieldy. With several thousand possible endpoints on a large network,
collecting and aggregating separate specific computer information for each individual
machine may prove inefficient and ineffective.

Possible host-based IDS implementations include Windows NT/2000 Security Event
Logs, RDMS audit sources, Enterprise Management systems audit data (such as
Tivoli), and UNIX Syslog in their raw forms or in their secure forms such as Solaris'
BSM; host-based commercial products include Real Secure, IT A, Squire, and
Enlercep etc.

Network based IDS(NIDS). NIDS are used to monitoring the activities that take place
on a particular network, Network-based intrusion detection analyzes data packets that
travel over the actual network. These packets are examined and sometimes compared
with empirical data to verify their nature: malicious or benign. They have network
interface in promiscuous mode. Because they are responsible for monitoring a
network, rather than a single host, Network-based intrusion detection systems (NIDS)
tend to be more distributed than host-based IDS. Instead of analyzing information that
originates and resides on a computer, network-based IDS uses techniques like
"packet-sniffing" to pull data from TCP/IP or other protocol packets traveling along
the network.

This surveillance of the connections between computers makes network-based IDS
great at detecting access attempts from outside the trusted network. In general,
network-based systems are best at detecting the following activities.

Unauthorized outsider access: When an unauthorized user logs in successfully, or
attempts to log in, they are best tracked with host-based IDS. However, detecting the
unauthorized user before their log on attempt Is best accomplished with network-
based IDS.

Bandwidth theft/denial o f service: These attacks from outside the network single out
network resources for abuse or overload. The packets that initiate carry these attacks
can best be noticed with use of network-based IDS.

2

Some possible downsides to network-based IDS include encrypted packet payloads
and high-speed networks, both of which inhibit the effectiveness of packet
interception and detect packet interpretation.

Application Based IDS: Application Based IDS monitor only specific applications
such as database management systems, content management systems, accounting
systems etc. They often detect attacks through analysis of application log files and can
usually identify many types of attack or suspicious activity. Sometimes application-
based IDS can even track unauthorized activity from individual users. They can also
work with encrypted data, using application-based encryption or deciyption services.

There are two IDS Models used, knowledge-based IDS (signature-based model)
Which alert administrators before an intrusion occurs using a database of common
attacks. Behavioral IDS(anomaly model) That tracks all resource usage for anomalies
& malicious activity. Some IDSes are standalone services that work in the
background and passively listen for activity, logging any suspicious packets from the
outside. Others combine standard system tools, modified configurations, and verbose
logging.

knowledge-basd IDS: Knowledge based systems use signatures about attacks to
detect instances o f these attacks. Knowledge based systems is the most-used IDS
model. Signatures are patterns that identify attacks by checking various options in the
packet, like source address, destination address, source and destination ports, flags,
payload and other options. The collection of these signatures composes a knowledge
base that is used by the IDS to compare all packet options that pass by and check if
they match a known pattern. Signatures have the same limitations as a patch - it is not
possible to write the signature until the hack has materialized.

Behavioral IDS: Behavior based systems use a reference rule of normal behavior
and flag deviations from this model as anomalous and potentially intrusive. A
behavioral rule aims to define a profile of legitimate activity. Any activity that does
not match the profile, including new types of attack, is considered anomalous. As
rules are not specific to a particular type of attack, forensic information is not
normally very detailed. However, rules can identify malicious behavior without

3

having to recognize the specific attack used. This approach offers unparalleled
protection against new attacks ahead of any knowledge being available in the security
community. The disadvantage of this model is that it macausea high number of false
positive alerts.

False positive A report of an attack or attempted attack when no vulnerability existed
or no compromise occurred. False negative The failure of an IDS to report an instance
in which an attacker successfully compromises a host or network. Sensor : The
computer that monitors the network for intrusion attempts. Sensors usually run in
promiscuous mode, often without an IP address.

IDS application for web server

Normally, when a person makes a request to a particular web server(usual access
fig: 1.1), that message proceeds to the web server through the permitted logical ports (
in the case o f standard http requests, that port number is 80).. If a hacker (or an
intruder or an unusual access fig: 1.2) tries to access the web server through ports that
are not open to the outside world (eg. Port 25, 21 that do not permit http requests),
then the system should be able to detect the following information about such unusual
requests and write the relevant information to a file which can be read by security
experts or system administrators. Information contained in this file can be used to
implement the necessary security policies to the server. The format o f the file that
contains information about outside computers that tries to gain illegal access to the
web server is as follows example.

Source ETH ID
Destination ETH ID
Source IP address
Destination IP Address
Protocol
Packet length
Feld
Version

:=20.12.02.01

:=192.168.10.182
:=192.168.20.10

:=TCP
-1024

:=4
;=IPv6

4

Web browser
(Source) Port 14000
Address 192.168.10.30

Web server
(destination) Port 80
Address 10.10.22.85

figure 1.1 usual access for web server.

Web browser
(Source) Port 14000
Address 192.168.10.30

Web server
(destination) Port != 80
Address 10.10.22.85

figure 1.2 unusual access for web server.
1.2 Objectives
Overall objectives: Development of security of the web server.

A computer system should provide confidentiality, integrity and assurance against
intrusion attempts. However, due to increased connectivity on the Internet, more and
more systems are subject to attack by intruders Intrusion Detection Systems (IDS) are
used by organizations to extend their security infrastructure by detecting and
responding to unauthorized access of f e S o u t c e s n.)

Specific objectives: Identify unusual requests made to the web server from
outside computer

5

CHAPTER 2

2.1 Various types of internet Packets

The Internet Protocol offers several packet protocols that range from very fast to very
reliable. All of them rest on the lowest layer—the basic IP packet. However, each layer has
evolved to solve specific problems. To select the correct packet type, you must know about
what you're transmitting . The packet types most likely to be of interest are TCP, UDP,
ICMP, and raw. Knowing the advantages and disadvantages of each type can help you choose
the most appropriate for your application. Each packet type has different benefits, as
summarized in Table 2.1

Table 2.1 Packet Type Benefits.

RAW ICMP UDP TCP

Overhead(bytes) 20-60 20-60+[4] 20-60+[8]
20-60+[20-
60]

Message

size(bytes) 65,535 65,535 65,535 unlimited

Reliability Low Low Low High

Message type Datagram Datagram Datagram Stream

Throughput High High Medium Low

Data integaity Low Low Medium High

Fragmentation . Yes Yes Yes Low

In this table, notice that each packet type contains comparisons. A reliability o f Low value
only means that you cannot rely on the protocol to help reliability. While the differences may
seem extreme, remember that they are merely comparisons.

2.1.1 Considering the Packet's Issues

Each protocol addresses issues in the transmission. The following sections define each issue
and associated category from Table 2.2. This information can help you see why certain
protocols implement some features and skip others.

Protocol Overhead: Protocol overhead includes both the header size in bytes and the amount
of interaction the protocol requires. High packet overhead can reduce throughput, because the
network has to spend more time moving headers and less time reading data. Strong protocol

6

synchronization and handshaking increase interaction overhead. This is more expensive on
WANs because of the propagation delays. Table 3.2 does not include this measurement.

Protocol Message Size: To calculate network throughput, you need to know the packet size
and the protocol's overhead. The transmission size gives you the maximum size of a sent
message. Since all but TCP use a single-shot message, this limitation is typically due to the
limits of IP packet (65,535 bytes). The amount of data your program transmits per packet is
the transmission size less the headers.

Protocol Reliability: Part of the problem with networks is the possibility of lost messages. A
message could be corrupted or dropped as it moves from one host or router to another, or the
host or router could crash or fail. In each case, a. message may simply be lost, and your
program may need to follow up.Also, you may need to make sure that the destination
processes the packets in the correct order. For example, you may compose a message that
does not fit in one packet. If the second packet arrives before the first, the receiver must know
how to recognize and correct the problem. However, the order is not important when each
message is independent and self- contained.

The packet's reliability indicates the certainty of safe arrival of messages and their order. Low
reliability means that the protocol can't guarantee that the packet gets to the destination or
that the packets are in order.

Protocol Message Type: Some messages are self-contained and independent from other
messages. Pictures, documents, email messages, and so on are a few examples that may fit
the size of the packet. Others are more in the form of a flowing stream, such as Telnet

i

sessions, HTTP's open channel [RFC2616], large documents, pictures, or files. The message
type defines which style best fits each protocol. To get the best performance, you need to
know the throughput. Often, the bits-per-second is a small part

HTTP’s Protocol: HTTP 1.0 could effectively use UDP for transferring messages instead of
TCP. The client simply sends the request for a specific document, and the server replies with
t)ie file. Effectively, no conversation occurs between client and server.

Protocol Throughput: The most noticeable aspect of data transmission is network
throughput. Getting the most out of your network is the best way to make your users happy of

I

7

the whole equation; it only indicates how the network could perform under ideal
circumstances.

The protocol throughput measures how much real data the originator can send to the
destination within a period of time. If the headers are large and the data small, the result is
low throughput. Requiring acknowledgment for each message dramatically reduces
throughput. By default, high reliability and integrity result in low throughput and vice versa.

Protocol Data Integrity: The networking technology currently has a lot of safeguards for
data integrity. Some network interfaces include a checksum or cyclical redundancy check
(CRC) for each low-level message. They also include special hardware technology that can
filter out noise and get to the real message. Additionally, each protocol includes measures to
detect errors in the data. The importance of data integrity depends on the data, that is, some
data requires very careful oversight, while less important data is less critical. Here are some
types of data.

Fault-Intolerant—Life-critical data. Anything that can affect public or private health/life. For
example, life signs and vital signs from medical equipment and missile launch commands.

• Critical—Important and reliable data. Data that if out of sequence or faulty can cause
harm to property or security. For example, financial transactions, credit cards, PIN

o

numbers, digital signatures, electronic money, trade secrets, virus scanner updates,
and product updates.

• Important—Data that requires proper functionality. Any loss can cause malfunction.
For example, X I1 connections, FTP downloads, Web pages, server/router addresses,
and Telnet connections.

• Informational—Data that can be less than 100% reliable for proper functionality. For
example, email, news feeds, advertisements, and Web pages.

• Temporal—Data that is date/time bound. Unless the program uses the information
within a specific time, its importance lessens. For example, weather data, surveillance
data, and time.

* • Lossy—Data that can degrade without loss of usefulness. These are typically audio or
visual. For example, movies, audio files, photos, and spam (of course).

8

Prior to choosing the packet type or protocol, try to categorize data according to this list. Also
include the additional (or external) constraints of the program. These may be regulatory
constraints as well.

Protocol Fragmentation: Large messages on slow networks can frustrate other users. All
networks place a maximum frame size so those large messages don't dominate the network.
Keep in mind that the routing host may still carve up, or fragment, large messages that go
through a constricted network. Each protocol has a different likelihood of fragmentation.
Since reassembling fragmented messages is part of IP, the reassembly may be transparent to
the higher protocols. Certain circumstances, however, may require the packet's wholeness.
This is particularly important for network performance. When routers carve up the packet
into smaller chunks, the router has to take the time to chop up the message, and the resulting
packet overhead increases. By blocking fragmentation, the network drops the packet and
returns a message-too-big error to your program.

Packet Types: The following sections describe each packet, showing its statistics and header
definition (if there is one). Each section uses a quick-reference style to help you quickly see
the features of each protocol. Use this style to help you choose the right packet for your
applications.

2.1.1 The Raw Packet

A raw packet has direct access to an IP packet and header. It is useful in writing special or
custom protocols. Linux provides the option to work with different layers in the Internet
Protocol stack most basic TCP/IP message is the raw IP message. It has no information other

*

than the most basic. You can use the IP packet itself to create the most basic layer to create
your own custom protocols. Access the IP packet by selecting SOCKJRAW in the socketO
system. For security, you must have root privileges to run a raw socket program.

The raw socket Jets you play with the guts of the IP packet. You can configure the socket to
work on two levels of detail: data only or data and header manipulation. Data manipulation is
like UPD data transfers but does not support ports. In contrast, header manipulation lets you
set the header fields directly. Using this message has both advantages and disadvantages. As
a datagram message, it offers no guarantees of arrival or data integrity. However, you can
send and receive messages nearly at network speed.

9

2.1.2 IP Control and Error Messaging (ICMP)

The Internet Control Message Protocol (ICMP) is one of the layers built on top of the basic
IP packet. All Internet-connected computers (hosts, clients, servers, and routers) use ICMP
for control or error messages. It is used for sending error or control messages. Some user
programs also employ this protocol, such as traceroute and ping. You can reuse your socket
to send messages to different hosts without reopeningthe socket if you employ the ICMP in
your own program. Send messages using the sendmsgO or sendtoO system call (described in
the next chapter). These calls require an address of the destination. With a single socket, you
can send messages to as many peers as you want.

The advantages and disadvantages of an ICMP packet are essentially the same as raw IP (and
other datagrams). However, the packet includes a checksum for data validation! Also, the
likelihood that the network may fragment an ICMP packet is very small. The reason is
because of the nature of ICMP messages: They are for statuses, errors, or control. The
message is not going to be very large, so it may never require reassembly.

While you can use the ICMP for your own messages, it is usually for error messages and
control. All networking errors travel the network through an ICMP packet. The packet has a
header that holds the error codes, and the data part may contain a more specific message
describing the error.Part o f the IP protocol, ICMP gets an IP header and adds its own header.
Following Listing shows a definition of the structure and structure of ip header figure 2.1

ICMP Structure Definition

Formal definition in netinet/ipicmp.h
typedef unsigned char ui8;
typedef unsigned short int uil6;
struct ICM Pheader {
ui8 type; ^
ui8 code;
uil6 checksum;
uchar msg[];
};

(Error type)
(Error code)
(Message checksum)
(Additional data description)

10

Type
(8 bits)

Code
(8 bits)

- - r Checksum
(16 bits)

Unused
(32 bits)

Internet header + 64 bits of critical data
(32 bits)

Figure 2.1 structure o f ip header.
Type and code define what error occurred, msg can be any additional information to help
detail what went wrong.

2.1.3 User Datagram Protocol (UDP)

The User Datagram Protocol (UDP) is used mostly for connectionless (independent
messages) communications. It can send messages to different destinations without re-creating
new sockets and is currently the most common connectionless protocol. Each layer up the IP
stack provides more focus on data and less on the network. UDP hides some of the details
about error messages and how the kernel transmits messages. Also, it reassembles a
fragmented message.

o

A message you send via UDP is like an email message: The destination, origin, and data are
all the information it needs. The kernel takes the message and drops it on the network but
does not verify its arrival. As with the ICMP packet, you can send to multiple destinations
from a single socket, using different send system calls. However, without the verification,
you can experience near-maximum throughput.

Without arrival verification, the network can lose data reliability. The network can lose
packets or fragments and corrupt the message. Programs that use UDP either track the
message themselves or don’t care if something gets lost or corrupted. Of the different data
types (previously defined), Informational, Temporal, and Lossy best fit the UDP services.
The primary reason is their tolerance for loss. If your Web camera fails to update every client,
the end user is unlikely to either notice or care. Another possible use is a correct time service.
Because correct time is Temporal, a host may drop a couple of clock ticks without losing

11

Lintegrity.UDP offers the advantage of high speed. Moreover, you can increase its reliability
yourself in the following ways:

• Break up large packets. Take each message and divide it into portions and assign a
number (such as 2 of 5). The peer on the other end reassembles the message. Bear in
mind that more overhead and less sent data decrease throughput.

• Track each packet. Assign a unique number to each packet. Force the peer to
acknowledge each packet because, without an acknowledgment, your program
resends the last message. If the peer does not get an expected packet, it requests a
resend with the last message number or sends a restart message.

• Add a checksum or CRC. Verify the data of each packet with a data summation. A
CRC is more reliable than a checksum, but the checksum is easier to calculate. If the
peer discovers that data is corrupted, it asks your program to resend the message.

• Use timeouts. You can assume that an expired timeout means failure. Your originator
could retransmit the message, and your receiver could send a reminder to the sender.

The Critical and Important data types require the reliability found in TCP or better. Fault-
Intolerant requires much more than any of these protocols offer. These outlined steps mimic
the reliability of TCP.UDP relies on IP's features and services. Each UDP datagram packet
receives an IP and a UDP header. Following Listing defines how the UDP structure appears.

o

UDP Structure Definition

(Formal definition in netinet/udp.h)
typedef unsigned short int uil6;

»struct UDPheader {
uil6 srcjjort;
uil6 dst_port;
uil6 length;

(Source port number)
(Destination port number)
(Message length)

uil6 checksum; Message checksum)
uchar data[]; (Data message)
}

12

Source port Destination port
(16 bits) (16 bits)
Length Checksum
(16 bits) (16 bits)

Figure 2.2 structure of UDP header

UDP creates a virtual network receptacle for each message in the form of ports. With the
port, IP can rapidly shuffle the messages to the correct owner. Even if you don't define a port
with bind(), the IP subsystem creates a temporary.

2.1.4 Transmission Control Protocol (TCP)

Transmission Control Protocol (TCP) is the most common socket protocol used on the
Internet. It can use readO and writeO and requires re-creating a socket for each connection.
Taking reliability one step further requires ensuring that the destination gets the exact
message the originator sent. UDP has the speed but does not have the reliability that many
programs require. TCP solves the reliability problem. The network, however, has several
fundamental problems that make it unreliable. These problems are not limitations. Instead,

o

they are inherent in the design o f the network. To get reliable, streamable messages through
the, tangled Web, TCP/IP has to incorporate many o f the ideas to improve reliability
suggested in the section on UDP. The Internet has three hurdles: dynamic connections, data
loss, and constricted paths, as discussed in the following sections.

i

Dynamic Connections: One host sends a message to another host. That message travels the
networks, going through various routers and gateways. Each message sent may use a
different path. Networking segments (connections between computers) often appear and
disappear as servers come up and go down. The power of the Internet is its capability to adapt
to these changes and route the information accordingly.

Adaptability is one of the driving forces behind the Internet. Your computer can make a
request, and the network tries possible avenues to fill the order. Unfortunately, this advantage
means that the path between your computer and the server or peer can change, lengthening
and shortening the distance. As the path lengthens, propagation times increase. This means

13

that your program could send successive messages and many would arrive at different times,
oflen out of order.

TCP ensures that the destination has correctly received the last message before it sends the
next message. Compare this to a series of numbered messages (this is really how TCP
works). Your program may send 10 messages in succession. TCP takes each message,
attaches a unique number, and sends it off. The destination accepts the message and replies
with an acknowledgment. Upon receiving the acknowledgment, TCP lets your program send
the next message.

Sliding Window Protocol: TCP uses a better technique than the send/wait (or ACK/NACK)
protocol, which is too slow for anyone's patience. Instead, it uses a sliding window: It gauges
when and how often to reply with an ACK. Slower or dirtier connections may increase the
acknowledge messages. Connections that are faster and lose less allow more messages to ship
before expecting acknowledgments. This is part of the Nagle Algorithm.

Data Loss: When the destination gets your message, it determines the integrity of the data.
The data may travel along less-than-optimal communication paths that may drop or corrupt
message bits. Remember that the network sends every message one bit at a time. TCP sends
with the message a checksum to verify the data. TCP is the last layer that can detect and
remedy corrupted data.

If the destination detects any errors, it sends back an error, requesting a retransmittal from
your program. Likewise, if your computer does not get an acknowledgment within a specific
amount of time, the TCP subsystem automatically resends the message without your

i

program's intervention.

Constricted Paths: Going back to the single message sent to a particular host, suppose that
the message is too long for the intervening segments. The problem that the packet encounters
as it passes through the network is the different technologies and transmission carriers. Some
networked computers permit lengthy packets; others place limits on the size.

i

*UDP tries to send the largest message that it can. This can be a problem with the constricted
data paths. The IP algorithms anticipate that the routers may fragment data. Likewise, IP
expects that it has to reassemble the incoming message.

14

TCP, on the other hand, limits every packet to small chucks. TCP breaks up longer messages,
before the network has the chance to touch them. The size TCP chooses is one that a majority
of networks can accept intact. By default, TCP uses S36 bytes and typically negotiates up to
1,500. To increase that size manually, set the MSS (maximum segment size) TCP socket
option

The receiver may find that the message's packets are out of order. TCP reorders them before
handing the message to your program. Solving all these network problems adds protocol and
header overhead to TCP's algorithm. Of course, the added overhead of all TCP's techniques
slows performance noticeably. TCP had to add a lot of information to its header to support all
the features that it offers you. The size, in bytes, of the TCP header is about three times that
of the UDP header. See following Listing for a definition of the structure.

TCP Structure Definition

(Formal definition in netinet/tcp.h)
typedef unsigned char ui8;
typedef unsigned short int uil6;
typedef unsigned int ui32;
typedef unsigned int uint;
struct T C P h ead er {
ui 16 src_port; (Originator's port number)
uil6 dst_port;
ui32 seqjnum;
ui32 acknum ;
uint data_off:4;

(Destination's port number)
(Sequence number)
(Acknowledgment number)
(Data offset)

uint__res:6; (reserved)
uint urg flag: 1;
uint ack_flag: 1;
uint pshflag: 1;
uint rst_flag: 1;

*uint syn_flag: 1;
uintfin_flag:l;
uil6 window;
m 16 checksum;

(Urgent\ out-oj-band message)
(Acknowledgment fie ld valid)
(Immediately push message to process)
(Reset connection due to errors)
(Open virtual connection (pipe))
(Close connection)
(How many bytes receiver allows)
(Message checksum)

15

ui 16 urg_pos,
ui8 options[];
ui8__paddingf];
uchar data[];

(Ixist byte o f an urgent message)
(TCP options)
(Neededfor aligning])
(Data message)

Source port

(16 bits)

Destination port

(16 bits)
Sequence number

(32 bits)
Acknowledgement number reserved

(32 bits)
Doffset

(4 bits)

Reserved

(6 bits)

Critical bits

(6 bits)
Checksum

(16 bits)

Window

(16 bits)
Argent point

(16 bits)
Options pending

Data

figure 2.3 structure of TCP header

The header may have a variable size, so the dataoff field points to the beginning of the data.
To save header space, this field acts like the IP's headerlen field: It gives the count of 32-bit
words that physically precede your data.

TCP uses some of the fields exclusively for opening a connection, flow control, and
connection closure. During a communication session, some of the header is empty. The
following paragraphs describe a few interesting fields. The TCP header uses the same port
number found in UDP. But seq_num and ack num provide traceability to the stream. When
you send a message, the IP subsystem attaches a sequence number (seq_num). The receiver

16

replies that it got the message with an acknowledgment number (ackjnum) that is 1 greater
than the sequence number. This feature lets acknowledgment packets carry data as well.

Looking at the TCP Interactions: When you open a streaming connection, your program
and server exchange the messages listed in Table 2.4

Table 2.4 The Three-Way Handshake

C lient se n d s S e rve r sends D iscrip tio n

SYN®1(syn flag) Request a vertual connection(pipe)

A C K s O(ack flag) Set sequence number

SYN =1(syn flag) Permit and acknowladge vertual connection

ACK=1(ack flag)

SYN =0(syn flag) *

A C K s 1(ack flag) establish a vertual connection

This is called the three-way handshake. During the transfers, the client and server specify the
buffer size of their receiving buffers (windows).

On the other hand, closing a connection is not as simple as it may appear, because there may
be data in transit. When your client closes a connection, the interaction shown in Table 2.5
may occur.

Table 2.5 TCP Connection Closure

Client Server Description

FIN=1(fin

flag) Transm it and Receives data

Transm it more Receives

Client request close

ACK=1 more Server channels flashed

Close accepted server close and a waits

A C K = i _

ACK=1

FYN=1 A C K

Client closes its side

Closing the TCP connection makes it impossible to reuse the socket for other connections.
For example, if you connect to a server, the only way to sever the connection is to close the
channel, which closes the socket as well. I f you then want to connect to another server, you
must create a new socket. The other protocols do not have that limitation.

17

2.1.5 How the IP Protocols Fit Together

While interfacing with the network, you may wonder how all these protocols fit together. In
some cases, it may seem that they don't fit together at all. They do use some o f each other's
features, but they really don't work so closely together that they are inseparable.

IP header

TCP header

Datagram

figure 2.4 how data packet physically fit together.

The raw IP, ICMP, UDP, and TCP protocols fulfill specific roles. You can use these roles to
fit your needs when you design your network application. O f course, while TCP has more
reliability and features than the other protocols, you cannot replace ICMP with TCP. Because
the Linux subsystems require different features from TCP/IP, each packet type is important
for your system to work correctly. The ICMP, UDP, and TCP packets physically rely on the
raw IP packet (figure 2.4). Their headers and data reside in the IP's data section, following the
IP header(figure 2.5).

IP header definition

Typedef unsigned int uint;
Typedef unsigned char uchar;
Struct ip_header{

uint header_len:4;
uint version:4;
uint serve_type:8;
uint packet_len: 16;
uint ID: 16;

(header length in words in 32bit words)
(4-hit version)
(how to service packet)
(total size o f packet in bytes)
(fragment ID)

18

uint fragoffset: 13;
uint m orefrags: 1;
uint dont_frag: 1;
uint__reserved: 1;
uint time_to_live:8;
uint protocols;
uint hdr_chksum:16;

(to help reassembly)
(flagfor "more frags to follow")

(flag to perm it fragmentation)
(always zero)
(maximum router hop count)
(ICMP, UDP, TCP)
(ones-comp. checksum o f header)

uchar IPv4_src[IP_SIZE]; (IP address o f originator)
uchar IPv4_dst[JPJ3IZE]; (IP address o f destination)
uchar options[0]; (up to 40 bytes)
uchar data[0]; (message data up to 64KB)

}:

Version HIS
W bits)

TOS Total length
<̂ 16 bits)

Identification
(16 bits)

Flag i Fragmentation
(3 bits) 1 (16 bits)

Time to live
(8 bits)

Protocol
(8 bits)

Header checksum
(16 bits)

Source Address
(32bits)

Destination Address
<32bits)

Options Pending

figure 2.5 structure of IP header.

2.2 Data packets and layers.

The application layer represents communication between two programs. The transport layer
represents how this communication is delivered between the two programs. Programs are
identified by numbers called service ports. The network layer represent s how this
communication is carried between the two end computers, or their individual network
interface cards, are identified by numbers called IP addresses, the subnet layer represents how

19

this communication carried between each individual along the way. On the Ethernet network,
these computer network interfaces are identified by numbers called Ethernet addresses which
you are probably familiar with as your network card’s bumed-in hardware MAC address.

Application layer
Client and server

programs

Transport layer
TCP and UDP protocol

and service port

Intemet/network
Layer

IP packets, IP address,
and ICMP messages

Subnet layer
Ethenet fearm and

mack address

Copper wire,fiberoptic
cable, microwave

H R
- • - v ~ ;

Web browser Web server
Prog ram-to-prog ram
massage delivery

Source computer-to-
destination computer
massage delivery

OSI data link layer
Computer-to-computer
(router network
interface)massage
delivery

OSI physical layer
Physical signal/bit
deliw

figure 2.6 different packet and different layers.

2.2.1 Packet filtering firewall and layers

Three of the most common meanings refer to a packet-filtering firewall. An application
gateway also called a screened-host firewall, and an application-level circuit gateway also
called a proxy firewall.

A packet filtering firewall is normally implemented within the operating system and
operates at the IP network and transport protocol layers, it protects the system by making
routing decisions after filtering packets based on information in the IP packet header.

20

An application gateway is implemented at the network architecture and system configuration
levels. Network traffic is never passed through the application gateway machine. External
access is allowed only to the gateway machine. Local user must loge In to the gateway
machine and access the internet from there. Additionally, the gateway Machine may be
protected by packet-filtering firewalls on both its external and internal interfaces.

Application layer
Client and server

programs

Transport layer
TCP and UDP protocol

and service port

Intemet/network
Layer

IP packets, IP address,
and ICMP messages

Data link layer
Ethenet fearm and

mack address
physical layer
Copper wire.fiberoptic
cable, microwave

igpggg
—M

Web browser Web server
Firewall

TCP/IP source and
destination ports TCP
connection state flags

IP source and
destination addresses IP

ICMP rnntrnl rnrte

figure 2.7 packet filtering firewall.

2.3 Firewalls

A firewall is a structure intended to keep a fire from spreading. Building have firewalls made
of brick walls completely dividing sections of the building. In a car a firewall is the metal
wall separating the engine and passenger compartments. Internet firewalls are intended to
keep the flames of Internet hell out of your private LAN. Or, to keep the members of your
LAN pure and chaste by denying them access the all the evil Internet temptations.

21

The first computer firewall was a non-routing Unix host with connections to two different
networks. One network card connected to the Internet and the other to the private LAN. To
reach the Internet from the private network, you had to logon to the firewall (Unix) server.
You then used the resources of the system to access the Internet. For example, you could use
X-windows to run Netscape's browser on the firewall system and have the display on your
work station. With the browser running on the firewall it has access to both networks.

This sort o f dual homed system (a system with two network connections) is great if you can
TRUST ALL of your users. You can simple setup a Linux system and give an account
accounts on it to everyone needing Internet access. With this setup, the only computer on
your private network that knows anything about the outside world is the firewall. No one can
download to their personal workstations. They must first download a file to the firewall and
then download the file from the firewall to their workstation. A firewall machine is all you
need. Set policies first.

Types o f Firewalls: There are two types of firewalls.
\

1. Filtering Firewalls - that block selected network packets.
2. Proxy Servers (sometimes called firewalls) - that make network connections for you.

2.3.1 Packet Filtering Firewalls

Packet Filtering is the type of firewall built into the Linux kernel. A filtering firewall works
at the network level. Data is only allowed to leave the system if the firewall rules allow it. As
packets arrive they are filtered by their type, source address, destination address, and port
information contained in each packet.

Many network routers have the ability to perform some firewall services. Filtering firewalls
can be thought of as a type of router. Because of this you need a deep understanding o f IP
packet structure to work with one. Because very little data is analyzed and logged, filtering
firewalls take less CPU and create less latency in your network.

Filtering firewalls do not provide for password controls. User can not identify themselves.
The only identity a user has is the IP number assigned to their workstation. This can be a
problem if you are going to use DHCP (Dynamic IP assignments). This is because rules are
based on IP numbers you will have to adjust the rules as new IP numbers are assigned.

22

Filtering firewalls are more transparent to the user. The user does not have to setup rules in
their applications to use the Internet. With most proxy servers this is not true.

2.3.2 Proxy Servers

Proxies are mostly used to control, or monitor, outbound traffic. Some application proxies
cache the requested data. This lowers bandwidth requirements and decreases the access the
same data for the next user. It also gives unquestionable evidence of what was transferred.
There are two types o f proxy servers.

1. Application Proxies - that do the work for you.
2. SOCKS Proxies - that cross wire ports.

Application Proxy

The best example is a person telneting to another computer and then telneting from there to
the outside world. With a application proxy server the process is automated. As you telnet to
the outside world the client send you to the proxy first. The proxy then connects to the server
you requested (the outside world) and returns the data to you.

Because proxy servers are handling all the communications, they can log everything they
(you) do. For HTTP (web) proxies this includes very URL they you see. For FTP proxies this
includes every file you download. They can even filter out "inappropriate" words from the
sites you visit or scan for viruses.

Application proxy servers can authenticate users. Before a connection to the outside is made,
the server can ask the user to login first. To a web user this would make every site look like it
required a login.

SOCKS Proxy

A SOCKS server is a lot like an old switch board. It simply cross wires your connection
through the system to another outside connection.

Most SOCKS server only work with TCP type connections. And like filtering firewalls they
don't provide for user authentication. They can however record where each user connected to.

23

2.4 What is a socket

A socket is a connection between two computers in a TCP/IP network. Sockets are used to
exchange information such as files, mails, websites etc. Many computer games also use
sockets for multiplayer games, (figure 2.7).

C o m p u ter 1 C o m p u ter 2

figure 2.7 transmit the data between two computer using socket

There are two types of sockets, TCP (Transmission Control Protocol) sockets and UDP (User
Datagram Protocol) sockets. As you can see, these two types are called protocols. A protocol
is a set of rules used to determine the way information is received and sent in a network.
Other protocols are often used on top of TCP and UDP, for example, FTP is a protocol forI
file transfer which uses TCP to communicate with the file server. TCP and UDP themselves
are built on top of the IP (Internet Protocol). The difference between these types is that in a
I
TCP socket, the information sent is guaranteed to reach the recepient, this is not the case for
UDP sockets, in this case, the information is not guaranteed to reach the recepient at all.
Because of this, many UDP applications that uses datagram sockets to send information waits
for the recepient to send a reply to check whether the transfer succeded or not.

To connect a socket to another computer, you need to know its IP-address and which port you
are going to connect to. An IP-address consists of four numbers between 0 and 255 (although
O.and 255 are reserved) separated by dots. For example, 195.125.13.54 Each computer has
65536 different ports. Some ports are reserved for different protocols. For example, port
I

24

number 80 is reserved for the HTTP (HyperText Transfer Protocol) protocol and 21 is
reserved for FTP (File Transfer Protocol). All the ports under 1024 are reserved for specific
protocols and should not be used by other protocols.

The next thing we do is to create a socket using the socket function. This function returns a
SOCKET handle, which is used to refer to our socket when using other functions, the three
arguments supplied are the address family, the socket type and the protocol used. The address
family is AFINET which means that we will use TCP or UDP, protocols of the AF_INET
(or IP) address family. For AF_INET, there are three socket types, SOCK_STREAM,
SOCK_DGRAM and SOCK_RAW, for this particular address family, SOCK_STREAM is TCP,
SOCK_DGRAM is UDP and SOCK_RAW is used to send raw ip packets. For each of these
socket types, you can choose which protocol you want to use for the socket (although you
have to choose IPPR0T0_UDP for SOCK_DGRAM and IPPROTO_IP for
SOCK_STREAM).(diagram 2.1)

Address family

Socket type

protocol

Diagram 2.1 internet protocol.

The UDP protocol is somewhat different from the TCP protocol, the most important
difference is that it’s message-based, that is you don’t establish any “connections” to the
receiver, you only send messages. The second difference is that UDP is an unreliable
protocol, unlike TCP, UDP doesn’t guarantee that your information reaches its destination.
You can compare UDP with the postal service, you aren’t guaranteed that the mail will reach
its destination (although it often does). TCP however can be compared with a phone call, you

• exchange information simultaneously and you are guaranteed that the information is
delivered.

25

2.5 Web server

First part looks at what a Web server is and how Web communication takes place. Basically
for communication where there is a client-server flavor, the server process creates a socket
and the client socket accesses the server through client socket techniques.

Socket: A socket is fundamentally nothing but an end point o f communication. It can be o f
two types: Physical socket and Logical socket. In Logical socket operating system has its
system calls, which creates them. Now for client-server access the socket needs three things
to provide service or ask for service.
1) Service name (example: telnet)
2) Protocol (TCP-stream)
3) Port no (23)

The service uses protocol and protocol uses port number to provide service at server end and
to get service at client end. Ultimately we find that the port number is mainly responsible for
a client server communication. The protocols supported by Linux is shown by /etc/protocols
and the services can be seen in /etc/services. Let's take few more examples then start with
Web server.

1 .telnet service uses TCP/IP protocol and communicate through port no. 23
Q

2. ftp service uses TCP/IP protocol and communicate through 20,21 port numbers
3. www service uses http protocol and communicate through port no 80.

Web communication : Web communication deals with a browser type of client process and
Web server type o f server process. What actually happens when a user writes
http://www.yahoo.com? Well, the browser transfers the URL to current machine's operating
system with a destination address' operating system, which is responsible for extracting
protocol i.e. "http" from the client socket (browsers) and then it packets data using layer
software and over the packet it attaches the header http. This enables the remote machine to

• s . '-

hand over the request to Web server o f remote machine. Why so? Because there can be many
a server running on the same machine so the particular services are distinguished by their
protocol.

But how should we explain when telnet and ftp both are using same protocol but have
different server Processes? The answer is that they are distinguished by their port numbers.

26

After this the operating system throws the data to network interface card through the ram and
then network interface card gives it to nearest gateway, which sends the data to the server
machine at server end.

The network card gives a signal back to operating system that a data enclosed with http
header using TCP/IP header has arrived. One's operating system checks that data has http
wrapper and searches for Web server on that machine. When it finds, it hands over the data
and pays attention to other processes.

Before the Web server processes the data, it goes through a filtration by the gateway process
implemented on the Web server, which actually filters the raw data. This concept
implemented is called as common gateway interface that has the Web server environment
variables, which stores the data in different variable. When the user asks for some
unnecessary data, headers also get attached with data and so the need for filtration.

2.6 Internet layer addressing.

In TCP/IP terms, a network consists of host that are connected on a local network and do not
need to use a router or gateway. Routers are used to forward packet from one network to
another, connected on an internetwork.
Internet layer addresses represented by 32-bit IP addresses, which contain two parts, a
network ID and host ID, separated in to four8-bit logical section or octets,for example.

10100101 01101111 010101100 11000101
i

IP addresses are commonly represented in a dotted decimal notation, rather than as 32-bit
address. For example, the preceding IP address may be more conveniently remembered as;

165.111.172.197

The assignment o f octets to networked and hosted varies according to foe class o f IP
addresses. The network field specifies which network the host is part of, whereas the host id
field is used to allocate a unique identifier to each host on a given networks, five main classes
iexist, from A to E.

27

class IP address
range

PU/UNIX ask IBM mask NO of stations
v per network

A 1 .X.X.X to
127.x.x.x

255.0.0.0 0.255.255.0 16 million+

B 128.x.x.x to
191.x.x.x

255.255.0.0 0.0.255.0 65000+

C 192.x.x.x to
254.x. x.x

255.255.255.0 0 253

Class D is used for multicasting by special protocol to transmit massages to a select groups of
nodes, and class E is reserved for future use.

Special IP numbers certain IP numbers are reserved a hostid o f all O’s or all l ’s is never
assigned to an individual host because a hostid o f 0 refers to the network itself; for example,
IP address 165.111.0.0 refer to the class B network 165.111
The netid 127 is used to loopback address. IP address 127.0.0.1 will be used test for the
configuration of TCP/IP 127.0.0.1 simply refers to the local host, the most machine itself.
Hostid o f 255 are not permitted and are reserved for broadcast. A massage sent on
165.111.225.225 is sent to every host on the network 165.111

o

Subnet masking: as already mentioned, a general IP address consists of two parts, a netid
and hostid. If subnetting were not used, several netid would be required to identify different
subnetworks. Instead, through the use o f a subnet mask, the IP address can be divided into
three parts: netid, subnetid,and hostid. A subnet mask is a 32-bit number in which a 1 is in the
mask indicates that the corresponding bit in the IP address is part of the netid; a 0 indicates
the bit as part o f the hostid. In this way, subnetting uses sum of the bits in the hostid octets as
a subnetid.

-

Subnet Masking on an octet Boundary: the subnet Mask 255.0.0.0,255.255.00 and
4255.255.255.0 Mask at octet boundaries, whereas the Mask 255.255.248.0 mask at a
nonboundart. Consider the following example, which shows how the mask 255.255.255.0cuts
,the IP address 165.111.172.197

28

IP address 10100101 01101111 10101100 11000101
Subnet Mask 11111111 11111111 11111111 00000000
Netid 1010010101101111
Subnetid 10101100
Hostid 11000101

Subnet masking on a non-octet boundary sumnet mask generally consist of a set o f adjacent
1 ’s followed by all 0’s. Although subnet masks can consist o f noncontiguous bits, this is rare
and provides no advantage over adjacent bits. The eight most common subnet masks are
0,128,192,224,240,258,253,254,and 255.
For wxample, the subnet mask 255.255.248.0 cuts the IP address 165.111.172.197 at a non
octet boundary, as shown in the following example:

IP address :10100101 01101111 10101100 11000101
Subnetmask :11111111 11111111 11111000 00000000
Netid : 10100101 01101111
Subnetid 10101
Hostid : 10011000101

29

An intrusion is somebody (A.K.A. "hacker" or "cracker") attempting to break into or misuse
your system. The word "misuse" is broad, and can reflect something severe as stealing
confidential data to something minor such as misusing your email system for spam (though
for many o f us, that is a major issue!). An "Intrusion Detection System (IDS)" is a system for
detecting such intrusions. For the purposes o f this FAQ, IDS can be broken down into the
following categories:

network Intrusion detection systems (NIDS): monitors packets on the network wire and
attempts to discover if a hacker/cracker is attempting to break into a system (or cause a denial
o f service attack). A typical example is a system that watches for large number o f TCP
connection requests (SYN) to many different ports on a target machine, thus discovering if
someone is attempting a TCP port scan. A NIDS may run either on the target machine who
watches its own traffic (usually integrated with the stack and services themselves), or on an

iindependent machine promiscuously watching all network traffic (hub, router, probe). Note
that a "network" IDS monitors many machines., whereas the others monitor only a single
machine (the one they are installed on).

system integrity verifiers (SIV): monitors system files to find when a intruder changes
them (thereby leaving behind a backdoor). The most famous of such systems is "Tripwire". A
SIV may watch other components as well, such as the Windows registry and chron
configuration, in order to find well known signatures. It may also detect when a normal user
somehow acquires root/administrator level privleges. Many existing products in this area
$hould be considered more "tools" than complete "systems": i.e. something like "Tripwire"
detects changes in critical system components, but doesn't generate real-time alerts upon an
intrusion.

log file monitors (LFM): monitor log files generated by network services. In a similar
manner to NIDS, these systems look for patterns in the log files that suggest an intruder is
attacking. A typical example would be a parser for HTTP server log files that looking for
intruders who try well-known security holes, such as the "phf' attack. Intruders can be
classified into two categories.

2.7 Network intrusion detection system

30

(Outsiders: Intruders from outside your network, and who may attack you external presence
(deface web servers, forward spam through e-mail servers, etc.). They may also attempt to go
around the firewall to attack machines on the internal network. Outside intruders may come
from the Internet, dial-up lines, physical break-ins, or from partner (vendor, customer,
reseller, etc.) network that is linked to your corporate network.

Insiders: Intruders that legitimately use your internal network. These include users who
misuse priviledges (such as the Social Security employee who marked someone as being
dead because they didn't like that person) or who impersonate higher privileged users (such as
using someone else's terminal). A frequently quoted statistic is that 80% of security breaches
are committed by insiders.

2.7.1 How do intruders get into system

The primary ways a intruder can get into a system:
»

Physical Intrusion I f a intruders have physical access to a machine (i.e. they can use the
keyboard or take apart the system), they will be able to get in. Techniques range from special
privileges the console has, to the ability to physically take apart the system and remove the
disk drive (and read/write it on another machine). Even BIOS protection is easy to bypass:
virtually all BIOSes have backdoor passwords.

System Intrusion This type o f hacking assumes the intruder already has a low-privilege user
account on the system. If the system doesn't have the latest security patches, there is a good
chance the intruder will be able to use a known exploit in order to gain additional

i

administrative privileges.
I

Remote Intrusion This type o f hacking involves a intruder who attempts to penetrate a
system remotely across the network. The intruder begins with no special privileges. There are
several forms o f this hacking. For example, a intruder has a much more difficult time if there
exists a firewall on between him/her and the victim machine.

i

*Note that Network Intrusion Detection Systems are primarily concerned with Remote
Intrusion.

31

2.7.3 Why can intruders get into systems

Software always has bugs. System Administrators and Programmers can never track down
and eliminate all possible holes. Intruders have only to find one hole to break in.

Software bugs: Software bugs are exploited in the server daemons, the client applications,
the operating system, and the network stack. Software bugs can be classified in the following
manner:

Buffer overflows: Almost all the security holes you read about in the press are due to this
problem. A typical example is a programmer who sets aside 256 characters to hold a login
username. Surely, the programmer thinks, nobody will ever have a name longer than that. But
a hacker thinks, what happens if I enter in a false username longer than that? Where do the
additional characters go? If they hackers do the job just right, they can send 300 characters,
including code that will be executed by the server, and voila, they've broken in. Hackers find
these bugs in several ways. First of all, the source code for a lot o f services is available on the
net. Hackers routinely look through this code searching for programs that have buffer
overflow problems. Secondly, hackers may look at the programs themselves to see if such a
problem exists, though reading assembly output is really difficult. Thirdly, hackers will
examine every place the program has input and try to overflow it with random data. If the

o

program crashes, there is a good chance that carefully constructed input will allow the hacker
to break in. Note that this problem is common in programs written in C/C++, but rare in
programs written in Java.

Unexpected combinations: Programs are usually constructed using many layers o f code,
including the underlying operating system as the bottom most layer. Intruders can often send
input that is meaningless to one layer, but meaningful to another layer. The most common
language for processing user input on the web is PERL. Programs written in PERL will
usually send this input to other programs for further evaluation. A common hacking
technique would be to enter something like " I m a il < /e tc/passwd” . This gets executed
because PERL asks the operating system to launch an additional program with that input.
However, the operating system intercepts the pipe '|' character and launches the 'mail'
program as well, which causes the password file to be emailed to the intruder.

I

32

Unhandled input: Most programs are written to handle valid input. Most programmers do
not consider what happens when somebody enters input that doesn't match the specification.

Race conditions: Most systems today are "multitasking/multithreaded". This means that they
can execute more than one program at a time. There is a danger if two programs need to
access the same data at the same time. Imagine two programs, A and B, who need to modify
the same file. In order to modify a file, each program must first read the file into memory,
change the contents in memory, then copy the memory back out into the file. The race

¥condition occurs when program A reads the file into memory, then makes the change.
However, before A gets to write the file, program B steps in and does the full
read/modify/write on the file. Now program A writes its copy back out to the file. Since
program A started with a copy before B made its changes, all o f B's changes will be lost.
Since you need to get the sequence o f events in just the right order, race conditions are very
rare. Intruders usually have to tries thousands of time before they get it right, and hack into
the system.

2.7.4.System configuration

System configuration bugs can be classified in the following manner:

Default configurations: Most systems are shipped to customers with default, easy-to-use
configurations. Unfortunately, "easy-to-use" means "easy-to-break-in". Almost any UNIX or
WinNT machine shipped to you can be hacked in easily.
i
Lazy adm inistrators: A surprising number o f machines are configured with an empty

i

root/administrator password. This is because the administrator is too lazy to configure one
t

right now and wants to get the machine up and running quickly with minimal fuss.
Unfortunately, they never get around to fixing the password later, allowing intruders easy
access. One o f the first things a intruder will do on a network is to scan all machines for
empty passwords.

IJole creation: Virtually all programs can be configured to run in a non-secure mode.
Sometimes administrators will inadvertently open a hole on a machine. Most administration
guides will suggest that administrators turn off everything that doesn't absolutely positively

33

need to run on a machine in order to avoid accidental holes. Note that security auditing
packages can usually find these holes and notify the administrator.

Trust relationships: Intruders often "island hop" through the network exploiting trust
relationships. A network o f machines trusting each other is only as secure as its weakest link.

2.7.5 Password cracking

This is a special category all to itself

Really weak passwords: Most people use the names of themselves, their children,
spouse/SO, pet, or car model as their password. Then there are the users who choose
"password" or simply nothing. This gives a list o f less than 30 possibilities that a intruder can
type in for themselves.

Dictionary attacks: Failing the above attack, the intruder can next try a "dictionary attack".
In this attack, the intruder will use a program that will try every possible word in the
dictionary. Dictionary attacks can be done either by repeatedly logging into systems, or by
collecting encrypted passwords and attempting to find a match by similarly encrypting all the
passwords in the dictionary. Intruders usually have a copy o f the English dictionary as well as
foreign language dictionaries for this purpose. They all use additional dictionary-like
databases, such as names (see above) and lists o f common passwords.

Brute force attacks: Similar to a Dictionary attack, a intruder may try all possible
combinations of characters. A short 4-letter password consisting o f lower-case letters can be
cracked in just a few minutes (roughly, half a million possible combinations). A long 7-
character password consisting of upper and lower case, as well as numbers and punctuation
(10 trillion combinations) can take months to crack assuming you can try a million
combinations a second (in practice, a thousand combinations per second is more likely for a
single machine).

.- v

2.7.7 Sniffing unsecured traffic
A

Shared medium: On traditional Ethernet, all you have to do is put a Sniffer on the wire to
see all the traffic on a segment. This is getting more difficult now that most corporations are
transitioning to switched Ethernet.

I

34

Server sniffing: However, on switched networks, if you can install a sniffing program on a
server (especially one acting as a router), you can probably use that information to break into
client machines and trusted machines as well. For example, you might not know a user’s
password, but sniffing a Telnet session when they log in will give you that password.

Remote sniffing: A large number of boxes come with RMON enabled and public community
strings. While the bandwidth is really low (you can't sniff all the traffic), it presents
interesting possibilities.

2.7.8 Design flaws

Even if a software implementation is completely correct according to the design, there still
may be bugs in the design itself that leads to intrusions.

TCP/IP protocol flaws: The TCP/IP protocol was designed before we had much experience
with the wide-scale hacking we see today. As a result, there are a number o f design flaws that
lead to possible security problems. Some examples include smurf attacks, ICMP Unreachable
disconnects, IP spoofing, and SYN floods. The biggest problem is that the IP protocol itself is
very "trusting": hackers are free to forge and change IP data with impunity. IPsec (IP
security) has been designed to overcome many o f these flaws, but it is not yet widely used.

o

UNIX design flaws: There are number of inherent flaws in the UNIX operating system that
frequently lead to intrusions. The chief problem is the access control system, where only
’root’ is granted administrative rights. As a result,

2.7.9 How do intruders get password
i

Intruders get passwords in the following ways:

Clear-text sniffing: A number o f protocols (Telnet, FTP, HTTP Basic) use clear-text
passwords, meaning that they are not encrypted as the go over the wire between the client and
the server. A intruder with a protocol analyzer can watch the wire looking for such
*passwords. No further effort is needed; the intruder can start immediately using those

passwords to log in.

35

Encrypted sniffing: Most protocols, however, use some sort of encryption on the passwords.
In these cases, the intruder will need to carry out a Dictionary or Brute Force attack on the
password in order to attempt decryption. Note that you still don't know about the intruder's
presence, as he/she has been completely passive and has not transmitted anything on the wire.
Password cracking does not require anything to be sent on the wire as intruder's own machine
is being used to authenticate your password.

Replay attack: In some cases, intruders do not need to decrypt the password. They can use
the encrypted form instead in order to login to systems. This usually requires reprogramming
their client software in order to make use o f the encrypted password.

Password file stealing: The entire user database is usually stored in a single file on the disk.
In UNIX, this file is /e tc/passwd (or some mirror o f that file), and under WinNT, this is the
SAM file. Either way, once a intruder gets hold of this file, he/she can run cracking programs
(described above) in order to find some weak passwords within the file.

Observation: One o f the traditional problems in password security is that passwords must be
long and difficult to guess (in order to make Dictionary and Brute Force cracks unreasonably
difficult). However, such passwords are often difficult to remember, so users write them
down somewhere. Intruders can often search a persons work site in order to find passwords
written on little pieces o f paper (usually under the keyboard). Intruders can also train
themselves to watch typed in passwords behind a user's back.

Social Engineering: A common (successful) technique is to simply call the user and say "Hi,
this is Bob from MIS. We're trying to track down some problems on the network and they

f

appear to be coming from your machine. What password are you using?" Many users will
give up their password in this situation. (Most corporations have a policy where they tell
users to never give out their password, even to their own MIS departments, but this technique
is still successful. One easy way around this is for MIS to call the new employee 6-months
have being hired and ask for their password, then criticize them for giving it to them in a
manner they will not forget:-)

I

36

2.7.10 W hat is a typical intrusion scenario

A typical scenario might be:

Step 1: outside reconnaissance The intruder will find out as much as possible without
actually giving themselves away. They will do this by finding public information or
appearing as a normal user. In this stage, you really can't detect them. The intruder will do a
'whois' lookup to find as much information as possible about your network as registered
along with your Domain Name (such as fooba r. com. The intruder might walk through your
DNS tables (using 'nslookup', 'dig', or other utilities to do domain transfers) to find the names
o f your machines. The intruder will browse other public information, such as your public web
sites and anonymous FTP sites. The intruder might search news articles and press releases
about your company.

Step 2: inside reconnaisance The intruder uses more invasive techniques to scan for
information, but still doesn't do anything harmful. They might walk through all your web
pages and look for CGI scripts (CGI scripts are often easily hacked). They might do a 'ping'
sweep in order to see which machines are alive. They might do a UDP/TCP scan/strobe on
target machines in order to see what services are available. They'll run utilities like 'rcpinfo',
'showmount', 'snmpwalk', etc. in order to see what's available. At this point, the intruder has
done 'normal' activity on the network and has not done anything that can be classified -as an
intrusion. At this point, a NIDS will be able to tell you that "somebody is checking door
handles”, but nobody has actually tried to open a door yet.

Step 3: exploit The intruder crosses the line and starts exploiting possible holes in the target
i

machines. The intruder may attempt to compromise a CGI script by sending shell commands
in input fields. The intruder might attempt to exploit well-known buffer-overrun holes by
sending large amounts o f data. The intruder may start checking for login accounts with easily
guessable (or empty) passwords. The hacker may go through several stages o f exploits. For
example, if the hacker was able to access a user account, they will now attempt further
exploits in order to get root/admin access.
*

Step 4: foot hold At this stage, the hacker has successfully gained a foot hold in your network
by hacking into a machine. The intruder's main goal is to hide evidence o f the attacks
(doctoring the audit trail and log files) and make sure they can get back in again. They may

37

install 'toolkits' that give them access, replace existing services with their own Trojan horses
that have backdoor passwords, or create their own user accounts. System Integrity Verifiers
(SIVs) can often detect an intruder at this point by noting the changed system files. The
hacker will then use the system as a stepping stone to other systems, since most networks
have fewer defenses from inside attacks.

Step 5: profit The intruder takes advantage of their status to steal confidential data, misuse
system resources (i.e. stage attacks at other sites from your site), or deface web pages.

Another scenario starts differently. Rather than attack a specific site, and intruder might
simply scan random internet addresses looking for a specific hole. For example, an intruder
may attempt to scan the entire Internet for machines that have the SendMail DEBUG hole.
They simply exploit such machines that they find. They don't target you directly, and they
really won't even know who you are. (This is known as a 'birthday attack'; given a list of
well-known security holes and a list of IP addresses, there is a good chance that there exists
some machine somewhere that has one of those holes).

2.7.11 W hat are some common intrusion signatures

There are three types of attacks:
o

reconnaisance These include ping sweeps, DNS zone transfers, e-mail recons, TCP or UDP
port scans, and possibly indexing of public web servers to find cgi holes.

exploits Intruders will take advantage of hidden features or bugs to gain access to the system.

denial-of-service (DoS) attacks Where the intruder attempts to crash a service (or the
machine), overload network links, overloaded the CPU, or fill up the disk. The intruder is not
trying to gain information, but to simply act as a vandal to prevent you from making use o f
your machine.

2.7.12 W hat are some common exploits

CGI scripts: CGI programs are notoriously insecure. Typical security holes include passing
tainted input directly to the command shell via the use o f shell metacharacters, using hidden
variables specifying any filename on the system, and otherwise revealing more about the

I

38

system than is good. The most well-known CGI bug is the 'phf library shipped with NCSA
httpd. The 'phf library is supposed to allow server-parsed HTML, but can be exploited to
give back any file. Other well-known CGI scripts that an intruder might attempt to exploit
are: TextCounter, GuestBook, EWS, info2www, Count.cgi, handler, webdist.cgi, php.cgi,
files.pl, nph-test-cgi, nph-publish, AnyForm, FormMail. If you see somebody trying to access
one or all o f these CGI scripts (and you don't use them), then it is clear indication o f an
intrusion attempt (assuming you don't have a version installed that you actually want to use).

2.7.13 Web server attacks

Beyond the execution o f CGI programs, web servers have other possible holes. A large
number of self-written web servers (include IIS 1.0 and NetWare 2.x) have hole whereby a
file name can include a series of"../" in the path name to move elsewhere in the file system,
getting any file. Another common bug is buffer overflow in the request field or in one of the
other HTTP fields.

Web server often have bugs related to their interaction with the underlying operating system.
An old hole in Microsoft IIS have been dealing with the fact that files have two names, a long
filename and a short 8.3 hashed equivalent that could sometimes be accessed bypassing
permissions. NTFS (the new file system) has a feature called "alternate data streams" that is

o

similar to the Macintosh data and resource forks. You could access the file through its stream
name by appending "::$DATA" in order to see a script rather than run it.

Servers have long had problems with URLs. For example, the "death by a thousand slashes"
problem in older Apache would cause huge CPU loads as it tried to process each directory in
a thousand slash URL.

Web browser attacks

It seems that all o f Microsoft's and Netscape's web browsers have security holes (though, of
course, the latest ones never have any that we know about — yet). This includes both URL,
HTTP, HTML, JavaScript, Frames, Java, and ActiveX attacks.

URL fields can cause a buffer overflow condition, either as it is parsed in the HTTP header,
as it is displayed on the screen, or processed in some form (such as saved in the cache

I

39

history). Also, an old bug with Internet Explorer allowed interaction with a bug whereby the
browser would execute .LNK or .URL commands.

HTTP headers can be used to exploit bugs because some fields are passed to functions that
expect only certain information.

HTML can be often exploited, such as the MIME-type overflow in Netscape
Communicator's <EMBED> command.

JavaScript is a perennial favorite, and usually tries to exploit the "file upload" function by
generating a filename and automatically hidden the "SUBMIT" button. There have been
many variations o f this bug fixed, then new ways found to circumvent the fixes.

Frames are often used as part of a JavaScript or Java hack (for example, hiding web-pages in
lpx by lpx sized screens), but they present special problems. For example, I can include a
link to a trustworthy site that uses flames, then replace some o f those flames with web pages
from my own site, and they will appear to you to be part of that remote site.

Java has a robust security model, but that model has proven to have the occasional bug
(though compared to everything else, it has proven to be one o f the most secure elements o f
the whole system). Moreover, its robust security may be its undoing: Normal Java applets

ohave no access to the local system, but sometimes they would be more useful if they did have
local access. Thus, the implementation o f "trust" models that can more easily be hacked.

ActiveX is even more dangerous than Java as it works purely from a trust model and runs
native code. You can even inadvertently catch a virus that was accidentally imbedded in
some vendor's code.

SMTP (SendMail) attacks

SendMail is an extremely complicated and widely used program, and as a consequence, has
been the frequent source of security holes. In the old days (of the '88 Morris Worm), hackers
would take advantage o f a hole in the DEBUG command or the hidden WIZ feature to break
into SMTP. These days, they often try buffer overruns. SMTP also can be exploited in
reconnaissance attacks, such as using the VRFY command to find user names.

40

Access Failed login attempts, failed file access attempts, password cracking, administrative
powers abuse

IMAP Users retrieve e-mail from servers via the IMAP protocol (in contrast, SMTP transfers
e-mail between servers). Hackers have found a number of bugs in several popular IMAP
servers.

%

IP spoofing There is a range of attacks that take advantage of the ability to forge (or 'spoof)
your IP address. While a source address is sent along with every IP packet, it isn't actually
used for routing. This means an intruder can pretend to be you when talking to a server. The
intruder never sees the response packets (although your machine does, but throws them away
because they don't match any requests you've sent). The intruder won't get data back this way,
but can still send commands to the server pretending to be you. IP spoofing is frequently used
as part o f other attacks:

SMURF Where the source address o f a broadcast ping is forged so that a huge number of
machines respond back to victim indicated by the address, overloading it (or its link).

TCP sequence number prediction
o

In the startup of a TCP connection, you must choose a sequence number for your end, and the
server must choose a sequence number for its end. Older TCP stacks choose predictable
sequence numbers, allowing intruders to create TCP connections from a forged IP address
(for which they will never see the response packets) that presumably will bypass security.

2.7.14 DNS poisoning through sequence prediction

DNS servers will "recursively" resolve DNS names. Thus, the DNS server that satisfies a
client request will become itself a client to the next server in the recursive chain. The
sequence numbers it uses are predictable. Thus, an intruder can send a request to the DNS
server and a response to the server forged to be from the next server in the chain. It will then
believe the forged response, and use that to satisfy other clients.

Buffer overflow Some other buffer overflow attacks are:5

I

41

DNS overflow Where an overly long DNS name is sent to a server. DNS names are limited
to 64-bytes per subcomponent and 256-bytes overall.

statd overflow where an overly long filename is provided

DNS attacks DNS is a prime target because if you can corrupt the DNS server, you can take
advantage of trust relationships.

DNS cache poisoning Every DNS packet contains a "Question" section and "Answer"
section. Vulnerable servers will believe (and cache) Answers that you send along with
Questions. Most, but not all, DNS servers have been patched as o f November, 1998.

2.7.15 W hat are some common reconnaisance scans

Ping sweeps This simple scan simply pings a range of IP addresses to find which machines
are alive. Note that more sophisticated scanners will use other protocols (such as an SNMP
sweep) to do the same thing.

TCP scans Probes for open (listening) TCP ports looking for services the intruder can
exploit. Scans can use normal TCP connections or stealth scans that use half-open
connections (to prevent them from being logged) or FIN scans (never opens a port, but tests if
someone's listening). Scans can be either sequential, randomized, or configured lists o f ports.

UDP scans These scans are a little bit more difficult because UDP is a connectionless
protocol The technique is to send a garbage UDP packet to the desired port. Most machines
will respond with an ICMP "destination port unreachable" message, indicating that no service
is listening at that port. However, many machines throttle ICMP messages, so you can't do
this very fast.

OS identification By sending illegal (or strange) ICMP or TCP packets, an intruder can
identify the operating system. Standards usually state how machines should respond to legal
packets, so machines tend to be uniform in their response to valid input. However, standards
omit (usually intentionally) the response to invalid input. Thus, each operating system's

42

unique responses to invalid inputs forms a signature that hackers can use to figure out what
the target machine is. This type o f activity occurs at a low level (like stealth TCP scans) that
systems do not log.

Account scans Tries to log on with accounts

• Accounts with no passwords
• Accounts with password same as username, or "password".
• Default accounts that were shipped with the product (a common problem on SGI,
done to make setup easier)
• Accounts installed with software products (common on Microsoft as well as Unix,
caused by products that run under their own special user account).
• Anonymous FTP problems (CWD -root)
• Scan for rlogin/rsh/rexec ports, that may supported trusted logins.

I

2.7.16 W hat are some common DoS (Denial of Service) attacks

Ping-of-Death Sends an invalid fragment, which starts before the end o f packet, but extends
past the end of the packet.

o

SYN Flood Sends TCP SYN packet (which start connections) very fast, leaving the victim
waiting to complete a huge number o f connections, causing it to run out o f resources and
dropping legitimate connections. A new defense against this are "SYN cookies". Each side o f
a connection has its own sequence-number. In response to a SYN, the attacked machine
creates a special sequence number that is a "cookie" of the connection then forgets everything
it knows about the connection. It can then recreate the forgotten information about the
connection when the next packets come in from a legitimate connection.

Land/Latierra Sends forged SYN packet with identical source/destination address/port so
that system goes into infinite loop trying to complete the TCP connection.

WinNuke Sends OOB/URG data on a TCP connection to port 139 (NetBIOS Session/SMB),
which cause the Windows system to hang.

43

I2.7.17 How are intrusions detected

Anomaly detection
The most common way people approach network intrusion detection is to detect statistical
anomalies. The idea behind this approach is to measure a "baseline" o f such stats as CPU
utilization, disk activity, user logins, file activity, and so forth. Then, the system can trigger
when there is a deviation from this baseline.

The benefit o f this approach is that it can detect the anomalies without having to understand
the underlying cause behind the anomalies. For example, let's say that you monitor the traffic
from individual workstations. Then, the system notes that at 2am, a lot o f these workstations
start logging into the servers and carrying out tasks. This is something interesting to note and
possibly take action on.

Signature recognition
The majority o f commercial products are based upon examining the traffic looking for well-
known patterns o f attack. This means that for every hacker technique, the engineers code
something into the system for that technique.

This can be as simple as a pattern match. The classic example is to example every packet on
the wire for the pattern "/cgi-bin/phf?", which might indicate somebody attempting to access
this vulnerable CGI script on a web-server. Some IDS systems are built from large databases
that contain hundreds (or thousands) o f such strings. They just plug into the wire and trigger
on every packet they see that contains one o f these strings.

2.7.18 How does a NH>S match signatures with incoming traffic

Traffic consists of IP datagrams flowing across a network. A NIDS is able to capture those
packets as they flow by on the wire. A NIDS consists o f a special TCP/IP stack that
reassembles IP datagrams and TCP streams. It then applies some o f the following techniques:

Protocol stack verification A number of intrusions, such as "Ping-O-Death" and "TCP
Stealth Scanning" use violations o f the underlying IP, TCP, UDP, and ICMP protocols in
order to attack the machine. A simple verification system can flag invalid packets. This can
include valid, by suspicious, behavior such as severally fragmented IP packets.

44

Application protocol verification A number of intrusions use invalid protocol behavior,
such as "WinNuke", which uses invalid NetBIOS protocol (adding OOB data) or DNS cache
poisoning, which has a valid, but unusually signature. In order to effectively detect these
intrusions, a NIDS must re-implement a wide variety o f application-layer protocols in order
to detect suspicious or invalid behavior.

Creating new loggable events A NIDS can be used to extend the auditing capabilities o f
your network management software. For example, a NIDS can simply log all the application
layer protocols used on a machine. Downstream event log systems (WinNT Event, UNIX
syslog, SNMP TRAPS, etc.) can then correlate these extended events with other events on the
network.

2.7.19 W hat happens after a NIDS detects an attack

Reconfigure firewall: Configure the firewall to filter out the IP address o f the intruder.
However, this still allows the intruder to attack from other addresses. Checkpoint firewall's
support a "Suspicious Activity Monitoring Protocol (SAMP)" for configuring firewalls.
Checkpoint has their "OPSEC" standard for re-configuring firewalls to block the offending IP
address.

Chime Beep or play a .WAV file. For example, you might hear a recording "You are under
attack".

SNMP Trap Send an SNMP Trap datagram to a management console like HP OpenView,
Tivoli, Cabletron Spectrum, etc.

DT Event Send an event to the WinNT event log.

Syslog Send an event to the UNIX syslog event system.

send e-mail Send e-mail to an administrator to notify of the attack.

Page Page (using normal pagers) the system administrator.

45

Log the attack Save the attack information (timestamp, intruder IP address, victim IP
Address/port, protocol information).

Save evidence Save a tracefile of the raw packets for later analysis.

Launch program Launch a separate program to handle the event.
Terminate the TCP session Forge a TCP FIN packet to force a connection to terminate.

2.7.20 W hat other countermeasures besides IDS are there

Firewalls: Most people think o f the firewall as their first line o f defense. This means if
intruders figure out how to bypass it (easy, especially since most intrusions are committed by
employees inside the firewall), they will have free run o f the network. A better approach is to
think o f it as the last line o f defense: you should be pretty sure machines are configured right
and intrusion detection is operating, and then place the firewall up just to avoid the wannabe
script-kiddies. Note that almost any router these days can be configured with some firewall
filtering. While firewalls protect external access, they leave the network unprotected from
internal intrusions. It has been estimated that 80% of losses due to "hackers" have been
internal attacks.

o

Authentication: You should run scanners that automated the finding o f open accounts. You
should enforce automatically strict policies for passwords (7 character minimum, including
numbers, dual-case, and punctuation) using crack or built in policy checkers (WinNT native,
add-on for UNIX). You can also consider single-sign on products and integrating as many
password systems as you can, such as RADIUS/TACACS integration with UNIX or NT (for
dial-up style login), integrating UNIX and WinNT authentication (with existing tools are the
new Kerberos in Windows 2000). These authentication systems will help you also remove
"clear-text" passwords from protocols such as Telnet, FTP, IMAP, POP, etc.

2.7.21 W here do I put IDS systems on my network
i

Network hosts: Even though network intrusion detection systems have traditionally been
used as probes, they can also be placed on hosts (in non-promiscuous mode). Take for
example a switched network where an employee is on the same switch as the CEO, who runs

46

Win98. The windows machine is completely defenseless, and has no logging capabilities that
could be fed to a traditional host-based intrusion detection system. The employee could run a
network-based password cracker for months without fear of being caught. A NIDS installed
like virus scanning software is the most effective way to detect such intrusions.

network perimeter: IDS is most effective on the network perimeter, such as on both sides o f
the firewall, near the dial-up server, and on links to partner networks. These links tend to be
low-bandwidth (T1 speeds) such that an IDS can keep up with the traffic.

WAN backbone : Another high-value point is the corporate WAN backbone. A frequent
problem is hacking from "outlying" areas to the main corporate network. Since WAN links
tend to be low bandwidth, IDS systems can keep up.

server farms : Serves are often placed on their own network, connected to switches. The
problem these servers have, though, is that IDS systems cannot keep up with high-volume
traffic. For extremely important servers, you may be able to install dedicate IDS systems that
monitor just the individual server's link. Also, application servers tend to have lower traffic
than file servers, so they are better targets for IDS systems.

LAN backbones: IDS systems are impractical for LAN backbones, because o f their high
traffic requirements. Some vendors are incorporating IDS detection into switches. A frill IDS
system that must reassemble packets is unlikely to keep up. A scaled-down system that
'detects simpler attacks but can keep up is likely to be a better choice.

2.7.22 How does IDS fit with the rest of my security framework
*

1. Put firewalls between areas o f the network with different security requirements (i.e.
, between intemet-localnet, between users-servers, between company-partems, etc).
2. Use network vulnerability scanners to double check firewalls and to find holes that
intruders can exploit.
3. Use host policy scanners to make sure they conform to accepted practices (i.e. latest
patches).
4. Use Network intrusion detection systems and other packet sniffing utilities to see
what is actually going on.

47

5. Use host-based intrusion detection systems and virus scanners to flag successful
intrusions.
6. Create an easy to follow policy that clearly states the response to intrusions.

\2.7.22 How can I detect if someone is running a NIDS

A NIDS is essentially a sniffer .An example would be to do a traceroute against the victim.
This will often generate a low-level event in the IDS. Traceroutes are harmless and frequent
on the net, so they don't indicate an attack. However, since many attacks are preceded by
traceroutes, IDSs will log them anyway. As part of the logging system, it will usually do a
reverse-DNS lookup. Therefore, if you run your own DNS server, then you can detect when
somebody is doing a reverse-DNS lookup on your IP address in response to your traceroute.

48

CHAPTER 3
Methodology

This program used to capture Internet packets network interface. Data packet not reassembled
read their header data before arriving the firewall. The program was implemented in C
language according to

1. Capture all packet from Ethernet interface.
2. IP filtering step. If local IP equal to destination IP from data packet

go to next.
3. protocol filtering step. If protocol equal to TCP, dump TCP packet

protocol equal to UDP, dump UDP and get destination port, else go to next
4. Port filtering step. If destination port does not equal to port number 80,

print information about that data packet.
5. Write relevant data about intruder.

1. Dump data packet and get header data

void DumpPacket(char ’•'buffer, int len) {
struct ipjsacket *ip=(void*)buffer;

o

struct tcpheader * tcp=(vo id*) buffer;
struct udp_header*udp=(void*)buffer;

dump(buffer, len);

2. IP filtering step

char dst_ip[20];
strcpy(dst_ip,inet_hton(* (struct in_addr*)&ip->IPv4_dst));

char Iocaiip[20]={‘i y 9 y 2 y .y i y 6 y 8 y .y i y o y .y i y 8 y 2 ’
int i=0;
while((localip[i]=dst_ip[i])&&(i<l 5)) {

i++; } if[i>=14) {

49

int A,B;
if^6=(ip->protocol))

(A=ntohs(tcp->src_port))&&(B=ntohs(tcp->dst_port));
else if(17=(ip->protocol))
(A=ntohs(udp->src_port))&&(B=ntohs(udp->dst_port));

else (A=0)&&(B=0);

3. Protocol filtering step

4. port filtering step

if(80!=B) {
printf(“destination port =%d\n”,B);

printf(“source port =%d\n”,B);

§. Write relevant data about intruder.

prmtf("checksum=%d,", ntohs(ip->hdr_chksum));
PrintAddr("source-", ip->IPv4_src, eIP__ADDR);

PrintAddr(", destination=", ip->IPv4_dst, elPADDR);
Char src_ip[20];
strcpy(src_ip, inet_hton(* (struct in_addr*)&ip->IPv4_src));

printf(“ %s ------0%s”,src_ip,dst_ip);
printf("\n"); fflush(stdout);

50

CHAPTER 4
4.1 Results
The program successfully identified unusual requested relevant data such as source IP address,
source port etc. The output of the tested program shows in the following screen printout.

4.2 Discussion.
The type of Ethernet card had to be considered at beginning of coding the program.
Programmable Ethernet IDs Some OEMs (original equipment manufacturers) offer their network
interface cards (either PCI or PCMCIA) that support a programmable MAC address (or Ethernet
ID). This makes mass production possible for a few card manufacturers while serving several
hundred name-brand companies. Unfortunately, you may get a card that has a bogus ID, because
the name-brand company did not program it correctly. This error can make your card non-unique
6n the network.

The following aspects have been used for the algorithm

51

1. The roles of different types of data packets through the internet.
2. The role of IP addresses port numbers and socket.
3. Client server network programming.
4. The security of the web servers and other information servers.
5. The role of firewall and proxy servers.
6. How to works on the Linux operating system.

52

CHAPTER 5
5.1 Conclusion

1. The developed system is a Network Monitoring Tool for Internet servers
2. It successfully detected unusual traffic other than http requests made to a web

server
3. The system was successfully tested at www.sab.ac.lk (192.248.87.3) web server

5.2 Recommendation
Future development as follows

1. Implement a method to convert IP address to FQDN.
2. Implement a method to identify the unusual requested geographical area.
3. Implement a method to identify the time of unusual requested.

References.
CHAPTER 6

Neil, M.and Richord, S.1999. Beginning Linux programming. Shroff publishers &
distributors PVT LTD Mumbai Calcutta.
Tim, P.1998. Teach yourself TCP/IP in 14 days. Techmedia munish plaza 20 Ansari road
Darya Ganj, New Delhi-2.
Joe, C and Bob, w. 1999. SAMS Teach yourself TCP/IP in 24 hours. Techmedia munish
plaza 20 Ansari road Darya Ganj. New Delhi-110 001.
Donglas,C.E and David, S.L. 2000. Internetworking with TCP/IP client server programming
and application. Techmedia munish plaza 20 Ansari road Darya Ganj. New Delhi-110 001.
Robert, Z.L.2000. Linux firewalls, echmedia munish plaza 20 Ansari road Darya Ganj. New
Delhi-110 002.
Richard, S.W.2000.Unix Network programming. Addision Wesley Longman pte.Ltd.vol.l.
Steve,W. 1997. Bilding internets with internet information server and front page.Galgtio
publications pvt.ltd. 5 Ansari road Darya Ganj. New Delhi-110 002.
Anone.2000.http://www.Ebcvg.com. 25 th November 2003.
Anone. 1999.http;//www.freeOS.com 2 0 th November 2003

§4

N ational D igitization Project
N ationa l Science F oundation

Institute : Sabaragamuwa University of Sri Lanka

1. Place of Scanning : Sabaragamuwa University of Sri Lanka, Belihuloya
2. Date Scanned : ...
3. Name of Digitizing Company : Sanje (Private) Ltd, No 435/16, Kottawa Rd,

JHokandara North, Arangala, Hokandara
4. Scanning Officer

Name : ..S:£L ■ .(!»...

Signature :ca,

Certification of Scanning
I hereby certify that the scanning o f this document was carried out under my supervision, according to
the norms and standards o f digital scanning accurately, also keeping with the originality o f the original
document to be accepted in a court o f law.

Certifying Officer
Designation *

Name Kl* oo H

Signature

Date i . .2 C .\ r̂*fz).........
Mrs/fjjdftiGHSOORtl(MSScRjD.ASlA.6A)

Librarian
Sabaragamuwa University of Sri Lanka

P.O.Box 02 Beiihuloya.Sri Lanka
Tele.cu94 45 2280045
Fax:Onc/ 45 2280045

“This document/publication was digitized under National Digitization Project o f the
National Science Foundation, Sri Lanka ”

